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a  b  s  t  r  a  c  t

This  paper  addresses  the  estimation  of  specific  growth  rate  of microorganisms  in bioreactors  using  sliding
observers.  In  particular,  a  second-order  sliding  observer  based  on  biomass  concentration  measurement
is proposed.  Differing  from  other  proposals  that only  guarantee  bounded  errors,  the  proposed  observer
provides  a smooth  estimate  that converges  in  finite  time  to the  time-varying  parameter.  Stability  is
proved  using  a Lyapunov  approach.  The  observer  exhibits  also  robustness  to  process  uncertainties  since
no model  of  the  reaction  is  used  for  its design.  In addition,  the  off-surface  coordinate  of  the  sliding
observer  is  useful  to  determine  the convergence  time  as well  as to identify  sensor  faults  and  unexpected
behaviors.  Because  of  the structure  of the  output  error  injection,  chattering  phenomena  of conventional
sliding  mode  algorithms  are  substantially  reduced.  The  features  of  the proposed  observer  are assessed
by numerical  and  experimental  data.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Bioprocesses are characterized by complex dynamic behavior,
nonlinearities, model uncertainty, unpredictable parameter varia-
tions, etc. Furthermore, most representative variables are typically
not accessible for on-line measurement. In this context, the devel-
opment of robust and reliable algorithms to estimate key variables
and parameters is of prime interest, both for process control and
monitoring [1].

The existing algorithms differ from each other with respect
to the measured and estimated variables, the parameters which
are assumed to be known, the type of convergence, robustness
issues, etc. A summary of several approaches under different sce-
narios can be found in [1,2]. Asymptotic observers for state and
parameter estimations appeared for the first time in [3].  Adap-
tive high-gain observers for the same purposes were presented
in [4].  Applications of high-gain observers to bioreactors were
treated also in [5,6]. More recently, hybrid observers combin-
ing asymptotic with exponential observers to estimate states and
identify confidence of the kinetic model were developed [7,8]. A
proportional-integral observer based on the exact transformation
of the nonlinear dynamical system into its multi-model form has
been developed in [9]. Sliding mode observers have been proposed
also to deal with model uncertainties [10,11].  An observer that
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estimates the substrate consumption rate based on substrate con-
centration measurement was  designed in [10]. In [11], sliding mode
techniques were exploited to estimate kinetic rates and concentra-
tion variables from biomass measurement.

In this paper we  focus on the estimation of reaction rates and,
particularly, of specific growth rates. The motivation is that, in
many cases, specifications are related with the growth rate of
microorganisms, whether the objective is to maximize biomass
production or to maintain a metabolic steady state [12]. Besides,
growth rate provides valuable information to monitor the devel-
opment of microorganisms in the broth.

Substrate concentrations are the key variables in the kinetic
models. So, by measuring them, good estimates of the specific
growth rate can be obtained by using high-performance observers.
However, substrates are usually very difficult to measure on-line
and with good precision, particularly when they are in low concen-
trations.

Alternatively, there currently exist reliable biomass sensors (see
for example [13,14]). That is why much research has been oriented
to develop observers based on biomass sensors, although biomass
is a much less informative signal from the point of view of kinet-
ics than substrate. In this approach, the kinetic rate is traditionally
treated as an unknown parameter. Advances in the field can be
traced back to the work of [4],  where an adaptive Luenberger-like
observer is designed so that it achieves bounded error under the
assumption that the specific growth rate has bounded time deriva-
tive. These results were extended and improved by further work of
the authors and contributions of other colleagues.

0959-1524/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jprocont.2011.05.008
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A different approach is suggested in [11], where reaction
rates are treated as unknown time-varying signals rather than as
unknown parameters. There, a sliding mode observer is designed
to estimate the specific growth rate under the same assumptions
as in [4] and related papers. The observer includes a discontinuous
term in the estimate that allows achieving finite time convergence
to the unknown growth rate. Actually, the estimate converges to
the real signal up to a very high frequency component.

In this paper we further exploit the potentialities of the previ-
ous approach with the aim of obtaining observers with superior
convergence features than the already existing ones. It is actually a
super-twisting algorithm [15], modified to deal with the nonlinear-
ities of the process. The information about the process required by
the observer is the same as in [4] and related papers, thereby simi-
lar robustness features are expected. The present approach has also
interesting applications in fault detection and monitoring.

The work is organized as follows. The next section presents some
general assumptions and preliminaries. In Section 3, the proposed
second-order sliding mode observer is developed and its stability
is proved using Lyapunov theory and semi-definite programming
tools. Section 4 shows the observer performance using numerical
analysis whereas experimental results are presented in Section 5.
Finally, the main conclusions of the work and future research lines
are given.

2. Problem formulation and background material

Consider a biomass growth, whose dynamics accept the follow-
ing description in state-space [16,17]:

P :

{
ẋ = (� − D(x, t))x

�̇ = �(x, �, t)x
(1)

where the state variables are the biomass concentration x and the
specific growth rate �. The dilution rate D(x, t) is a function of time
and, possibly, of x. The specific growth rate � is an unknown non-
linear function of biochemical and environmental variables. In the
second line of (1),  a biomass-proportional representation for the �-
dynamics has been used. This is a sensible choice, particularly for
batch processes as well as for fed-batch processes with exponential
growth (in which feeding laws of the form D(x, t) = �(t)x, are used).
An explicit expression for �(·), as function of process parameters,
can be derived for some simple – and most commonly found in lit-
erature – kinetic models such as Monod and Haldane. However, our
purpose is to design robust observers that do not rely on the knowl-
edge of the kinetic structure and process parameters. Therefore, the
function �(x, �, t) is supposed to be unknown.

2.1. Main assumptions

The observer to be presented in the following section is designed
under the following main assumptions:

Assumption 1. Biomass concentration is measured.

Assumption 2. Uncertainty � is uniformly bounded by |�(·)| < �̄

Assumption 3. The dilution rate D is known and uniformly
bounded.

Additionally, to show observer convergence, we state the fol-
lowing assumptions which are quite obvious and do not restrict
the validity of the proposed observer:

Assumption 4. D and � are Lebesgue-measurable functions.

Assumption 5. Biomass concentration is strictly positive and
bounded, that is, for any initial condition x(0) > 0 there exist x > 0
and x̄ < ∞ such that x < x(t) < x̄ ∀t > 0.

2.2. Preliminaries

High-gain observers are based on the works of Bastin and
Dochain [4].  They have the form

OB&D :

{
˙̂x =

(
�̂ − D(x, t) + 2�ω(x − x̂)

)
x

˙̂� = ω2(x − x̂)x
(2)

This is a Luenberger observer for the measured signal x with an
integral state that adapts the estimation of the unknown param-
eter �. That is, the error in the estimation of a measured variable
is used in turn to estimate the unknown parameter. The adaptive
observer effectively behaves as a low-pass second-order filter of
the unknown growth rate �. Several tunings, variations and exten-
sions of this observer have been proposed in the literature. In any
case, perfect tracking of a time-varying �(t) cannot be achieved and
only steady state errors in �̂ can be eliminated. This sort of observer
is said to be non-exact in the sense that the real signal cannot be
recovered even in the absence of noise. In feedback control loops,
these observer dynamics add to the controller dynamics, so that
the separation principle does not apply. In the last sections we will
use this traditional observer to make a comparative analysis with
the proposed sliding one.

On other side, the first-order sliding mode observer for (1) pre-
sented in [11] is of the form1:

O1SM :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̂x =

(
z − D(x, t) + ω(1+a(x))(x − x̂)+M

ω
sign(x − x̂)

)
x

ż =
(

ω2a(x)(x − x̂) + M sign(x − x̂)
)

x

�̂ = z + M

ω
sign(x − x̂)

(3)

with ω > 0, M ≥ �̄ and a(x) ≥ 0 ∀ x.
Note that it has the same form as the B&D observer, but discon-

tinuous terms are added to the observer dynamics and output. Thus,
the estimated biomass perfectly tracks the measured one after a
finite converging time, whereas the resulting specific growth rate
estimate is discontinuous. Further, this estimate coincides with the
real growth rate except for a very high (ideally infinite) frequency
discontinuous error. Two options have been explored in [11] to
recover the continuous signal from the discontinuous estimate. The
first, and most obvious one, consists in passing the observer output
through a low-pass filter of arbitrary order and cut-off frequency.
In the second one, the discontinuous sign(·) function is replaced by
a continuous function with high gain at the origin. In both cases,
the continuous estimate no longer converges in finite time to the
real time-varying growth rate but just to a ball centered around.
Hence, this observer is not exact either. It is however more flexible
and it has been shown to be less noisy in many circumstances than
observer (2)[11].

3. Second-order sliding mode observer

The new observer differs from (3) in the structure of the dis-
continuous output error injection. It falls within the category of
second-order sliding mode observers since the switching argument
must be differentiated twice for discontinuity to appear. Further,
the proposed observer is a variation of the super-twisting slid-
ing algorithm and inherits some of its attractive features such as
finite-time convergence [18,19] and robustness against noise and
discretization [15]. Those readers unfamiliar with high-order slid-
ing modes are referred also to the comprehensive works [20,21].

1 [11] proposes also an observer designed to estimate bounded growth rates with
unbounded derivatives.
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Consider the biomass dynamic system (1),  where � and D
are input signals satisfying Assumptions 3 and 4. Therefore, a
well-defined solution exists for any initial condition. Further, any
solution to (1) satisfies also the differential inclusion2

PU

{
ẋ = (� − D(x, t))x

�̇ ∈ U �̄x
(4)

where U is the set U = [− 1, + 1]. This differential inclusion repre-
sents the family of solutions for any unknown specific growth rate
satisfying Assumption 2.

Theorem 1. Let (x(t), �(t)) be a solution of the differential inclusion
(4), with x(t) satisfying Assumption 5. Then, the observer

O2SM :

{
˙̂x =

(
�̂ − D(x, t) + 2ˇ( �̄|(x − x̂)|)1/2 sign(x − x̂)

)
x

˙̂� =
(

 ̨�̄ sign(x − x̂)
)

x
(5)

converges in finite-time to (x(t), �(t)) for suitable gains  ̨ and ˇ.

Remark 1. Notice that the proposed observer can be used to esti-
mate an unknown signal r(t) in any dynamical system of the form

ṗ = r(t) · p + f (p, t) (6)

provided p is measured and analogous assumptions to the ones
made here are fulfilled.

Note. Convergence is understood here in the sense that the esti-
mation error vanishes for any solution to (4).  Note that weaker
concepts of convergence are also used in the literature, meaning
that the estimation error reaches a neighborhood of the origin
for any solution to (4),  or that it exponentially or asymptotically
approaches the origin for solutions satisfying �̇ → 0. Finite-time
convergence means that there exists T< ∞ such that (x̂(t), �̂(t)) ≡
(x(t), �(t)) ∀ t > T .

Convergence of (5) is proved here using a Lyapunov approach
together with semi-definite programming tools. To this end, con-
sider the following proposition.

Proposition 1. Let

ż = A(t)z, A(t) ∈ A  ∀t (7)

be a polytopic linear differential inclusion with

A  = conv(A1, A2)

A1 =
[

−  ̌ 1/2
−(  ̨ − 1) 0

]
A2 =

[
−  ̌ 1/2

−(  ̨ + 1) 0

] (8)

Then, for every  ̨ > 1 there exist suitable values of  ̌ such that (7) is
quadratically stable for all A(t) ∈ A.

Note. The polytopic linear differential inclusion is said quadrat-
ically stable if there exists V(z) = zTPz,  P 	 0 that decreases along
every nonzero trajectory of (7).

Since V̇(z) = zT (A(t)T P + PA(t))z, a necessary and sufficient con-
dition for quadratic stability is

P 	 0

AT (t)P + PA(t) + �I ≺ 0 ∀A(t) ∈ A
(9)

2 In this paper, solutions are understood in the Filippov sense.

Fig. 1. Set of pairs (˛, ˇ) for which Proposition 1 holds.

This is equivalent to determine the existence of a common Lya-
punov matrix P for all the vertices of the polytope A, i.e. that verifies
the following constraints

F =

⎧⎪⎨⎪⎩
P 	 0;

Q1
�= − (AT

1P + PA1) 	 0;

Q2
�= − (AT

2P + PA2) 	 0

⎫⎪⎬⎪⎭ (10)

Now rewriting A1 and A2 in a convenient way,

A1 = ˇA0 + A∗
1

A2 = ˇA0 + A∗
2

(11)

where

A0 =
[

−1 0
0 0

]
A∗

1 =
[

0 1/2
−(  ̨ − 1) 0

]
A∗

2 =
[

0 1/2
−(  ̨ + 1) 0

] (12)

The existence of a common Lyapunov P for any  ̨ can be determined
by checking the feasibility of the following generalized eigenvalue
problem (GEVP) in P and  ̌ [22]:

min  ˇ

s.t. P 	 0,  ̌ > 0, F∗ (13)

where

F∗ =

⎧⎪⎨⎪⎩
P 	 0;

(A∗T
1 P + PA∗

1) + ˇ(AT
0P + PA0) ≺ 0;

(A∗T
2 P + PA∗

2) + ˇ(AT
0P + PA0) ≺ 0;

⎫⎪⎬⎪⎭ (14)

A GEVP is a quasi-convex problem. In this case, it can be solved
using a bisection algorithm on  ̌ and determining the feasibility
of the remaining linear matrix inequality (LMI). We  made a grid
covering the desired values of  ̨ and solved the LMIs with YALMIP
[23]. Fig. 1 shows the set of values of  ̨ and  ̌ for which the LMI
problem is feasible. For all points within this set of parameters, (7)
is quadratically stable.3

3 Searching for a common P for all vertices in a polytope may  be difficult in some
situations but not in the current case.
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Proof 1 (of Theorem 1). From the process (4) and observer (5),
the error dynamics is⎧⎨⎩ ˙̃x =

(
�̃ − 2ˇ( �̄|x̃|)1/2 sign(x̃)

)
x(t)

˙̃� ∈ (U −  ̨ sign(x̃)) �̄x(t)
(15)

where x̃
�=(x − x̂) and �̃

�=(� − �̂). Note that it depends on the process
state x, i.e. it is not an autonomous dynamics. Apply now to (15) the
following global homeomorphism [19]

� =
[

(| �̄x̃|)1/2 signx̃

�̃

]
(16)

Taking into account that sign(�1) = sign(x̃) and that �̇1 =
( �̄/2|�1|) ˙̃x, this coordinate transformation yields

�̇ ∈ �̄x(t)
|�1| A� (17)

with A  defined in (8).  Consider now the energy function V(�) = �TP�,
where P 	 0 satisfies (9).  Then,

V̇(�, t) = �̄x(t)
|�1| �T

(
A(t)T P + PA(t)

)
� (18)

Using (9) and recalling Assumption 5,

V̇(�, t) ≤ − �̄x�

|�1| ‖�‖2 < 0 ∀� /= 0. (19)

where � > 0 is the minimum among all eigenvalues of Q1 and Q2.
That is, V(�) is a Lyapunov function decreasing along all nonzero
solutions of (17). Note that (16) is continuously differentiable
everywhere except on the line x̃ = 0. Anyway, this line is not an
invariant set except the origin. Thus, (19) also proves stability of
the original observer error dynamics (15).

We will prove now that V vanishes in finite time. Let L > l > 0 be
the maximum and minimum eigenvalues of P. Then, l||�||2 ≤ V(�,
t) ≤ L||�||2 ∀ t. It then follows, using |�1 | ≤ ||�||, that

V̇ ≤ − �̄x�
√

l

L
V1/2 (20)

The comparison lemma  establishes that any solution �(t) to the
differential inclusion (17) satisfies

‖�(t)‖ ≤
√

�‖�(0)‖ − �̄x�

2L
t (21)

where � =
√

L/l. This means that the trajectory of the observer
error reaches the origin in finite time:

‖ �̃(t)‖ ≡ 0, ∀t > T = 2L

�̄x�

√
�‖ �̃(0)‖ (22)

where it has been supposed without loss of generality that the
observer was initialized with x̂(0) = x(0).

This finishes the proof. �

Note. Observer (5) captures the dynamic structure of (4),  thus
leading to an error dynamics amenable for the convergence proof.
Of course, other variations of the super-twisting algorithm can be
alternatively proposed, but more involved stability analysis and too
conservative gains will probably arise.

4. Simulation results

This section presents a pair of numerical examples that illustrate
the previous analysis and theoretical results. In the next section,
experimental data is provided to assess the observer performance
in a realistic scenario.
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Fig. 2. Open-loop simulation results. (a) Input signal �(t). (b) Real (�) and estimated
growth rate using adaptive ( �̂BD) and sliding ( �̂SM) observers.

Let consider the fed-batch process

PE :

{
ẋ = (�(s) − �(t)x)x

ṡ = (−ys�(s) + �(t)(si − s))x
(23)

with haldane kinetics �(s) = �m(s/(ks + s + s2/ki)) and feeding pro-
file D(x, t) = �(t)x. The parameters are �m = 0.22, ks = 0.14, ki = 0.4,
ys = 1.43 and si = 20. Note that (23) can be rewritten as (1) after the
change of variable (x, s) �→ (x, �(s)).

For comparative purposes, both the adaptive (2) and the pro-
posed sliding observer (5) have been implemented to estimate �.

4.1. Open-loop simulation

The process input �(t) is a piece-wise constant signal switching
every 2.5 h. Observers (2) and (5) are tuned with ω = 1.5, � = 2−1/2,
�̄ = .4,  ̨ = 1.1 and  ̌ = 1.8. Their initial conditions are (x̂(0), �̂(0)) =
(x(0), �m). The simulation results are shown in Fig. 2. The top
plot depicts the input �(t) whereas the real and estimated specific
growth rates are displayed in the bottom plot. The real �(t) is shown
in solid line (thick trace), the sliding observer estimate is plotted
with solid thin trace and the adaptive observer estimate is plotted
in dashed line. It is seen that the sliding observer output converges
in less than 2 h and perfectly tracks the evolution of �(t) thereafter,
whereas the adaptive observer (2) reaches a neighborhood of �(t)
but does not converge to it. Naturally, since the measurement is
not corrupted with noise, the bandwidth of the adaptive observer
can be increased to exhibit a faster response. Anyway, the aim of
this example is to illustrate qualitatively and comparatively the
theoretical convergence features of the proposed sliding observer.
Performance under real measurement conditions is evaluated in
the next section.

4.2. Closed-loop simulation

We present here a closed-loop numerical example to illustrate
the potential advantages of the sliding mode observer in closed-
loop applications. The input signal used in this case is the nonlinear
feed-back law:

�(�) = ys�r

si − sr
(1 − k (� − �r)) (24)

where sr is the substrate concentration at which �(sr) = �r. It is
shown in [24] that �(�) stabilizes the specific growth rate. More-
over, global stability can be achieved even in the presence of kinetic
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Fig. 3. Closed-loop simulation results when the real � is used in the feed-back law
(observers are not in loop). �i: growth rate using ideal feed-back law (24); �̂BD1,
�̂BD2: adaptive observer estimates for ω = 1.5 and ω = 4.5, respectively; �̂SM : sliding
observer estimate.

multiplicity by properly tuning the feed-back gain k. Anyway, the
purpose here is not to evaluate the controller performance but the
sliding-mode observer one. Then, �(t) in (24) is replaced by �̂(t).
Here, we choose k = 15.

The simulation run is planned to show the convergence and
tracking properties of the observer. With this purpose, the observer
is reset at t = 0 h, whereas a set-point step from �r = .15 to �r = .1 is
produced at t = 10 h.

The tuning parameters of the sliding observer are �̄ = .1,  ̨ = 1.1
and  ̌ = 1.8. In this example, its performance is compared with the
performance of observer (2) for two different tunings (ω = 1.5 and
ω = 4.5).

Fig. 3 shows the growth rate and its estimates when the real � –
not any of its estimates – is used in the feedback law (24). That is, the
loop is not closed through an observer. The thick line, labeled with
�i, is the time evolution of the real growth rate. The estimates pro-
vided by observer (2) for both tunings and by observer (5) are also
plotted. After restarting, the adaptive observer estimates exhibit
large overshoots that increase with ω. After the set-point step, the
adaptive observer estimate lags the real signal, particularly for low
ω. On the other hand, the sliding observer perfectly tracks �(t) dur-
ing the transient that follows the set-point step, whereas initial
convergence after restarting is significantly better.

Fig. 4 shows what happens when the observer estimates are
used to construct the feeding law. Gaussian noise is added to
biomass concentration measurement. The first two  plots depict
responses obtained with the adaptive observer whereas the
remaining ones correspond to the sliding observer. Note that the
adaptive observer estimates are out of scale during the first hours
after restarting. The top plot shows that the closed-loop response
becomes highly oscillatory when the slow adaptive observer is
used to close the loop. This is because it adds its slow dynamics to
the loop. When the fast adaptive observer is used, oscillations are
almost eliminated, but an undesirable initial transient still occurs
because of the large observer overshoot. In the third plot, the
response obtained with the proposed sliding observer is shown.
It is seen that the observer converges rapidly, whereas the tracking
response is similar to the fast adaptive observer. The bottom plot
illustrates how the sliding function, which continuously switches
after convergence, can be used to improve further the initial tran-
sient. In this case, the feed-back loop is closed just after the sliding
function switches for the first time. Note also that the fast adap-
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Fig. 4. Closed-loop simulation results when observers are in the loop, noise added to
the  measured signal. (a) Adaptive observer with ω = 1.5, (b) adaptive observer with
ω  = 4.5, (c) sliding observer, and (d) sliding observer in the loop after first switching.

tive observer is noisier than the sliding one. Anyway, since both
observers smooth out the measured signal in two different ways,
noise performance may  differ depending on the noise structure.
Performance of these observers in a real scenario is presented in
the following section.

5. Experimental results

A batch fermentation of the industrial strain Saccharomyces
Cerevisiae T73 (wild type) was run. Biomass concentration was
measured using the sensor described in [13]. Sampling was  car-
ried out each 12 seconds, and a filtered value over a window of
2 min  was provided. Growth rate was estimated using the proposed
sliding observer, which was  tuned as in the previous numerical
example, i.e. �̄ = 0.1,  ̨ = 1.1 and  ̌ = 1.8. For comparative purposes,
a second estimation was obtained using the high-gain observer (2)
tuned with ω = 1.5. Obviously, the real growth rate is not available
to assess the observers performance. We  use instead a crude esti-
mate obtained by directly differentiating the measured biomass
concentration:

�d(t) = ẋm(t)
xm(t)

(25)
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Fig. 5. Experimental results. (a) Measured biomass concentration (xm). (b) Estimates
of  the specific growth rate obtained by sensor output differentiation ( �̂d) and using
B&D  ( �̂BD) and sliding ( �̂SM) observers. (c) Biomass estimation error (x̃) of the sliding
observer.

Under the assumption that biomass measurement is accurate and
noiseless, �d(t) provides the real specific growth rate. In reality,
�d(t) is highly corrupted with noise. Anyway, in the figures shown
below, the real �(t) can be guessed behind the noisy �d(t).

Fig. 5a plots the evolution of the measured biomass concentra-
tion xm(t), whereas Fig. 5b displays the estimates of the specific
growth rate obtained from xm(t). The noisiest estimate is �d(t).
The estimate plotted in dashed line was obtained by the high-gain
observer. This estimate coincides with that obtained by smoothing
�d(t) with a 2nd-order low-pass filter with time-varying band-
width (ωx(t)). The estimate is particularly noisy – as measurement
is – around t = 35 h. This noise is hardly filtered by the observer
because their bandwidths overlap. A lower observer bandwidth
would help to reduce noise but at the cost of poorer tracking
response. Finally, the signal plotted in solid line is the output of
the sliding observer (5) The estimate is smoother than the previous
one, particularly around t = 35 h. This is because the observer is less
sensitive to fast, and unfeasible, signal gradients. Fig. 5c displays
the biomass estimation error x̃(t) smoothed out by a low-pass fil-
ter, showing that the observer converges in 11 h. During this period,
the sliding observer is less sensitive to large measurement errors
that are typical of the initial phase of batch processes when biomass
concentration is too low.

It is of particular interest to analyze the observer outputs around
t = 23 h. As observed in the biomass evolution, the growth almost
stops at t = 18 h, most probably due to the depletion of some
essential substrate. After that, a pulse of conjugated linoleic acid
vaccine was administered at t = 23 h, reactivating the microorgan-
ism growth. As seen in Fig. 5b this sudden change in behavior
clearly affects both observers. Indeed, from the point of view of
the observers, an unpredicted oscillation of the biomass measure-
ment occurred. It is observed that the B&D observer responds with
a large undershoot that vanishes just after 1.5 h. On the contrary,
the sliding observer is much less sensitive to this perturbation. In

fact, Fig. 5c shows that the observer diverges and then converges
rapidly, putting in evidence the occurrence of an abrupt fault. Note
that the surface coordinate is an effective residual to indicate biore-
actor malfunctions as well as sensor faults or changes in system
behavior (both abrupt and gradual). Thus, on one hand, the observer
output is less sensitive to the perturbation while on the other its
sliding coordinate is very sensitive to it.

6. Conclusions

In the article, a second-order sliding mode observer has been
developed and analyzed for the estimation of the specific growth
rate of microorganisms from measurements of biomass concen-
tration. The resultant observer can be applied to either batch or
fed-batch fermentation processes in which the bioreaction exhibits
either monotonic or non-monotonic kinetics. Actually, the observer
does not use any model of the kinetics of the reaction, just a bound
on its time derivative. The proposed observer is based on high-
gain observers, to which discontinuous correcting terms have been
added in order to cancel the estimation error on the measured vari-
able. The structure of the discontinuous output error injection is
modified with respect to previous developments, thus providing a
smooth estimate without the need of filtering. In contrast with con-
tinuous observers, perfect tracking after finite convergence time
can be achieved in the absence of noise. Although convergence to
a small ball can only be guaranteed in the presence of noise, this
theoretical property has important implications in control. In fact,
the separation principle applies, so that observer and controller in
the loop can be designed independently. Simulation and experi-
mental results confirm the distinctive convergence properties of
the observer, as well as its potential use in fault detection.

Further research is oriented to the estimation of multiple rates.
The main problem is that an extra unknown function must be incor-
porated to the algorithm in order to avoid too conservative bounds.
Stability proof of the generalized algorithm is the key issue. The
semi-definite programming approach used in this paper provides
powerful tools for this purpose.
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