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We  analyze the effect of electrode mislocation on the electroencephalography (EEG) inverse

problem using the Cramér–Rao bound (CRB) for single dipolar source parameters. We  adopt

a  realistic head shape model, and solve the forward problem using the Boundary Element

Method; the use of the CRB allows us to obtain general results which do not depend on

the  algorithm used for solving the inverse problem. We  consider two possible causes for

the  electrode mislocation, errors in the measurement of the electrode positions and an

imperfect registration between the electrodes and the scalp surfaces. For 120 electrodes

placed in the scalp according to the 10–20 standard, and errors on the electrode location with
lectrode mislocation

EG

nverse problem

a  standard deviation of 5 mm, the lower bound on the standard deviation in the source depth

estimation is approximately 1 mm in the worst case. Therefore, we conclude that errors in

the  electrode location may be tolerated since their effect on the EEG inverse problem are

negligible from a practical point of view.
.  Introduction

he electroencephalography (EEG) inverse problem consists
n estimating the neural activity of underlying sources given
lectric potential measurements on a finite number of points
n the scalp. There exists many  factors that affect the quality
f the solution of this problem, as electronic noise [1],  sponta-
eous brain activity [2] or head model errors [3–6]. The source

ocalization problem requires knowing the EEG electrode posi-
ions on the scalp. There exist several methods [7–11] that
re usually applied in practice to locate the electrodes and
inimize their position errors.
Electrode mislocation is produced by the randomness of

he method used to determine their position, as well as by
he registration used to fit the electrodes to the scalp surface
odel. This second error source may be unavoidable since the
calp and soft tissues are slightly deformable and there will
e no exact fit between the scalp surface built usually from
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Magnetic Resonance Images (MRI) of the subject laying down
and the set of measured electrode positions. We  will assume
that the scalp surface obtained from MRI  is free from errors,
as is common practice in EEG.

The influence of electrode location errors in the inverse
problem has been studied before; in [11–15] spherical volume
conductor models are adopted, while only in [16] a realisti-
cally head shape model is considered. Also, most of these
works analyze the effect of electrode mislocation for particular
inverse problem solvers. We  present a general method to ana-
lyze the effects on the inverse problem with a realistic head
shape model, using on the Cramér–Rao bound (CRB) [17]. This
method provides a tight lower bound of the variance of any
unbiased estimator of the source parameters, hence, genera-
lizing previous work, because the result becomes independent
of the algorithm.
To quantify the effect of electrode mislocation we  adopt a
random model for the electrode positions. This randomness
affects the forward problem solution through a linear approxi-

erved.
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Fig. 1 – Local coordinate system representation for the ith

whose characterization will be complete with its first and
electrode.

mation of the variation of the electric potential around each
electrode. Then we  compute the sensitivity of the forward pro-
blem to the source parameters and obtain the CRB. Our results
show that the effect of electrode mislocation is of about the
same degree of influence as electronic noise, in agreement
with the results of the cited works.

The paper is organized as follows. In Section 2 we  introduce
the random model adopted to analyze the effects of electrode
mislocation. In Section 3 we  obtain the Cramér–Rao lower
bound for this problem. In Section 4 we discretize the problem
using the Boundary Element Method (BEM). In addition we find
an expression to evaluate the Cramér–Rao bound numerically,
whose results are presented in Section 5. Conclusions and a
discussion are presented in Section 6.

2.  Random  model  description

In this section we  describe the random model adopted
for electrode mislocation. We consider small perturbations
of electrodes from their real position that arise from the
electrode location technique and the process of fitting the
electrodes to the scalp surface image.  There are several dis-
tinct causes for these errors, and it seems reasonable to
consider a Gaussian distribution for the perturbations. Varia-
tions in the measured electrode positions with respect to their
real positions appear as variations in the electric potential
measured in the real position. We find the probability dis-
tribution of the electric potential measured, which is used
to characterize the influence of electrode mislocation on the
inverse problem solution.

Let  ̋ be the scalp surface where the electrodes are pla-
ced on. Let X0 = [X0

i
]
i=1,...,Ns

be the vector whose elements
are the actual (unknown) coordinates of the Ns electrodes,
and X  = [Xi]i=1,...,Ns

their assumed positions, in any coordinate
system. For every electrode Xi placed in  ̋ we define a local
coordinate system, given by {ta

i
, tb

i
, ni}, where ni is the unitary

vector normal to  ̋ in Xi and {ta
i
, tb

i
} is an orthonormal basis of

the plane TXi
 ̋ tangent to  ̋ in Xi (Fig. 1).

If X0
i

is the real position of the ith electrode, we can say that
Xi = X0

i
+ �i, where �i is a random variable describing its unk-

nown displacement. If we assume small deviations from X0
i
,

we can consider that � is a vector in T ˝. This can be done
i Xi

due to our assumption of error-less scalp surface image  and
because electrodes are on the scalp, so the normal component
will be neglected since we  project the electrode positions to
i n b i o m e d i c i n e 1 0 3 ( 2 0 1 1 ) 1–9

the scalp surface. Errors in the scalp surface model may be
considered, but it is not threated in the present work. Then,
we can write �i = �a

i
ta
i

+ �b
i
tb
i
. We assume that �a

i
and �b

i
are

random Gaussian variables with zero mean, i.e. E{Xi} = X0
i
.

The correlation between the errors in two electrode locations
models different error sources. Indeed, the measurement of
the electrode positions would have uncorrelated errors for a
one-at-a-time measurement technique such as digitizers, or a
low correlation for other such technique, e.g. [7,10]. On the
other hand, the errors due to an imperfect registration bet-
ween the electrodes and the scalp surface are expected to be
highly correlated, since they are related to global quantities
such as rotations, translations or scale errors.

Let ϕ(�) be the scalar function which denotes the electric
potential in some point � of the scalp surface ˝. Since the
solution of the EEG forward problem is continuous in ˝, to be
assumed smooth enough with respect to �, it is possible to
write the series expansion of ϕ(Xi) around X0

i
,

ϕ(Xi) = ϕ(X0
i ) + ∇Tϕ(�)

∣∣
X0

i

(Xi − X0
i ) + · · · (1)

Let ˚(X) = [ϕ(X1), . . . , ϕ(XNs )]T be the vector of measured poten-
tials, i.e. the electric potential at each of the Ns sensor
locations. In this work we consider the average reference mon-
tage, i.e. we consider the average of all the measured signals as
the reference. Since the potential is a function of the random
electrode positions, the vector ˚(X) is also random. Recalling
previous definitions and assumptions, any point Xi can be cha-
racterized in the local coordinate system by only two nonzero
coordinates, i.e. Xi = (xi, yi, 0). Then we can write the electrode
positions vector X  as

X  = [x1, . . . , xNs , y1, . . . , yNs ]T, (2)

and

∇˚(X0) =

⎡
⎢⎢⎢⎣

∂ϕ(�)
∂x1

∣∣∣∣
X0

1

. . .
∂ϕ(�)
∂xNs

∣∣∣∣
X0

Ns

∂ϕ(�)
∂y1

∣∣∣∣
X0

1

. . .
∂ϕ(�)
∂yNs

∣∣∣∣
X0

Ns

⎤
⎥⎥⎥⎦

T

(3)

as the electric potential gradient matrix at the real electrode
positions, where each component is in its respective local
coordinates system. Therefore, we can write a linear approxi-
mation of ˚(X) around X0,

˚(X) ≈ ˚(X0) + ED(X  − X0), (4)

where ˚(X0) = [ϕ(X0
1), . . . , ϕ(X0

Ns
)]

T
, E = [INs |INs ] and

D = diag{vec(∇˚(X0))}. Note that IN is the N × N identity matrix,
and diag and vec are the operators that make a diagonal matrix
from a vector and vectorize a matrix, respectively.

Under this linear approximation assumption, and since
� is Gaussian, ˚(X) will also be a Gaussian random vector
second order moments. The expected value of the potential
measurements in (4) is E{˚(X)} = ˚(X0), the solution of the for-
ward problem for the true electrode positions. The covariance

dx.doi.org/10.1016/j.cmpb.2010.05.008
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atrix C˚ of the electric potential measurements is given by

˚ = E{(˚(X) − E{˚(X)})(˚(X) − E{˚(X)})T}
= E{EDXXTDTET} = EDCXDTET, (5)

here CX = E{(X  − X0)(X  − X0)T} is the covariance matrix
f vector X  and E and D are defined in (4).  Thus,
(X)∼N(˚(X0), C˚), and (5) indicates that the relationship
etween the measurements covariance matrix C˚ and the
lectrode positions covariance CX depends only on the electric
otential gradient.

We  consider two different choices for the electrode mis-
ocation spatial covariance matrix CX, to model distinct error
ources. We adopt an uncorrelated model, i.e. CX = �2I2Ns , to
odel errors in the measurement of the electrode positions

nd we  adopt a highly correlated jointly Gaussian model with

ovariance matrix CXij
= e−(‖Xi−Xj‖2

2)/2g2
t˛i
i

· t˛j
j

, where g = 10 cm,
nd ˛k denotes superscript a if k ≤ Ns or superscript b if

s < k ≤ 2Ns, to model errors due to a lack of fit between elec-
rodes and scalp surface. In the above formulae, the ‘·’ is the
ot product.

.  Performance  bounds

he EEG inverse problem consists on estimating source para-
eters based on noisy electric potential measurements on

he scalp. Even though there exist many  methods for sol-
ing this problem, our goal is to analyze the general influence
f uncertainty in the electrode positions on source parame-
er estimation. This is done with the Cramér–Rao inequality,
hich gives a lower bound on the variance of estimation errors
f any unbiased estimator, regardless of the algorithm used

17]. For multiparameter estimation methods, the Cramér–Rao
ound establishes that

{(� − �̂)(� − �̂)
T} ≥ CRB(�) = [J(�)]−1, (6)

here �̂ is any unbiased estimator of the parameter vector �,
RB denotes the Cramér–Rao bound, J(�) is the Fisher infor-
ation matrix and the inequality means that the difference

etween the matrices is positive definite. For the particular
ase of normally distributed measurements, the Fisher infor-
ation matrix is given by [17]

ij = ∂˚(X0)T

∂�i
C−1

˚

∂˚(X0)
∂�j

+ 1
2

tr

{
C−1

˚

∂C˚

∂�i
C−1

˚

∂C˚

∂�j

}
, (7)

here �i, i = 1, . . .,  p are the source parameters to be estimated,
.e. elements of �. Note that the last term in (7) arises because
he covariance matrix C˚ depends on the source parameters.

If we consider a single static dipolar source [18], we  only
eed to estimate p = 6 parameters, three corresponding to
ource location and the other three corresponding to source
trength and orientation. The calculation of (7) will be split

nto

0
ij = ∂˚(X0)T

∂�i
C−1

˚

∂˚(X0)
∂�j

, (8)
n b i o m e d i c i n e 1 0 3 ( 2 0 1 1 ) 1–9 3

and

J1ij = 1
2

tr

{
C−1

˚

∂C˚

∂�i
C−1

˚

∂C˚

∂�j

}
. (9)

4. Discretization

In this section we  use the adopted model to compute
the variables required by the bound. The BEM [19,20] is
used to discretize the forward problem governing equations,
and to compute numerical approximations of the poten-
tial, its gradient, and their sensibility to source parameters.
With this method the surfaces defining the head model
are tessellated in a large number of triangular elements,
and a linear system is solved to obtain an approxima-
tion to the desired potentials in the vertices of those
triangles.

To compute the electric potential we adopt the BEM with
linear variation of the potential over the triangular elements
[21]. The solution of the forward problem is then given by

˚(S) = G˚F, (10)

where ˚(S) is the N elements vector of electric potential at
the vertices of the surface tessellated points S,  and G is a
matrix depending only on the geometry and electric conduc-
tivity of the head model. The term ˚F corresponds to the
electric potential generated by the same source of neuronal
activity in an homogeneous, infinite media, and can be com-
puted analytically. Since the matrix G does not depend on
the source parameters, the sensibility of the electric poten-
tial to the source parameters � is obtained replacing ˚F by
∂˚F/∂� in (10), which we also compute analytically [20]. The
corresponding expression is given in Appendix A.

The electric potential at the Ns electrode positions is obtai-
ned through linear interpolation of the value on the vertices
of the element containing the electrode. Defining the sparse
interpolation matrix Hl(X) of size Ns × N, we  can write

˚(X) = Hl(X)˚(S). (11)

Then, we can compute (8) as

J0 = ∂˚(X0)T

∂�
C−1

˚

∂˚(X0)
∂�

= ∂˚T
F

∂�
GTHT

l (X0)C−1
˚ Hl(X0)G

∂˚F

∂�
.  (12)

To compute the gradient of the electric potential at the
electrode positions, we use BEM with the same surface tes-
sellations, but with a constant value for the gradient of the
electric potential on each element. The gradient is computed
directly, adapting the formulation presented in [22] as explai-
ned in Appendix B. This yields

vec(∇˚(S)) = MF,  (13)

where the matrix M depends only on the geometry and elec-

tric conductivity of the head model. The vector F is related to
the gradient of the electric potential generated by the source
in an homogeneous and infinite media; analytic expressions
for it and its sensibility to the source parameters are given in

dx.doi.org/10.1016/j.cmpb.2010.05.008
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Fig. 2 – Electrode placement adopted over the real head
model used. With black dots we  denote the mean value of
electrode positions, according to an extension of the 10–20
standard. With gray dots we  show 250 different realizations
of electrode positions, as explained in Section 2. Also, the

Fig. 3 – Volume of the 90% confidence ellipsoid for source
position estimation. Results for a tangentially oriented
dipolar source located on a coronal slice of the brain. The
gray level indicates the minimum volume of the 90%
confidence ellipsoid of any unbiased estimation of the
adopted scalp discretization is shown.

Appendix A. Again, we use a sparse interpolation matrix HF(X)
to select the element of the scalp tessellation in which each
electrode is located. Then, to compute (9),  it is easily seen from
(5) that

∂C˚

∂�j
= E

(
∂D

∂�j
CXD + DCX

∂D

∂�j

)
ET. (14)

In the particular case of considering the diagonal covariance
matrix (as explained in Section 2), we show in Appendix C that

∂C˚

∂�j
= 2�2E diag

{
[(I2 ⊗ H0

F)MF]  ◦
[

(I2 ⊗ H0
F)M

∂F
∂�j

]}
ET, (15)

where H0
F = HF(X0), ⊗ denotes the Kronecker product and ◦

denotes the element to element or Hadamard matrix multi-
plication.

5.  Numerical  results

In this section we  use the previous formulation to show the
influence of electrode mislocation on the EEG inverse pro-
blem solution. We use a realistic head shape model given by
a three layered model, with the surfaces between layers tes-
sellated in 2562 vertices (5120 triangular faces), available in
the SPM8 software package [23,24].  This discretization gives
an average triangle length of approximately 6 mm,  which
is sufficient to discretize the smooth surfaces considered

here. Fig. 2 shows the scalp discretization. The three layers
considered correspond to the brain, skull and scalp, with elec-
trical conductivities 0.3 S/m, 0.02 S/m and 0.3 S/m, respectively
[25–27].  We  used 120 electrodes placed according to an exten-
source position.

sion of the 10–20 standard [28] (Fig. 2). The forward problem
was solved with BEM, as explained in the previous section,
with the Isolated Problem Approach [29].

We  computed the CRB according to expression (7) and
assuming independence between electrode positions. As the
CRB for single dipolar sources is a 6 × 6 matrix that is dif-
ficult to visualize, in order to present the results we  focus
on two quantities related to the source position. The first
is the volume of the 90% probability ellipsoid [1,30]. This
quantity is a three dimensional confidence interval which
quantifies the volume of the ellipsoid that contains the
source with 90% probability, considering jointly normal dis-
tributions. We  also compute the bound of the standard
deviation on source depth estimation, which is the square
root of the CRB matrix element corresponding to source
depth.

In Figs. 3 and 4 we show the volume of the 90% probability
ellipsoid and the bound for the standard deviation on depth
estimation for tangentially oriented dipoles in a coronal slice
view. A point in the slice represents the position of a tangen-
tially oriented dipole and the gray shade is proportional to the
volume (Fig. 3) or the standard deviation (Fig. 4). We consider
electrode position mislocations with a standard deviation of
5 mm for each electrode. This may be seen as a pessimistic
assumption, e.g. the error for manually placed electrodes [16].
The results correspond to a dipolar source of 20 nAm inten-
sity. Note that we have plotted the skin, inskull and outskull
meshes only for clarity (the gray level in these layers has no
meaning). The figures show that regions with more  influence
due to electrode mislocation are both the brain cortex (outer

layer) and corpus callosum (deepest white matter).

In Fig. 5 we compare the effects on the EEG inverse problem
due to electrode mislocation with the effects due to electro-

dx.doi.org/10.1016/j.cmpb.2010.05.008
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Fig. 4 – Square root of CRB on source depth estimation.
Results for a tangentially oriented dipolar source located on
a coronal slice of the brain. The gray level indicates the
minimum standard deviation for source depth estimation
o
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Fig. 6 – Square root of the CRB on source depth estimation
versus the standard deviation of electrode positions.
Results correspond to the average effects of perturbations
on the outer and inner layers considering correlated and
f any unbiased estimation of the source position.

ic noise in sensors. The model we  adopted for the electronic
oise is Gaussian zero mean and standard deviation 0.5 �V

1], uncorrelated between sensors. Although there exists other
rror sources, such as correlated background brain activity and
odeling errors, we  considered the electronic noise because

f its unavoidable nature. Fig. 5 shows the ratio between the
RBs on source depth estimation in the presence of electrode

islocation and in the presence of electronic noise as a func-

ion of the dipole position. We can see that the influence of
lectrode position uncertainties is relevant only if we are dea-

ig. 5 – Ratio between uncertainties in the inverse problem
olution due to the effect on electrode mislocation and due
o electronic noise. The ratio is taken between the square
oot of CRBs on source depth estimation, for each source
osition.
uncorrelated electrode positions.

ling with sources near the cortex, where its influence is almost
equal to the influence of electronic noise in sensors.

Some common features may be noted in Figs. 3–5.  Dark
curved lines crossing the slices can be seen denoting zones
where the CRB is lower. They are associated to regions with
low magnitude of the electric potential gradient [31]. Also, the
results are inaccurate for sources very close to the skull sur-
face, seen in the figures as a thin region with highly varying
results. The reason is due to the high numerical errors BEM has
for sources with depth less than half the side of the triangular
elements of the surface meshes [32].

As mentioned in Section 2, we consider two possible error
sources; the electrode mislocation errors modeled as uncorre-
lated between sensors and the registration error between the
electrodes and the scalp surface, modeled as spatially corre-
lated random variables. In Fig. 6 we show a comparison of the
results for both cases. The figure shows the lower bound on
the standard deviation of unbiased estimators of the source
depth, as a function of the standard deviation in the electrode
position errors. The sources were separated in two  groups, one
of them representing dipoles on the gray matter in a layer of
11 mm thickness below the inskull surface, and the inner layer
representing dipoles on the white matter. Although it is known
that the most important sources of EEG signals are the pyrami-
dal neurons located in gray matter cortex, we  simulate sources
which could represent deep gray matter in atypical brains. The
results shown correspond to the mean value of more  than 200
sources in each layer. A comparison of these results and the
lower bound on the source depth estimation standard devia-
tion due to typical electronic noise is shown in Fig. 7. It can be
seen that the effect of the electrode mislocation is higher for
cortical sources and uncorrelated errors in the electrode mea-

surements, but even in the worst case the standard deviation
of source depth estimation could be as low as 1 mm,  as seen
from Fig. 6.

dx.doi.org/10.1016/j.cmpb.2010.05.008
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Fig. 7 – Variations on the ratio between the square root of
the CRB on depth estimation due to electrode mislocation
and due to electronic noise versus the standard deviation
of the position of the electrodes. Results correspond to the
average effects of perturbations on the outer and inner
layers considering correlated and uncorrelated electrode

single dipolar source placed in p with dipolar moment q, the
positions.

We  show results only for tangentially oriented sources,
the effect of electrode mislocation on the inverse problem for
sources with radial orientation is computed in the same way.
The results are similar, with a slightly smaller effect than for
tangentially oriented sources. This seems reasonable since the
potential distribution due to radially oriented dipole sources
has lower amplitude than the one originated by tangentially
oriented dipoles. Also, note that the proposed method can be
used to compute the effect of electrode mislocation on para-
meter estimation of other kinds of sources, i.e. distributed
sources, such as line sources [33] or patch sources [34]. This can
be accomplished simply by changing the vector F in Eq. (15).
We  expect the results to hold for sources that can be modeled
as a group of dipoles.

As explained before, we show results considering 120 elec-
trodes on the scalp surface. A similar analysis was made
with a 64 electrode configuration, obtaining approximately
the same value of the CRB. The ratio between uncertainties
in the inverse problem solution due to the efect of eletrode
mislocation and due to electronic noise was lower, which was
expected since the standard deviation due to the electronic
noise grows as the number of electrodes decreases.

6.  Conclusions

To quantify the effect of electrode mislocation we model
the errors in the electrode positions as random variables,
and through a linear approximation of the electric poten-
tial around the electrodes determine how this randomness is

translated into the forward problem solution. Then, treating
this randomness as noise we compute the CRB of the variance
of source parameter estimators. The results presented corres-
i n b i o m e d i c i n e 1 0 3 ( 2 0 1 1 ) 1–9

pond to a general bound on the performance of the estimators,
and we do not propose a particular estimator to achieve the
stated performance, although some which seem to reach it
were proposed in previous works [16,11].

We  conclude that the effect of electrode position mea-
surement errors and registration errors between measured
electrode positions and the scalp surface are not very impor-
tant for regular EEG use. In particular, for single dipolar sources
we showed that electrode position errors with standard devia-
tion of up to 5 mm lead to negligible estimation errors of the
source position when compared to the standard deviation in
the estimators due to typical electronic noise of EEG acquisi-
tion systems. The largest influence of electrode position errors
occurs for tangentially oriented cortical sources. But even in
this worst case, the standard deviation bound on the estima-
tion of source position parameters is not larger than 1 mm,
and could be neglected when other inaccuracies of the inverse
problem are considered, such as spontaneous brain activity
[2] or deviations from the adopted three layer homogeneous
model [4–6]. Our results also show that the use of an electrode
cap, which might introduce correlated errors in the electrode
positions, would not imply a lager effect on the inverse pro-
blem accuracy than uncorrelated errors of individually placed
electrodes.

Finally, we would like to point out that the results are
consistent with previous reports for particular inverse pro-
blem solvers [16,11],  and imply that unavoidable errors from
the registration of electrodes and scalp and residual electrode
position measurement errors are tolerable in the EEG inverse
problem solution. Moreover, the effect of the electrode mis-
location is small enough to suggest that a precise electrode
position measurement technique is not necessary. However,
when all sources of inaccuracy are jointly considered it may
still be of practical use for precise studies to know the electrode
positions hence, reducing one of these uncertainty causes.
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Appendix  A.

In this appendix we  show expressions for the derivatives
∂˚F/∂� and ∂F/∂� mentioned in Section 4. If we consider a
parameter vector is the six element vector � = [pT, qT]T. Let x
be the point of the space where the derivatives are calculated.
Here, x is the set of N points of the inner tesselated surface.
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onsidering the N × 6 matrix ∂˚F(x)/∂� = [∇T
p˚F(x), ∇T

q˚F(x)]
T

nd since ˚F = (1/4	r2)q·r [20] it is easy to obtain

p˚F(x) = 1
4	r3

(3(q · r)r − q) (A.1)

q˚F(x) = 1
4	r2

r, (A.2)

here r = |x − p| and r = (x − p)/|x − p|.
On the other hand, consider the 2N × 6 matrix ∂Fi(x)/∂� =

∇T
pFi(x), ∇T

qFi(x)]
T
. As seen in Appendix B, there exists a linear

ependence between F and JFi
, where the last one is the only

erm depending on �. In [22] it is shown that

Fi
= 1

4	r3
i

[q − 3(q  · ri)ri]. (A.3)

hen,

pFi(x) = 3

4	r4
i

[ri(t


i

· q) − ri(q · ri)(t


i

· ri) + q(t

i

· ri) + (q · ri)t


i
],

(A.4)

qFi(x) = 1

4	r3
i

[t

i

− 3(t

i

· ri)ri], (A.5)

here 
 = a for i = 1, . . .,  N and 
 = b for i = N + 1, . . .,  2N.

ppendix  B.

n this appendix we  derive the gradient forward problem for-
ulation as stated in Eq. (13). First we find an expression for
˚(S). From [22] we know that the gradient of the electric
otential in a point Si of the tessellation S of  ̋ is given by

ϕ(Si) = 1
�M

(n(Si) × K(Si)), (B.1)

here �M is the conductivity of the outer layer, n(Si) is the
nitary vector normal to  ̋ in Si and K(Si) = (ka

i
, kb

i
) is the equi-

alent surface current density in the local coordinate system
ta
i
, tb

i
}. It is easily seen that, being Si = (wi, zi, 0) the coordi-

ates in the local coordinate system of Si, and based on (B.1),
he potential gradient in that point is given by

ϕ(Si) =

⎡
⎢⎢⎣

∂ϕ(�)
∂wi

∣∣∣∣
Si

∂ϕ(�)
∂zi

∣∣∣∣
Si

⎤
⎥⎥⎦ = 1

�M

[
−kb

i

ka
i

]
, (B.2)

here the normal component is not included since it is always
ero. Replacing (B.2) in ∇˚(S) yields
˚(S) = 1
�M

[
−kb

1 . . . −kb
N

ka
1 . . . ka

N

]T

. (B.3)
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Based on the original definitions given in [22] we define the
matrix G� and the vector F as

G� =
[

GD −GC

−GB GA

]
, (B.4)

F = [ta
1 · JF1 , . . . , ta

N · JFN , tb
1 · JF1 , . . . , tb

N · JFN ]
T
, (B.5)

where JFi
is the effect of the dipolar source in the local coor-

dinates on the ith element and are the only terms depending
on the source parameter. The matrix G� depends only on the
model geometry, and is given by

GAij
= tb

i
· ( �̋

ij · ta
j
nj − ˝ijt

b
j
),

GBij
= tb

i
· ( �̋

ij · tb
j
nj + ˝ijt

a
j
),

GCij
= −ta

i
· ( �̋

ij · ta
j
nj − ˝ijt

b
j
),

GDij
= −ta

i
· ( �̋

ij · tb
j
nj + ˝ijt

a
j
),

where

˝ij = 1
4	

∫
�j

∇
(

1
ri

)
· nj dsj,

�̋
ij = 1

4	

∫
�j

∇
(

1
ri

)
× nj dsj,

being �j the jth triangle of the surface discretization. We  get a
linear system whose solution is given by

[
−kb

ka

]
= −(
K − G�)−1F (B.6)

where ka = [ka
1, . . . , ka

N]T and kb = [kb
1, . . . , kb

N]
T
. Replacing (B.6)

in (B.3), we find an expression for vec(∇˚(S)),

vec(∇˚(S)) = MF,  (B.7)

where M = −(1/�M)(�K − G�)−1.

Appendix  C.

In this appendix we demonstrate (15). As stated in Section 4,
the interpolation matrix HF(X) let us write the potential gra-
dient matrix as

∇˚(X) = HF(X)∇˚(S). (C.1)

Recalling the definition of D given in Section 2 and replacing
on it (C.1) yields to

D = diag{vec(∇˚(X0))} = diag{vec(HF(X0)∇˚(S))}. (C.2)

Using that vec(AB)  = (I ⊗ A) vec(B) for A and B , and (B.7),
p m×n n×p

in (C.2) we get

D=diag{(I2 ⊗ HF(X0))vec(∇˚(S))}=diag{(I2 ⊗ HF(X0))MF}. (C.3)
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We  see that the only factor of D depending on the source para-
meter vector � is F. Therefore, its derivative becomes

∂D

∂�j
= diag

{
(I2 ⊗ HF(X0))M

∂F
∂�j

}
. (C.4)

Next, we  want to find an expression for J1. Using the chain rule
and knowing that the only term of C˚ depending on the source
is D, we  get

∂C˚

∂�j
= E

∂(DCXD)
∂�j

ET = E

(
∂D

∂�j
CXD + DCX

∂D

∂�j

)
ET, (C.5)

where we  use the fact that D is diagonal. If we assume
independence between sensor positions, from Section 2 we
have CX = �2I2Ns . Replacing Eqs. (C.3) and (C.4) in (C.5) we
get

∂C˚

∂�j
= 2�2E diag{vec(∇˚(X0))}diag

{
vec

(
∂∇˚(X0)

∂�j

)}
ET

= 2�2E diag

{
vec(∇˚(X0)) ◦ vec

(
∂∇˚(X0)

∂�j

)}
ET

= 2�2E diag

{
[(I2 ⊗ H0

F)MF]  ◦
[

(I2 ⊗ H0
F)M

∂F

∂�j

]}
ET, (C.6)

where H0
F = HF(X0).
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