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Abstract The influence of hydraulic conductivity het-
erogeneity on tide-induced head fluctuations is pre-
sented for a theoretical coastal confined aquifer. The
conceptual model assumes that the hydraulic conduc-
tivity increases linearly with the distance from the
coastline. This type of heterogeneity has been observed
in many alluvial coastal aquifers. An exact analytical
solution that predicts induced head fluctuations is
obtained in terms of a Hankel function. The exact
solution can be approximated by a simple mathematical
expression, valid for small rates of increase of hydraulic
conductivity. Both exact and approximate solutions
show significant differences from the classical solution
obtained for a homogeneous aquifer. Near the coastline
the amplitude of the induced head fluctuation is damped
but it is enhanced as the distance to the coast increases.
The time-lag between sea tide and induced head
fluctuation in the aquifer is not linear; it behaves as a
square-root type function leading to a faster transmission
of the tidal fluctuation. Hypothetical examples show that the
influence of hydraulic conductivity heterogeneity can be
significant and should be considered for a correct description
of the groundwater response.
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Introduction

The interaction between groundwater and seawater induced
by tidal fluctuations has been extensively analyzed through
both analytical and numerical methods. Since the 1950s,
many analytical solutions to describe this interaction have
been derived. Jacob (1950) and Ferris (1951) were the first to
obtain an analytical equation for a single homogeneous
confined aquifer. Due to its simplicity, this equation has been
widely used to estimate hydraulic parameters in coastal
aquifers (e.g., Carr and van der Kamp 1969; Drogue et al.
1984; Serfes 1991; Erskine 1991; Millham andHowes 1995;
Trefry and Johnston 1998; Jha et al. 2003). In recent years,
more complex analytical solutions have been obtained for
two-layer systems consisting of an aquifer confined by a
semipermeable layer. These analytical solutions allow for the
study of leakage and storage effects on the tide-induced head
fluctuations (e.g., Jiao and Tang 1999; Li and Jiao 2001a,b;
Li and Jiao 2002a,b; Li et al. 2002; Jeng et al. 2002; Li and
Jiao 2003b; Song et al. 2007; Li et al. 2008; Sun et al. 2008).
All the aforementioned theoretical results are obtained under
the assumption of homogeneity of the aquifer system layers.
This assumption has significant discrepancy from real
aquifers, which usually exhibit inhomogeneity and aniso-
tropy in their hydraulic properties (Li and Jiao 2003a; Trefry
and Bekele 2004).

The study of heterogeneity on tide-induced head
fluctuations using analytical solutions has been
addressed by several researchers. Trefry (1999) pre-
sented comprehensive solutions for a finite aquifer
consisting of an arbitrary number of contiguous homo-
geneous zones subjected to sinusoidal linear boundary
conditions. Guo et al. (2010) derived an analytical
solution for a semi-infinite single aquifer comprising
two different homogeneous zones. Chuang et al. (2010)
extended this conceptual model to a leaky aquifer
system divided into a finite number of horizontal
regions. Li et al. (2007), Guo et al. (2007), Xia et al.
(2007), Rotzoll et al. (2008) and Geng et al. (2009)
included the effect of an outlet capping in submarine

Received: 20 January 2011 /Accepted: 30 June 2011
Published online: 19 July 2011

* Springer-Verlag 2011

Electronic supplementary materialThe online version of this article
(doi:10.1007/s10040-011-0761-y) contains supplementary material,
which is available to authorized users.

L. B. Monachesi : L. Guarracino ())
CONICET, Facultad de Ciencias Astronómicas y Geofísicas,
Consejo Nacional de Investigaciones Científicas y Técnicas
and Universidad Nacional de La Plata,
Paseo del Bosque s/n, La Plata, 1900, Buenos Aires, Argentina
e-mail: luisg@fcaglp.unlp.edu.ar
Tel.: +54-221-4236593
Fax: +54-221-4236591

L. Monachesi
e-mail: lmonachesi@fcaglp.unlp.edu.ar

Hydrogeology Journal (2011) 19: 1443–1449 DOI 10.1007/s10040-011-0761-y

http://dx.doi.org/10.1007/s10040-011-0761-y


aquifer systems. However, to the authors’ knowledge,
there are no analytical solutions that consider a
continuous variation of the hydraulic properties with
distance. In particular, an analytical solution that
considers a continuous increase of hydraulic conductiv-
ity can be useful for studying alluvial coastal aquifers.
In alluvial aquifers, progressively finer sediments are
usually deposited on the downstream part of the
depositional zone, giving as a result a continuous
increase of hydraulic conductivity with the distance to
the coastline (Freeze and Cherry 1979; Lunt et al. 2004;
Carol et al. 2009; Cardenas 2010; Chuang et al. 2010). In
some cases, the rate of increase of hydraulic conductivity can
be significant. Montalto et al. (2006) have reported linear
variations of approximately two orders of magnitude along
transects of 50 m in a flooded tidal marsh in the Hudson
River estuary, USA.

The objective of this technical note is to present both
exact and approximate analytical solutions for tide-
induced head fluctuations in a coastal confined aquifer
with hydraulic conductivity that linearly increases with the
distance to the coastline. Hypothetical examples are
designed to test the analytical solutions and to analyze
the effect of the hydraulic conductivity heterogeneity on
tide-induced head fluctuations.

Mathematical model and exact analytical solution

Consider a coastal aquifer laying between two imper-
meable layers as shown in Fig. 1. Both the aquifer and
the impermeable layers end at the coastline and extend
landward infinitely. Layers are horizontal and the
seaward boundary is assumed to be vertical. For the
mathematical description of the problem, let the x-axis
be perpendicular to the coastline, horizontal and
positive landward, with its origin at the coastline. The
datum of the induced head fluctuation is chosen to be
the mean water level.

In order to derive an analytical solution, the follow-
ing assumptions are made: the flow in the confined
aquifer is horizontal and obeys Darcy’s law; the effect
of density variations on water flow is neglected; the

hydraulic conductivity increases with the horizontal
distance; the specific storativity is constant. According
to the aforementioned assumptions, the governing
equation for the head fluctuations within the confined
aquifer can be written as (Bear 1988):

@

@x
KðxÞ @h

@x

� �
¼ Ss

@h

@t
ð1Þ

where h(x,t) is the groundwater head [L], Ss the specific
storativity [L–1] and K(x) the hydraulic conductivity
[LT–1], x the distance to the coastline [L], and t the time
[T]. Note that Eq. (1) applies strictly to a confined
aquifer. However when the fluctuations in h are small
compared to the aquifer thickness, it can also be applied
to unconfined aquifers (Bear 1988; Townley 1995, Guo
et al. 2010).

The boundary condition at the interface of the sea and
the aquifer is expressed as:

hð0; tÞ ¼ A cosðwtÞ ð2Þ
where h(0,t) is the head at x=0, A the tidal amplitude [L]
and ω the tidal angular frecuency [T–1]. At infinity, the
following no-flow boundary condition is used:

lim
x!1KðxÞ @h

@x
¼ 0 ð3Þ

Here, only the periodic solution is considered,
so –∞ < t < ∞ and no initial conditions are needed.

Assume a linear increase of the hydraulic conductivity
with the distance x:

KðxÞ ¼ K0ð1þ bxÞ ð4Þ
where K0 [LT–1] is the hydraulic conductivity of the
aquifer at x = 0 and b [L–1] is the rate of increase (b ≥ 0).
A linear model for K(x) could be considered arbitrary, but
is an initial step towards a more realistic description of
some type of heterogeneous aquifers. For example,
Cardenas (2010) uses Eq. (4) for describing some features
of groundwater dynamics in a fluvial island that can not be
accurately represented by a constant hydraulic conductiv-
ity. It is also worth mentioning that the hydraulic
conductivity given by Eq. (4) tends to infinity when x
tends to infinity. This is an unrealistic value for K;
however, the analytical solution is not affected by the
values of hydraulic conductivity far away from the coast,
as will be shown in the next section.

The exact analytical solution of the boundary value
problem Eqs. (1)–(4) is presented in the Appendix and
further expanded in the electronic supplementary material
(ESM), and is given by:

hðx; tÞ ¼ Re A
H ð1Þ

0 ð2L ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bx

p Þ
H ð1Þ

0 ð2LÞ
eiwt

" #
ð5Þ

Impermeable roof

Impermeable bottom

Mean water level

Borehole
Ground surface

x

Confined aquifer

Sea

Fig. 1 Schematic representation of the confined coastal aquifer.
The x-axis is represented by a dashed line
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where Re denotes the real part of the expression, H0
(1) is

the first kind Hankel function of zero order, Λ = a(–1+ i) /
b, and a [L–1] the tidal propagation parameter defined as:

a ¼
ffiffiffiffiffiffiffiffi
wSs
2K0

r
: ð6Þ

For a homogeneous aquifer (K(x) =K0), the inverse of a is
the characteristic dampening distance for which the ampli-
tude of the induced head fluctuation decays to A/e~0.36A.

Discussion of the exact analytical solution

To explore the influence of the hydraulic conductivity
heterogeneity on tide-induced head fluctuations, the
following hypothetical example is designed. The hydraulic
parameters of the confined aquifer are assumed to be K0=
1 m/h, Ss=10

–5 m–1 and b=10–2 m–1. The sea tide is
considered semidiurnal (period of 12.4 h) with an
amplitude A of 1 m. The tidal propagation parameter
computed using Eq. (6) is a=1.59 10–3 m–1. For the sake
of simplicity distances are expressed in dimensionless
form multiplying x by a.

Figure 2 shows the sea tide and head fluctuations for
both heterogeneous and homogeneous aquifers at two
representative points located near (ax=0.25) and far
(ax=2.0) from the coast. At ax=0.25 the induced head
fluctuation for the heterogeneous aquifer (curve for b in
Fig 2a) has a smaller amplitude than the homogeneous
one. However, far from the coast (ax=2.0), the
amplitude of the fluctuation given by Eq. (5) is greater
than the homogeneous case and a significant time-lag
between both responses is also observed. This simple
example shows that the effect of heterogeneity on head
fluctuations is significant and strongly depends on the
distance to the coast.

For a better understanding of the influence of
heterogeneity on induced head fluctuations, both the
amplitude and time-lag as functions of the dimension-
less distance ax are analyzed. The amplitude (hmax) and
time-lag (tlag) of head fluctuations have the following
expressions:

hmaxðxÞ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
r þ B2

i

q
ð7Þ

tlagðxÞ ¼ � 1

w
tan�1 Bi

Br

� �
ð8Þ

where:

Br ¼ Re
H ð1Þ

0 ð2L ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bx

p Þ
H ð1Þ

0 ð2LÞ

" #
;Bi ¼ Im

H ð1Þ
0 ð2L ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bx
p Þ

H ð1Þ
0 ð2LÞ

" #

ð9Þ
Figure 3 shows the amplitudes computed using Eq. (7)

for three different rates of increase of hydraulic conduc-

tivity b=10–1, 10–2, 10–3 m–1. As a reference, the figure
includes the amplitude of a homogeneous aquifer which
has the following analytical expression: Ae–ax (Jacob
1950). In comparison with the homogeneous model, the
linear heterogeneity produces more damped amplitudes
for distances less than approximately 1/a (characteristic
dampening distance). In this region near the coast, the
damping effect increases with the values of b. An opposite
behavior is observed for increasing inland distances: the
amplitudes of the heterogeneous aquifer are enhanced,
leading to larger intrusion of induced fluctuations in the
aquifer. This enhancing effect significantly increases with
the inland distance, particularly for large values of b.

The time-lag between the sea tide and the induced head
fluctuation on the heterogeneous aquifer can be computed
from Eq. (8). Figure 4 shows time-lags as a function of ax
for b=10–1, 10–2, 10–3 m–1. Time-lags of the heteroge-
neous aquifers are smaller than the time-lag of the
homogeneous aquifer, which show a linear increase with
distance. The time-lag of the heterogeneous aquifer
behaves as a square-root type function, giving as a result
a faster transmission of the tidal fluctuation. As it would
be expected, the propagation velocity of the induced tide
in the aquifer increases with b.

In order to analyze the effect of unrealistic values of K
predicted by Eq. (4) when x tends to infinity, an analytical
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Fig. 2 Tide-induced head fluctuation versus time at different
observation points: a a=0.25 and b a=2.0
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solution for a finite aquifer of extension L is derived. In
this case, Eq. (1) is solved in a finite domain with the tidal
condition Eq. (2) and the following no-flow boundary
condition in the right edge of the aquifer:

KðxÞ @h
@x

¼ 0; in x ¼ L ð10Þ

Based on a similar reasoning to derive Eq. (5), it can be
shown that the analytical solution of the boundary value
problem defined by Eqs. (1), (2) and (10) is given by:

hðx; tÞ ¼ Re A C1J0ð2L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bx

p Þ þ C2Y0ð2L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bx

p Þ
� �

eiwt
h i

ð11Þ
where

C1 ¼ Y 0
0ð2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bL

p Þ
J0ð2LÞY 0

0ð2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bL

p Þ � Y0ð2LÞJ 00ð2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bL

p Þ
ð12Þ

C2 ¼ �J 00ð2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bL

p Þ
J0ð2LÞY 0

0ð2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bL

p Þ � Y0ð2LÞJ 00ð2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bL

p Þ
ð13Þ

with J0 and Y0 being the first and second kind Bessel
functions of zero order.

Figure 5 shows how the amplitudes of induced head
fluctuations change with the distance to the coast for
both an infinite aquifer and finite aquifers of dimension-
less extension aL=10 and 30. In all cases, the hydraulic
parameters of the aquifer are the same as those used in
Fig. 2. It can be seen that with increasing of the
extension aL, the amplitudes predicted by Eq. (11)
quickly tend to the amplitude of the infinite aquifer
given by Eq. (5). This test demonstrates that induced
head fluctuations are mainly determined by the values
of hydraulic conductivity near the coast and Eq. (5) is
valid even though the values of K predicted by Eq. (4)
are unrealistic.

Asymptotic approximation of the exact solution

In this section, an approximate expression of the exact
solution (Eq. 5) is obtained for relatively small rates of
increase of hydraulic conductivity. The approximate
analytical solution is valid for:

b << 27=2a � 10a ð14Þ
For these values of b the arguments of the Hankel

function of Eq. (5) satisfy:

2L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bx

p�� �� >>
1

4
; 2Lj j >>

1

4
ð15Þ
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Fig. 3 Amplitude versus dimensionless distance ax in log scale for
different rates of increase of hydraulic conductivity
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and the following asymptotic approximations of H0
(1) hold

(Arfken and Weber 2005):

H ð1Þ
0 ð2L ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bx
p Þ � pL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bx

ph i�1=2
e
i 2L

ffiffiffiffiffiffiffiffi
1þbx

p �1
4p½ �

ð16Þ

H ð1Þ
0 ð2LÞ � pL�1=2e

i 2L�1
4p½ � ð17Þ

By replacing Eqs. (16) and (17) in Eq. (5), the
following approximate solution is obtained:

hðx; tÞ ¼ A
e�2ab

ffiffiffiffiffiffiffiffi
1þbx

p �1ð Þ
1þ bxð Þ14

cos �2
a

b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bx

p � 1
� �

þ wt
h i

ð18Þ
Although the validity of Eq. (18) is limited to values of

b given by Eq. (14), its mathematical expression is simple
and can be used for a qualitative analysis of induced head
fluctuations.

When the heterogeneity of the hydraulic conductivity
is negligible, i.e., b→0 it can be shown that Eq. (18)
becomes:

hðx; tÞ ¼ Ae�ax cos �axþ wtð Þ ð19Þ
which is the analytical solution obtained by Jacob (1950)
for a homogeneous confined aquifer.

Figures 6 and 7 show the amplitudes and phase-lags,
respectively, of exact and approximate solutions (Eqs. 5
and 18) for two different magnitudes of the rate of
increase of hydraulic conductivity b. As it is expected,
for a relatively small rate of increase (b=10–3 m–1), the
values of amplitude and phase-lag predicted by Eq. (18)
are in excellent agreement with the ones of the exact
solution Eq. (5). On the other hand, for b=10–1 m–1, the
condition (Eq. 14) is not satisfied and significant discrep-

ancies are observed between values predicted by both
analytical solutions.

Conclusions

This technical note investigates tide-induced head fluctua-
tions in a confined coastal aquifer whose hydraulic con-
ductivity linearly increases with the distance to the coast. An
exact analytical solution that predicts head fluctuations is
derived in terms of a Hankel function. For small rates of
increse of hydraulic conductivity, an approximate analytical
solution with a simple mathematical expression is also
obtained. In general terms, it can be concluded that the linear
heterogeneity in hydraulic conductivity produces the follow-
ing effects on the induced head fluctuations: (1) dampened
amplitudes for distances less than the characteristic damp-
ening distance 1/a, (2) enhanced amplitudes for increasing
inland distances (x>1/a) and (3) a faster transmission of the
tidal effect with a time-lag that can be approximated with a
square-root type function. Hypothetical examples show that
the influence of the hydraulic conductivity heterogeneity can
be significant and should be included in the study of coastal
aquifers where this type of heterogeneity has been reported.
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Appendix

Let H(x,t) be the solution of the following boundary value
problem:

@

@x
K0 1þ bxð Þ @H

@x

� �
¼ Ss

@H

@t
ð20Þ
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Hð0; tÞ ¼ Aeiwt ð21Þ

lim
x!1KðxÞ @H

@x
¼ 0 ð22Þ

Then, the solution of Eqs.(1)–(4) satisfies:

hðx; tÞ ¼ Re H ðx; tÞ�½ ð23Þ
where Re denotes the real part of the followed complex
expression. In order to verify the boundary condition Eq.
(21), H(x,t) must be expressed as:

Hðx; tÞ ¼ AX ðxÞeiwt ð24Þ
where X(x) is a complex function.

Substituting Eq.(24) in Eqs.(20)–(22), the following
boundary value problem is obtained:

d

dx
1þ bxð Þ dX

dx

� �
þ b2L2X ¼ 0 ð25Þ

X ð0Þ ¼ 1 ð26Þ

lim
x!1ð1þ bxÞ dX

dx
¼ 0 ð27Þ

where:

L2 ¼ �i
wSs
b2K0

¼ �i 2
a

b

� �2
ð28Þ

In order to find the general solution of Eq.(25), the
following change of variables is proposed:

u ¼ 2L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bx

p ð29Þ
where Λ=a(−1+i) /b. Replacing Eq.(29) in Eq.(25) gives:

u2
d2X

du2
þ u

dX

du
þ u2X ¼ 0 ð30Þ

The ordinary differential Eq.(30) is the zero order
Bessel equation and its general solution can be written as
(Abramowitz and Stegun 1965):

X ðuÞ ¼ C1J0ðuÞ þ C2Y0ðuÞ ð31Þ
where J0 and Y0 are the first and second kind Bessel
functions of zero order, and C1 and C2 are complex
constants.

Using asymptotic expressions for the derivatives of J0
and Y0 (Arfken and Weber 2005), it can be shown that the
boundary condition Eq.(27) is satisfied when:

C1 þ iC2ð Þ ¼ 0 ð32Þ
Then:

X ðuÞ ¼ C1 J0ðuÞ þ i Y0ðuÞÞð ¼ C1H
ð1Þ
0 ðuÞ ð33Þ

where H0
(1) is the Hankel function of zero order and first

kind (Abramowitz and Stegun 1965). Now, imposing the
boundary condition Eq.(26) to Eq.(33) yields:

C1 ¼ H ð1Þ
0 ð2LÞ�1 ð34Þ

Then the solution of the boundary value problem Eqs.
(25)–(27) is:

X ðxÞ ¼ H ð1Þ
0 ð2L ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bx
p Þ

H ð1Þ
0 ð2LÞ

ð35Þ

Finally, in virtue of Eqs.(23) and (24):

hðx; tÞ ¼ Re A
H ð1Þ

0 ð2L ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bx

p Þ
H ð1Þ

0 ð2LÞ
eiwt

" #
ð36Þ

which is the exact analytical solution for the boundary
value problem Eqs.(1)–(4).
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