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a b s t r a c t

A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described.
It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable
selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic
algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been
included as part of the model optimization. All the above procedures have been combined into a single
algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy.
Simulated and experimental examples are employed to illustrate the success of the proposed approach.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

In multivariate spectroscopic calibration, variable selection
intends to rationally choose, from the whole available spectrum,
wavelengths where signals have maximum information regarding
the analyte of interest, discarding at the same time those carrying
irrelevant information (noise, saturation regions) or those heavily
overlapped with other sample components which are not of
analytical interest [1,2]. Although the concern is primarily directed
toward spectral information, variable selection can also be applied
to any multivariate technique where some sensors can in principle
be more selective as to the analyte or property of interest, while
others may give negligible signals. Improved PLS analytical per-
formance has been reported upon variable selection, which sup-
ports the continuing interest in this chemometric activity [3,4].

Mathematical pre-processing techniques exist for removing
variations in spectra from run to run, which are unrelated to
analyte concentration changes [5,6]. The removal of these
unwanted effects, e.g., dispersion in near infrared (NIR) spectra
of solid or semi-solid materials, leads to more parsimonious partial
least-squares (PLS) models requiring less latent variables than
ll rights reserved.
those based on raw data, and very often produce better statistical
indicators.

Sample selection is another important activity in PLS regression
analysis of complex samples (industrially manufactured or natu-
rally occurring), and is intended to provide representativeness to
the set of samples used for model building [7]. This means that
their spectra should span most of the expected variability of future
samples in spectral space.

Outlier detection has been extensively discussed in the litera-
ture, and several diagnostics have been proposed [8]. From a
formal point of view, an outlier is a value which is not representa-
tive for the rest of the data [9]. In the context of PLS calibration, the
main objective is to identify samples with features which make
them significantly different from the remaining ones.

All the above activities are mutually connected. Spectral pre-
processing modifies by definition the characteristics of the spectral
space, and may lead to the selection of different samples for
training, and also to different selected wavelengths. Changing the
spectral regions, in turn, has a strong influence in the pre-
processing method required to model the data in specific regions.
Sample selection, on the other hand, is important during model
optimization: if truly representative samples are included in the
monitoring set instead of in the training set, the choice of model
parameters may be misguided. Outliers (samples with wrong
nominal concentrations or reference properties) could also be
potentially harmful and should be removed. The selection process
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could in principle be carried out on a trial and error basis until
convergence, although it would be far more convenient to have a
simultaneous variable, pre-processing, sample and outlier selec-
tion methodology. A step towards this integration has been
previously done by combining pre-processing and variable selec-
tion with a single genetic algorithm (GA) [10]. A further integrated
approach has been taken in the present report by combining all
the above activities into a single algorithm, but using specific
procedures for each task.

For variable selection, we propose ant colony optimization
(ACO) [11,12] instead of GA. The former algorithm resembles the
behavior of ant colonies in the search of the best path to food
sources. It has been recently implemented with success in the field
of variable selection, showing better performances than other
approaches such as genetic algorithms [13–15] and particle swarm
optimization [16]. This improved performance was due to two
complementary reasons: (1) the effectiveness of the ant colony in
their cooperative search for better solutions, and (2) the coupling
of ACO with a Monte Carlo approach which provided increased
reliability to the regression model.

The choice of a suitable pre-processing or combination of pre-
processing methods could be extremely time consuming if per-
formed on a trial and error basis. Thus this activity is proposed to
be implemented by a suitable GA [17,18]. Each position (‘gene’) in a
chromosome is either a ‘1’ or a ‘0’, indicating a selected pre-
processing method or an ignored one, respectively. As in a
previously described ACO algorithm, a Monte Carlo philosophy is
applied [12]. If a certain pre-processing method is selected more
times than those rejected over the Monte Carlo cycles, and
consistently leads to lower average prediction errors, it is con-
sidered to be useful for the particular data set under study, and is
thus included in the final PLS model.

Sample selection during model optimization is possible using
several methods, such as those based on exchange [19], successive
projections [20] or sample distances [21,22]. All of them appear to
be very effective for providing a reasonably representative sample
set. Two distance-based methods were implemented in our
integrated strategy: Kennard–Stone [21] and joint X–Y distances
[22].

Finally, in order to detect outlying samples, the usual criterion
has been the comparison of a statistical F ratio with critical F
values, both for training and monitoring samples [23]. The
experimental F value may be based on either concentration or
spectral residuals, and is computed as the ratio of squared error for
a particular sample and the average squared error for the remain-
ing samples. In this report, concentration residuals have been
employed for outlier detection, because: (1) nominal concentra-
tions are known for training and monitoring samples and (2) the
objective of the algorithm is to produce a model whose main
advantage is its improved prediction ability.

We illustrate the improvement in figures of merit which can be
obtained by applying the proposed integrated approach with both
simulated and experimental data sets. The approach has been
implemented as a MATLAB graphical user interface (GUI) named
ACOGASS (ant colony optimization+genetic algorithm+sample
selection), which is freely available (see below).
Fig. 1. (A) Plot of pure constituent spectra (analyte 1, solid line, constituent 2,
dashed line, constituent 3, dotted line) and the background signal (dashed-dotted
line), used to build the simulated data set. (B) Plot of the 70 simulated training
spectra. Monitoring and test spectra are similar.
2. Data

2.1. Simulated data

A synthetic data set was built by mimicking the spectra of three
components and a sample-dependent non-linear background
signal, with component 1 being the analyte of interest. All
constituents are present in 70 training samples, 30 monitoring
samples and 100 test samples, at randomly chosen concentrations
ranging from 0 to 1 unit for constituents 1 and 2, and from 5 to 10
units for component 3 (in the latter case to ensure high relative
concentrations of this latter component). Fig. 1A shows the pure
component spectra, all at concentrations of 1 unit, as well as a
typical background signal, as defined in a full spectral range of 100
sensors. From these noiseless profiles, training, monitoring and
test spectra were built. Specifically, each training, monitoring and
test spectrum x was created using the following expression:

x¼ y1s1 þ y2s2 þ y3s3 þ b ð1Þ

where s1, s2 and s3 are the pure component spectra at unit
concentration, y1, y2 and y3 are the component concentrations in a
specific sample and b is the background signal. Gaussian noise with a
standard deviation of 0.01 units was added to all concentrations,
before inserting them in Eq. (1). A vector of signal noise (standard
deviation¼0.05 units) was then added to each x vector after applying
Eq. (1). Signals higher than 5 units were cut at this latter value, and
noise was added to them with 1 unit of standard deviation (this
mimics the saturation of the detector at high absorbances in a real
experiment). Fig. 1B shows the resulting matrix of training signals.
Notice the variations and non-linear nature of the added background
signal, which makes it necessary, in general, to apply mathematical
pre-processing for removing its effect.
2.2. Experimental BRIX data

This experimental data set was previously described [12], and
consists of NIR spectra measured for 105 sugar cane juice samples
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with a NIRSystems6500 spectrometer in the wavelength range
400–2498 nm each 2 nm (1050 data points). For each sample,
reference Brix values were measured with a Leica AR600 refract-
ometer, falling in the range 11.76–23.15.

2.3. Experimental CORN data

This is a freely available data set [24], consisting of NIR spectra
of 80 samples of corn in the wavelength range is 1100–2498 nm at
2 nm intervals (700 channels). Several reference parameters were
measured for this set, among which we selected the starch
content, with values ranging from 62.83 to 66.47.
3. Software

The integrated algorithm has been incorporated into the
ACOGASS graphical user interface which runs under MATLAB
version 7.4.0 (R2007a) or higher [25]. Please refer to the document
named ‘ACOGASS_manual.pdf’, which is provided with the soft-
ware. The MATLAB codes, the manual and the simulated example
data discussed in this report can be freely downloaded from www.
iquir-conicet.gov.ar/descargas/acogass.zip. The manual is provided
as Supplementary material for the present report.
Fig. 2. Flow-sheet for the ACOGASS algorithm implementing sample, pre-proces-
sing and variable selection, and outlier detection within a Monte Carlo type
strategy.
4. Results and discussion

4.1. Setting algorithm parameters

In PLS calibration, it is usual to have two data sets: a calibration
set, employed to build the regression model, and a test set to check
the prediction ability of the PLS model after all calibration
parameters have been optimized. For model optimization, on the
other hand, the calibration set is further divided into a training set
and a monitoring set. The purpose of the monitoring set is to guide
choices during model optimization. In all three sets (training,
monitoring and test), reference values (analyte concentrations or
sample properties) should be known. When performing sample
selection, the training and monitoring sets are merged into a
single one, and then divided into new training and monitoring sets
at each computation cycle, according to the results of the sample
selection method. Two strategies are implemented for the latter
activity: (1) the Kennard–Stone algorithm based on either PLS
scores or principal component analysis (PCA) scores [21], and
(2) selection based on joint X–Y distances, as described in Ref. [22].
On the other hand, if no monitoring set is provided, the whole
calibration set is initially divided at random to create one.

Outliers are flagged if the Fi ratio for the ith. sample exceeds a
critical value [23]. For calibration samples, Fi is given by:

Fi ¼
ðI�1Þðypred;i�ynom;iÞ2
∑i0≠iðypred;i0�ynom;i0 Þ2

ð2Þ

where ynom,i is the nominal concentration for sample i, ypred,i is the
corresponding value as estimated by the regression model and I is
the number of calibration samples. In the case of monitoring
samples, the following ratio is computed [23]:

Fi ¼
Iðypred;i�ynom;iÞ2

∑
I

i0 ¼ 1
ðypred;i0�ynom;i0 Þ2

ð3Þ

where i′ corresponds to the calibration samples and i to the
monitoring samples.

As regards the selection of mathematical pre-processing meth-
ods, the algorithm uses a suitable GA to choose one or more
pre-treatments among the following: (1) multiplicative scattering
correction (MSC) [5], (2) standard normal variate (SNV) [6],
(3) detrend, (4) first-derivative and (5) second-derivative (in the
last two cases the derivatives were computed using the Savitzky–
Golay approach [26]). These four methodologies are commonly
applied in NIR/PLS applications [2]. The implementation of the GA
requires one to set the number of the so-called chromosomes and
the number of generations (see below). Notice that mean-
centering is applied to all data sets as a default pre-processing
method, as is regularly done in most NIR/PLS applications.

Finally, the most important activity is probably the selection of
relevant variables (wavelengths in NIR/PLS studies). This is pro-
posed to be done by ant colony optimization, given the success of
this latter technique in related applications [12]. The implementa-
tion of ACO requires to set the number of ants, which are the
variable-selecting artificial agents, and the number of evolving
epochs during which the ants seek for the best combination of
variables. Incidentally, in the proposed approach the number of
ACO epochs is identical to the number of GA generations. Suitable
default values for all ACO and GA parameters are suggested in the
ACOGASS software manual (see Supplementary material).

One should be cautious concerning the sensor window (the
number of individual sensors included in each of the selectable
sensor blocks or variables). The selected window should reflect the
typical width of a spectral band. For example, if a typical band has
a width of 50 nm, and the spectrum is read in steps of 2 nm, then a
reasonable value for sensor window is 25 (band width/step).
During algorithm execution, the number of selected variables is
allowed to vary within a certain range (i.e., between a minimum
and a maximum, both input by the user).

It should be noticed that the parameter guiding the search for
pre-processing methods and variables made by GA and ACO is the
root mean square error of prediction in the monitoring set of
samples (RMSEPmon). Therefore, a final parameter of crucial
importance in this regard is the number of PLS factors for model
building in each algorithmic step. An initial value to be input in
ACOGASS may be estimated by leave-one-out cross-validation on

www.iquir-conicet.gov.ar/descargas/acogass.zip
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Table 2
Figures of merit obtained by ACOGASS in the different data sets.

Simulated BRIX CORN

Full spectrum
RMSEPtest 0.28 0.75 0.23
REP% 53 4.2 0.36
R2 0.1114 0.9238 0.9385
No. of latent variables 4 12 17
Pre-processing None None None

After ACOGASS selection
RMSEPtest 0.03 0.25 0.11
REP% 5.7 1.4 0.17
R2 0.9900 0.9896 0.9902
No. of latent variables 2 9 14
Pre-processing Detrend None MSC

Comparison of RMSEPtest
p valuea 5�10–4 5�10–4 3�10–3

a Probabilities associated to the randomization test for comparing RMSEPs
(see Ref. [27]).
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the raw data, i.e. full-spectral data with no pre-processing [23].
During algorithm execution, however, the number of latent vari-
ables is tuned at each step by examining the changes in RMSEP-
mon as a function of the number of PLS factors, and selecting the
number for which no further significant changes in RMSEPmon
occur. Leave-one-out cross validation is not employed because it
significantly increases the computation time.

The flow sheet shown in Fig. 2 adequately summarizes the
above discussed algorithmic steps. As can be seen, all the above
activities are repeated for a certain number of times, allowing to
obtain reliable results through a Monte Carlo type approach [12].
As is usual, a histogram is built reflecting the relative selection
frequency for each variable. Those above a certain tolerance are
finally chosen for PLS model building using the selected training
sample set and mathematical pre-processing. The optimum model
can then be applied, if desired, to the test sample set for checking
its predictive ability.

A final note is in place regarding the activities described in the
present report. It is likely that an experienced NIR/PLS worker will
remove uninformative wavelength ranges upon visual inspection
of the spectra (e.g., saturated or high-noise spectral regions), and
will also most probably apply some form of mathematical pre-
processing to the spectra if the material under analysis is solid or
semi-solid. These intuitive forms of variable selection and pre-
processing may improve the prediction performance of the PLS
models. However, our intention is the development of a fully
automated methodology, which could be incorporated into NIR/
PLS instrument software in the future, and operated by rather
unskilled personnel.
4.2. Simulated data

In this data set, three constituents occur, one of them being the
analyte of interest, with an additional background signal. One of
the constituents generates an intense signal causing saturation at
sensors 80–100, while a non-linear, sample-dependent back-
ground signal occurs at sensors 1–50 (Fig. 1B). We expect the
present ACOGASS approach to lead to reasonably low values of the
RMSEP (both for monitoring and test), by selecting the apparently
useful spectral region at sensors 25–40, applying a suitable pre-
processing method to alleviate the effect of the variable non-linear
background, and optimizing the number of PLS latent variables at
two or at most three.

The ACOGASS algorithmwas then run on this data set using the
parameters shown in Table 1. Notice that each variable comprises
two individual sensors (Table 1), which is about half the band
Table 1
Specific ACOGASS parameters.

Parameter Simulated BRIX CORN

Number of ants 20 20 20
Blind proportiona 0.3 0.3 0.3
Minimum number of variables 4 4 4
Maximum number of variables 8 8 8
Number of chromosomes 20 20 20
Mutation frequencya 0.1 0.1 0.1
Cycles 10 10 10
Epochs 50 50 50
Sensor window 2 20 20
Tolerance 0.3 0.3 0.3
Latent variablesb 4 12 17

a The blind proportion and mutation frequency are parameters introducing
randomness in the search for minimum monitoring error (see Supplementary
material).

b Estimated from leave-one-out cross-validation using no pre-processing in the
complete spectral range.
width of individual analyte peaks (Fig. 1A). We initially set the
number of latent variables at four (Table 1), since there are four
spectrally active phenomena in this data set.

According to the results presented in Table 2 for the figures of
merit computed for the test sample set, which is different than
that used for training and monitoring, it is apparent that the
ACOGASS approach has found the correct answer. A large predic-
tion error is obtained with no-preprocessing and full spectral data
(Table 2). On the other hand, ACOGASS selected detrending as the
best pre-processing method, which is reasonable given that this
pre-treatment is able to effectively remove non-linear variable
background signals, and an optimum number of latent variables of
two, as expected. A reasonably low RMSEtest of 0.03 after
ACOGASS selection is estimated. Comparison of both RMSEP values
(before and after selection) was made using the randomization
test suggested by van der Voet [27]. The result indicates that the
RMSEP found by ACOGASS is significantly smaller than the one
with no selection, since the probability value obtained (p) is much
smaller than the critical level of 0.05 (Table 2). Additional
indicators are the relative error of prediction REP%¼5.7%, com-
puted with respect to the average training value, and a correlation
coefficient R2¼0.9900 (Table 2).

In comparison with the results obtained using the full spectra
(Table 2), the improvement in predictive ability on variable and
pre-processing selection is therefore very significant (Fig. 3).

4.3. BRIX data

The main spectral features of the BRIX data set involve a high
absorbance signal due to water (around 1950 nm), regions with
significant signals at 1450 and 2500 nm, as well as regions which
are mainly dominated by noise below 1300 nm (Fig. 4A). The
available set of 105 samples was randomly divided into training,
monitoring and test, having 59, 23 and 23 samples respectively.
Cross-validation using the full spectrum requires 12 PLS latent
variables, which was subsequently employed as the maximum
number of factors within ACOGASS (Table 1). Since the sensor
window is 20, the minimum number of selectable sensors is
40 nm, because the recording step is 2 nm. This is reasonable in
view of the spectral width at half height (Fig. 4A). The remaining
ACOGASS parameters are shown in Table 1.

As can be seen in Table 2, the obtained figures of merit show a
considerable improvement after selecting the spectral regions
shown in Fig. 4A. The RMSEP significantly decreases in comparison
to the value without applying a selection process, from 0.75 to 0.25



Fig. 3. (A) Gray bars showing the selected variables (sensor blocks) in the
simulated data set. The black solid line is the average training spectrum.
(B) Evolution of the monitoring error (RMSEPmon) as a function of epochs in the
simulated data set.

Fig. 4. (A) Selected variables (sensor blocks) in the BRIX data set shown as gray
bars. The black solid line is the average training spectrum. (B) Same as (A) for the
CORN data set.
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Brix units, corresponding to a decrease in REP% from 4.2% to 1.4%.
The improvement is confirmed to be significant by applying
the randomization test for comparing RMSEPs (i.e., p⪡0.05, see
Table 2).
It may be noticed that the number of optimum ACOGASS latent
factors is lower than when the full spectral model is applied, as
expected from the reduction of spectral regions employed for
training and the removal of spectral features which are unrelated
with the Brix reference values. Furthermore, although many
combinations of pre-processing methods have been tested in
ACOGASS, no one was selected. This is in agreement with the
features of these samples, which are liquid, so in principle there
should be no scattering phenomena causing baseline deviations.

Notice that by visual inspection of the BRIX spectra and
removal of the high-absorbance spectral region due to water
absorption, PLS processing of the mean-centered resulting data
(using 10 latent variables) leads to an RMSEP of 0.45 units for the
test set. This value is lower than that for the raw data, although
sup-optimal regarding the ACOGASS results (Table 2). We may
stress again, however, that intuitive variable selection based on
visual inspection of the spectra conspires against the aim of a fully
automated process.

4.4. CORN data

This data set is available on the internet, and is intended for
calibration of starch and other relevant parameters in corn seeds.
The 80-sample set was divided into training (40 samples), mon-
itoring (20 samples) and test (20 samples) at random. As regards
the determination of the starch content, cross-validation indicated
17 PLS factors in the full spectral range. This number significantly
decreased after variable selection, with a corresponding improve-
ment in figures of merit (Table 2). Fig. 4B shows the regions
selected by ACOGASS using the parameters shown in Table 1. As
for the case of BRIX data, the reduction in RMSEP was found to be
significant (p⪡0.05 in Table 2), from 0.23 to 0.11, corresponding to
REP% values of 0.60 and 0.17, respectively.

Notice that MSC was selected for mathematical pre-processing
this data set, which is reasonable because in the case of solid
samples such as grinded corn, a strong dispersion of the radiation
leading to scattering effects is expected.

If full spectral CORN data are processed by applying the
common scattering correction method (MSC), a 14-latent variable
PLS model leads to an RMSEP of 0.21 units for the test set. This
implies some improvement over the value quoted in Table 2,
although sup-optimal in comparison with ACOGASS.
5. Conclusions

A new strategy is described for the combined implementation
of three of the main optimization methods in partial least-squares
calibration: variable, pre-processing and sample selection. It is
based on a Monte Carlo procedure including ant colony optimiza-
tion for variable selection, genetic algorithms for pre-processing
selection and two usual sample selection methods. The algorithm
has been tested using several sets of samples and the results were
satisfactory. All these characteristics imply an innovative strategy
based on the use of combined methods in order to obtain a fully
optimized partial least-squares calibration.
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