

Jornal de Pediatria

ORIGINAL ARTICLE

- **Geographic altitude and prevalence of underweight,**
- stunting and wasting in newborns with the
- **INTERGROWTH-21st standard**[☆]

s Q1 Jorge Ivan Martínez^{a,b,*}, Estela M. Román^{a,b}, Emma L. Alfaro^{a,b}, Carlos Grandi^c,
 José E. Dipierri^{a,b}

7 Q2 a CONICET, Institute of Andean Ecoregions (INECOA), Jujuy, Argentina

- ⁸ Q3 ^b National University of Jujuy, Institute of Altitude Biology, Argentina
- ⁹ ^c Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, São Paulo, SP, Brazil
- ¹⁰ Received 21 December 2017; accepted 29 March 2018

11	KEYWORDS
12	Fetal growth
13	retardation;
14	Newborn;
15	Birth weight;
16	Prematurity;
17	Malformations
18	
19	
20	
21	
22	
23	
24	
25	

Abstract

Objective: To assess the prevalence and risks of underweight, stunting and wasting by gestational age in newborns of the Jujuy Province, Argentina at different altitude levels. Methods: Live newborns (n = 48,656) born from 2009–2014 in public facilities with a gestational age between 24^{+0} to 42^{+6} weeks. Phenotypes of underweight (<P3 weight/age), stunting (<P3 length/age) and wasting (<P3 body mass index/age) were calculated using INTERGROWTH-21st standards. Risk factors were maternal age, education, body mass index, parity, diabetes, hypertension, preeclampsia, tuberculosis, prematurity, and congenital malformations. Data were grouped by the geographic altitude: ≥ 2000 or <2000 m.a.s.l. Chi-squared test and a multivariate logistic regression analysis were performed to estimate the risk of the phenotypes

associated with an altitudinal level \geq 2000 m.a.s.l. *Results:* The prevalence of underweight, stunting and wasting were 1.27%, 3.39% and 4.68%, respectively, and significantly higher at >2000 m.a.s.l. Maternal age, body mass index >35 kg/m², hypertension, congenital malformations, and prematurity were more strongly associated with underweight rather than stunting or wasting at \geq 2000 m.a.s.l.

* Please cite this article as: Martínez JI, Román EM, Alfaro EL, Grandi C, Dipierri JE. Geographic altitude and prevalence of underweight, stunting and wasting in newborns with the INTERGROWTH-21st standard). J Pediatr (Rio J). 2018. https://doi.org/10.1016/j.jped.2018.03.007

* Corresponding author.

E-mail: jorjom@gmail.com (J.I. Martínez).

https://doi.org/10.1016/j.jped.2018.03.007

0021-7557/© 2018 Published by Elsevier Editora Ltda. on behalf of Sociedade Brasileira de Pediatria. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

+Model

2

ARTICLE IN PRESS

Conclusions: Underweight, stunting, and wasting risks were higher at a higher altitude, and were associated with recognized maternal and fetal conditions. The use of those three phenotypes will help prioritize preventive interventions and focus the management of fetal undernutrition.

© 2018 Published by Elsevier Editora Ltda. on behalf of Sociedade Brasileira de Pediatria. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Altitude geográfica e prevalência de recém-nascidos abaixo do peso, com baixa estatura e emaciação de acordo com o padrão do Projeto Consórcio Internacional de Crescimento Fetal e Neonatal para o Século XXI (INTERGROWTH-21st)

Resumo

Objetivo: Avaliar a prevalência e os riscos de recém-nascidos abaixo do peso, baixa estatura e emaciação por idade gestacional da Província de Jujuy, Argentina, em diferentes níveis de altitude.

Métodos: Recém-nascidos vivos (n = 48.656) nascidos entre 2009 e 2014 em instalações públicas entre 24^{+0} - 42^{+6} semanas de idade gestacional. Os fenótipos de abaixo do peso (< P3 peso/idade), baixa estatura (< P3 comprimento/idade) e emaciação (< P3 índice de massa corporal/idade) foram calculados utilizando os padrões do INTERGROWTH-21st. Os fatores de risco foram idade materna, escolaridade, índice de massa corporal, paridade, diabetes, hipertensão, préeclâmpsia, tuberculose, prematuridade e malformações congênitas. Os dados foram agrupados pela altitude geográfica: \geq 2000 ou < 2000 m.a.s.l. O teste qui-quadrado e a análise de regressão logística multivariada foram realizados para estimar o risco dos fenótipos associados ao nível de altitude \geq 2000 m.a.s.l.

Resultados: A prevalência de abaixo do peso, baixa estatura e emaciação foram 1,27%, 3,39% e 4,68%, respectivamente, significativamente maiores em > 2000 m.a.s.l. A idade materna, índice de massa corporal > 35 kg/m^2 , hipertensão, malformações congênitas e prematuridade foram mais fortemente associados a abaixo do peso e não baixa estatura ou emaciação em \geq 2000 m.a.s.l.

Conclusões: Os riscos de abaixo do peso, baixa estatura e emaciação foram maiores em altitude mais elevada e foram associados a condições maternas e fetais reconhecidas. O uso desses três fenótipos ajudará a priorizar as intervenções preventivas e focar no manejo da desnutrição fetal.

© 2018 Publicado por Elsevier Editora Ltda. em nome da Sociedade Brasileira de Pediatria. Este é um artigo Open Access sob a licença de CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

PALAVRAS-CHAVE Retardo do

crescimento fetal; Recém-nascido; Peso ao nascer; Prematuridade:

Malformações

Several anthropometric measures are widely used by neona-62 tologists to assess newborn nutrition, such as low birth 63 weight (<2500 g), small for gestational age (SGA, birth 64 weight [BW] below 10th percentile for gestational age 65 [GA]), Ponderal Index¹ (PI, weight/length³), proportional-66 ity (estimated by z-transformation of PI)² and placental 67 insufficiency³ However, none is synonymous with intrauter-68 ine growth restriction.⁴ 69

Neonatal anthropometry is characterized by being inexact and by the lack of validation and consensus of its available indexes.⁵ In addition, there is no correspondence and harmonization between the different criteria to assess pre- and postnatal nutritional status for constant and continuous growth monitoring in the different stages of ontogenesis.⁶

The International Fetal and Newborn Growth Consortium
 for the 21st Century (INTERGROWTH-21st Project - IG-21)
 recently published the standards for newborn weight, length

and head circumference.⁷ It is a cross-sectional, multicenter study on size at birth by sex and GA, conducted with the same prescriptive approach and methodological design as those used in establishing WHO standards.⁸ IG-21 suggests that low weight at a given GA may result from *stunting* (short length for age, reflecting linear growth restriction), *wasting* (low weight for length, or low body mass index [BMI] for age, often reflecting recent weight loss), or both phenotypes. Those are two distinct phenotypes, with different timing and duration of causal insults, specific risk factors, and varied distributions across populations and different prognoses.⁹

Several anthropometry studies on children and adolescents from altitude ecosystems indicate that this population, compared to those living closer to sea level, is shorter and lighter.^{10,11} Particularly in newborn infants of Jujuy, birth weight, as well as the indicators of severe intrauterine growth impairment are independently associated with geographic altitude.^{2,12-15} However, most studies of altitude effect on fetal growth are limited to term newborn infants.

58

59

60

80

81

82

83

84

85

87

88

89

90

91

92

93

Impaired fetal growth

The objective was to use the IG-21 standard to assess the prevalence and common risks factors of underweight, stunting, and wasting by gestational age (GA) in newborn infants of Jujuy associated with high altitudinal levels.

104 Material and methods

105 Study population

This was an observational, analytical, and retrospective 106 study conducted on consecutive births registered by the 107 Perinatal Informatics System (SIP, Ministry of Health of the 108 Province of Jujuy, Argentina) between 2009 and 2014. Exclu-109 sion criteria were (1) GA $<24^{+0}$ and $>42^{+6}$ weeks; (2) lack of 110 data on weight, height, GA, sex, and maternal place of res-111 idence during pregnancy; (3) twin pregnancy. Alexander's 112 criterion was applied to correct incompatibilities between 113 birth weight and gestational age.¹⁶ 114

115 Data assessment

Data were grouped according to geographic altitude of 116 the maternal place of residence into a low altitude (LA) 117 group (<2000 m.a.s.l.) and a high altitude (HA) group (\geq 2000 118 m.a.s.l.). Newborn nutritional status was determined with 119 IG-21 standard, using the following phenotypes at birth: (a) 120 Stunting (<3rd percentile length/GA); (b) Wasting (<3rd per-121 centile BMI [Kg/m²]/GA),⁹ and (c) a third phenotype - not 122 included in the IG-21 standard -, underweight (BW <3rd per-123 centile for age and sex), indicating a severe insult. This 124 eliminates the chance of erroneous inclusion of a normal 125 newborn in the lower BW distribution. Because the IG-21 126 Project does not provide an assessment of BMI below 33⁺⁰ 127 weeks GA, the current study's data included underweight 128 and stunting between 24⁺⁰ and 42⁺⁶ weeks, and wasting 129 between 33^{+0} and 42^{+6} weeks. 130

The following characteristics were analyzed: (1) mater-131 nal biological and sociodemographic characteristics: age 132 (<20, 20-24, 25-29, 30-35 and >35 years), parity (0, 1, 1)133 2 and >3), BMI (<18.5 undernutrition: 18.5–24.9 normal 134 nutrition; 25.0-29.9 overweight; 30-34.9 obesity type I; 135 and \geq 35 kg/m² obesity type II), and education (<8; 8–11) 136 and \geq 12 years); (2) diabetes, hypertension, preeclampsia 137 and tuberculosis during pregnancy; and (3) sex, prematurity 138 (<37⁺⁰ weeks) and congenital malformations for the new-139 borns. Maternal biological and sociodemographic variables 140 were categorical; the remainder were dichotomous. 141

142 Statistical analysis

Prevalence of the different phenotypes was estimated by 143 proportion (95% CI [confidence interval]), whereas popula-144 tion differences were analyzed with a chi-squared test and 145 univariate risk: odds ratio (OR and 95% CI). A multivari-146 ate logistic regression analysis was performed to estimate 147 148 the risk of underweight, stunting, and wasting associated with altitude level (exposure variable), and adjusted for 149 maternal age, educational level, BMI, parity, tuberculosis, 150 diabetes, hypertension, preeclampsia, sex, prematurity, and 151 congenital malformations. Low altitude was the reference. 152

3

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

Goodness of fit was tested with the Hosmer–Lemeshow test. SPSS (Version 22) and Stata (Version 11) statistical software were used. The statistical level was set at p < 0.05.

Ethical issues

The Provincial Committee of Ethics of research in health of Jujuy, Argentina, approved this study.

Results

Between 2009 and 2014, 79,504 live infants were born in the Jujuy Province; 57,471 were registered by SIP. After applying the selection criteria, 48,656 (84.6%, 95% CI 84.3–84.9) newborns were included in the study; of those, 16.8% (16.5–17.2) came from HA (Supplemental Digital Content [SDC] S1, Fig. 1).

Underweight, stunting and wasting prevalence were 1.27% (1.18-1.38), 3.39% (3.24-3.36), and 4.68% (4.49-4.87), respectively. The stunting plus wasting rate was 0.16% (0.12-0.20). The rate of HA underweight infants was 1.13 times higher (0.80-1.49) than the equivalent LA rate, whereas the rates for stunting and wasting were 2.68 (2.10-3.29) and 5.26 (4.61-5.95) times higher, respectively.

Overall, the HA mothers of underweight newborns showed significantly greater age, higher undernutrition, hypertension, prematurity and congenital malformations, but less overweight and obesity type I than the LA mothers. Pregnancies in the HA group with stunted newborns were independently associated with higher undernutrition, but less obesity type I, while wasting-affected newborns in the HA group showed less normal pregnancy nutrition, obesity type I and prematurity, but higher nulliparity and congenital malformations than the newborns of LA mothers (Table 1).

Mean BW and standard deviation (SD) of the three phenotypes was 2012 g (567) for underweight, 2933 g (635) for stunting and 2767 g (427) for wasting, while in children without nutritional deficit it was 3321 g (531).

Mean GA (SD) was 37.5 (3.9) weeks for underweight, 38.6 (2.1) weeks for stunting and 39.0 (1.3) weeks for wasting. Overall prematurity rate was 9.04% (8.79–9.30): 8.01% at HA and 9.25% at LA (p < 0.001).

In the Jujuy Province at HA, the underweight, stunting and wasting risks begin to appear from the 29th, 26th, and 33th weeks of gestation, respectively. The prevalence of underweight and stunting at 24^{+0} to 36^{+6} weeks was higher than at 37^{+0} to 42^{+6} weeks (p < 0.001) for HA compared with LA. On the other hand, wasting prevalence at 37^{+0} to 42^{+6} weeks was higher than at 24^{+0} to 36^{+6} weeks at HA compared with LA (p < 0.001, data not shown) (SDC S2, S3 and S4, Figs. 2–4).

Crude OR (95% CI) for underweight, stunting and wasting associated with HA were 1.92 (1.63–2.27), 2.21 (1.99–2.45) and 2.39 (2.18–2.62), respectively (p < 0.001). After adjustment, a slight risk reduction for stunting and a risk increase for the other phenotypes were found, all statistically significant (SDC S5, Table 1). Goodness of fit models were adequate.

Tables 1–3 show maternal and newborn characteristics according to altitude, and their association (adjusted OR, AOR) with the three phenotypes. For underweight, maternal

4

ARTICLE IN PRESS

Martínez JI et al.

Table 1Prevalence of maternal and newborn characteristics and adjusted risk of underweight according to geographic altitude(Jujuy, Argentina, 2009–2014).

Variable		LA (n=40,442)			HA	4 (<i>n</i> = 8214	AOR (95% CI) ^a	
		Total ^b	n	%	Total ^b	n	%	
Maternal educational level (ys)	<8 8−11 ≥12	1744 1022 37,172	30 16 458	1.7 1.5 1.2	305 466 7443	10 10 175	3.3 2.1 2.4	1.61 (0.97–2.67) 1.19 (0.64–2.23) 1 (Reference)
Maternal BMI (kg/m²)	<18.5	1831	23	1.2	276	12	4.3	1.53 ^c (1.02–2.30)
	18.5-24.9	19,327	241	1.2	3747	82	2.2	1 (Reference)
	25-29.9	7608	77	1.0	1242	30	2.4	0.69 ^c (0.50–0.94)
	30-34.9	2549	23	0.9	286	5	1.7	0.51 ^c (0.29–0.92)
	≥35	8623	140	1.6	2663	66	2.5	1.16 (0.62–2.18)
Maternal age (ys)	<20	9006	129	1.4	1981	54	2.7	0.91 (0.61–1.34)
	20-24	11,974	128	1.1	2411	63	2.6	1.04 (0.73–1.47)
	25-29	8896	96	1.1	1812	26	1.4	1 (Reference)
	30-34	6176	79	1.3	1163	34	2.9	1.31 (0.86–1.98)
	≥35	3859	72	1.8	844	18	2.1	1.78 ^c (1.13–2.81)
Parity	0	13,616	216	1.6	2851	89	3.1	1.72 ^c (1.15–2.56)
	1	10,451	98	0.9	2039	40	2.0	0.98 (0.65–1.46)
	2	6586	65	1.0	1267	19	1.5	0.88 (0.57–1.36)
	≥3	9285	125	1.3	2057	47	2.3	1 (Reference)
ТВС	No	39,240	485	1.2	8046	193	2.4	1 (Reference)
	Yes	209	3	1.4	12	0	0.0	0.70 (0.17-9.64)
Diabetes	No	39,207	478	1.2	8062	192	2.4	1 (Reference)
	Yes	128	3	2.3	14	0	0	1.29 (0.95–5.21)
Hypertension	No	38,839	472	1.2	8066	192	2.4	1 (Reference)
	Yes	574	15	2.6	31	1	3.2	2.54 ^c (1.14–5.68)
Preeclampsia	No	38,974	476	1.2	8037	189	2.4	1 (Reference)
	Yes	385	9	2.3	45	2	4.4	1.10 (0.33–3.66)
Male	No	19,591	224	1.2	4024	88	2.1	1 (Reference)
	Yes	20,347	260	1.3	3995	107	2.6	1.05 (0.84–1.32)
Congenital	No	29,213	261	0.8	6434	124	1.9	1 (Reference)
malformations	Yes	366	27	7.3	35	6	17.4	7.66 ^c (4.83–12.14)
Prematurity	No	37,953	404	0.2	7640	171	0.6	1 (Reference)
	Yes	2489	100	16.1	574	24	25.6	1.54 ^c (1.07–2.22)

Hosmer–Lemeshow $chi^2 = 4$, p = 0.979.

LA, low altitudinal level; HA, high altitudinal level.

^a AOR, adjusted OR for all variables of the table.

^b There were some missing values.

^c p < 0.001.

Q4

age greater or equal to 35 years, BMI lower than 18.5 kg/m²,
nulliparity, gestational hypertension, prematurity, and congenital malformations were independently associated with
elevated risk at HA. Overweight and obesity type I were
associated to lower risk at HA (Table 1).

For stunting, maternal BMI below 18.5 kg/m² and congenital malformations were independently associated with higher risk, while BMI of obesity type I showed lower risk (Table 2).

Finally, for wasting, nulliparity and congenital malformations were independently associated with higher risk, while overweight and class I obesity and prematurity were associated with lower risk (Table 3).

Discussion

In the present study, newborns at HA in the Jujuy Province showed a significantly higher risk of underweight, stunting and wasting, and clinical and epidemiologic evidence to support the concept that they are separate anthropometric phenotypes of intrauterine origin is presented. The phenotypes differed in terms of risk factors. As expected, few conditions were associated with similar strength to underweight, stunting and wasting phenotypes; those conditions are mostly recognized as universal risk factors, i.e. GA, maternal undernutrition, obstetric history, and congenital malformations. Other factors, in particular tuberculosis,

224

225

226

227

228

229

230

231

232

233

Table 2	Prevalence of maternal	and newborn	characteristics	and adjusted	risk of	stunting,	according to	geographic	altitude
(Jujuy, Ar	gentina, 2009-2014).								

Variable		LA (<i>n</i> = 40,442)			HA	A (n=8214	AOR (95% CI) ^a	
		Total ^b	n	%	Total ^b	n	%	
Maternal educational level (ys)	<8 8−11 ≥12	1691 995 36,468	40 24 789	2.4 2.4 2.2	289 452 7202	22 20 413	7.6 4.4 5.7	1.02 (0.71–1.48) 1.15 (0.78–1.69) 1 (Reference)
Maternal BMI (kg/m²)	<18.5	1803	54	3.0	270	21	7.8	1.31 ^c (1.01–1.70)
	18.5-24.9	19,008	436	2.3	3628	194	5.3	1 (Reference)
	25-29.9	7425	130	1.8	1203	57	4.7	0.84 (0.71–1.00)
	30-34.9	2493	47	1.9	278	7	2.5	0.71 ^c (0.52–0.97)
	≥35	8425	186	2.2	2564	176	6.9	1.03 (0.68–.56)
Maternal Age (ys)	<20	8859	205	2.3	1910	137	7.2	1.02 (0.82–1.28)
	20-24	11,750	266	2.3	2339	128	5.5	1 (Reference)
	25-29	8726	187	2.1	1762	93	5.3	0.93 (0.76–1.13)
	30-34	6041	110	1.8	1113	54	4.9	0.85 (0.66–1.08)
	≥35	3754	84	2.2	816	42	5.1	0.95 (0.72–1.27)
Parity	0	13,387	327	2.4	2749	169	6.1	1 (Reference)
	1	10,238	211	2.1	1983	109	5.5	1.13 (0.89–1.14)
	2	6466	147	2.3	1234	68	5.5	0.99 (0.78–1.25)
	≥3	9063	168	1.9	1977	109	5.5	1.15 (0.91–1.46)
ТВС	No	38,008	820	2.2	7786	447	5.7	1 (Reference)
	Yes	204	5	2.5	12	0	0.0	1.21 (0.44–3.32)
Diabetes	No Yes	38,375 121	1212 4	3.3	7896 15	536 1	7.3 0	1 (Reference) 0.50 (0.07–3.69)
Hypertension	No	37,636	809	2.1	7808	445	5.7	1 (Reference)
	Yes	545	18	3.3	29	0	0.0	1.21 (0.65–2.27)
Preeclampsia	No	37,770	808	2.1	7778	440	5.7	1 (Reference)
	Yes	362	15	4.1	45	3	6.7	1.30 (0.65–2.59)
Male	No	18,801	624	3.2	3736	295	7.3	1 (Reference)
	Yes	19,500	642	3.2	3752	253	6.3	0.87 (0.76–1.00)
Congenital	No	28,954	820	2.8	6365	352	5.5	1 (Reference)
malformations	Yes	355	29	8.1	33	6	18.2	2.60 ^c (1.67–4.06)
Prematurity	No	37,397	981	2.6	7519	445	5.9	1 (Reference)
	Yes	2170	285	13.3	517	103	19.9	1.23 (0.97–1.58)

Hosmer–Lemeshow chi² = 4.25, p = 0.833.

LA, low altitudinal level; HA, high altitudinal level.

^a Adjusted OR for all variables of the table.

^b There were some missing values.

^c p < 0.001.

have such a wide range of severity, presentations, and timing during pregnancy that they are not phenotype-specific.
On the other hand, overweight and type I obesity showed
between 30% and 50% risk reduction for the three phenotypes (a well-described effect that is due to increased birth
weight and fat deposition).

No comparable local records exist on the prevalence of nutritional phenotypes in newborns evaluated for GA using IG-21, except for the underweight phenotype.¹⁷ It is worth noting that, in this study,¹⁷ the prevalence of underweight calculated from birth certificates in 2013 in the Argentine Northeast, where the Jujuy Province is located, was similar to the one detected in this study in term newborns. Argentine records on the prevalence of those phenotypes refer to child populations over the age of 6 months calculated with the WHO standard.¹⁸ The National Nutrition and Health Survey (Encuesta Nacional de Nutrición y Salud) performed in Argentina in 2004–2005 establishes, for the population of Jujuy, regardless of the geographic altitude, 1.8% (95% Cl 0.8–4.1), 9.5% (95% Cl 5.3–16.6) and 0.6% (95% Cl 0.3–1.4) prevalence of underweight, stunting and wasting, respectively.¹⁸ A Latin American study¹⁹ compared IG-21 percentiles with newborn Peruvians born >3400 m.a.s.l. and did not find significant differences with reference to the IG-21 standard, but underweight, stunting and wasting prevalence were not estimated.

260

6

ARTICLE IN PRESS

Martínez JI et al.

Table 3Prevalence of maternal and newborn characteristics and adjusted risk of wasting according to geographic altitude(Jujuy, Argentina, 2009–2014).

Variable	LA (<i>n</i> = 40,442)				HA	A (<i>n</i> = 8214	AOR (95% CI) ^a	
		Total ^b	n	%	Total ^b	n	%	
Maternal educational	<8	1677	82	4.9	289	11	3.8	1.03 (0.75-1.41)
level (ys)	8-11	989	40	4.0	447	49	11.0	1.16 (0.85-1.59)
	≥12	36,165	1493	4.1	7194	687	9.5	1 (Reference)
Maternal BMI (kg/m ²)	<18.5	1781	94	5.3	269	34	12.6	1.23 (0.99-1.53)
	18.5-24.9	18,907	847	4.5	3636	365	10.0	1 (Reference)
	25-29.9	7398	247	3.3	1209	89	7.4	0.71 ^c (0.61-0.83)
	30-34.9	2480	83	3.3	273	24	8.8	0.76 ^c (0.59-0.98)
	<u>≥</u> 35	8265	344	4.2	2543	235	9.2	0.68 (0.44-1.03)
Age (ys)	<20	8741	447	5.1	1903	196	10.3	0.91 (0.75-1.09)
	20-24	11,669	475	4.1	2342	233	9.9	0.99 (0.84-1.17)
	25-29	8703	330	3.8	1754	139	7.9	1 (Reference)
	30-34	5994	226	3.8	1123	102	9.1	1.02 (0.83-1.25)
	≥35	3698	137	3.7	805	77	9.6	1.16 (0.91-1.48)
Parity	0	13,268	728	5.5	2747	320	11.6	1.64 ^c (1.35-2.01)
	1	10,146	383	3.8	1972	176	8.9	1.24 (0.97-1.44)
	2	6415	211	3.3	1239	84	6.8	0.18 (0.79-1.17)
	<u>≥</u> 3	9002	293	3.3	1972	167	8.5	0.89 (0.72-1.11)
ТВС	No	37,685	1564	4.2	7774	739	9.5	1 (Reference)
	Yes	204	12	5.9	12	1	8.3	1.74 (0.90-3.32)
Diabetes	No	37,332	1557	4.2	7797	742	9.5	1 (Reference)
	Yes	526	20	3.8	27	1	3.7	0.97 (0.50-1.85)
Hypertension	No	37,455	1561	4.2	7767	736	9.5	1 (Reference)
	Yes	354	11	3.1	44	5	11.4	0.95 (0.46-1.96)
Preeclampsia	No	18,305	791	4.1	3607	378	9.5	1 (Reference)
	Yes	18,911	824	4.2	3576	369	9.4	0.95 (0.46-1.96)
Male	No	18,305	791	4.1	3607	378	9.5	1 (Reference)
	Yes	18,911	824	4.2	3576	369	9.4	0.92 (0.83-1.03)
Congenital	No	28,610	11,457	4.0	6310	654	10.3	1 (Reference)
malformations	Yes	335	29	8.7	32	8	25	2.52 ^c (1.69-3.75)
Prematurity	No	37,335	1234	3.3	7505	601	8.1	1 (Reference)
	Yes	1496	381	25.4	425	146	34.3	0.64 ^c (0.48-0.84)

Hosmer–Lemeshow $chi^2 = 1.92$, p = 0.983.

LA, low altitudinal level; HA, high altitudinal level.

^a Adjusted OR for all variables of the table.

^b There were some missing values.

^c p < 0.01.

The observed prevalences of newborn phenotypes were 261 relatively low, especially for underweight and stunting, 262 because they are also lower than the clinical significance 263 cut-off points <10% and <20%, respectively, suggested by 264 WHO.²⁰ Stunting at birth seems to have a relatively low 265 prevalence even in low-income settings, but it increases 266 sharply with gestational age.²¹ Those results are somewhat 267 similar to an earlier study⁹ of fetal growth impairment, 268 which met strict individual eligibility criteria, where stunt-269 ing affected 3.8% and wasting affected 3.4% of a low-risk 270 population of newborns. 271

In a recent risk factor analysis for childhood stunting in
 developing countries, the worldwide leading risk factor was

fetal growth restriction (FGR), defined as being at term and small for gestational age, which underlines the need for reliable indicators of fetal growth.²² Of the 12 conditions studied, advanced maternal age, BMI lower than 18.5 kg/m^2 , hypertension, congenital malformations, and prematurity were more strongly associated with higher adjusted risk of underweight than to stunting or wasting at HA. Prevalence of tuberculosis is three times higher at altitude ($53 \times 10,000$ newborns), and it was only associated with wasting, while nulliparity showed a similar risk for underweight and wasting. No statistically significant evidence of an independent association with any of the phenotypes studied was found for the remaining conditions.

284

285

286

274

275

287

288

289

290

ARTICLE IN PRESS

Impaired fetal growth

At HA, congenital malformations were associated with duplication of risk of stunting (AOR: 2.62) and wasting (AOR: 2.52), but the risk was seven times higher for underweight (AOR: 7.66).

In the Jujuy Province, and using the same source, Grandi 291 et al.²³ demonstrated that the prevalence of prematu-292 rity, SGA, and fetal growth restriction shows an increasing 293 relationship with geographic altitude, where the last two 294 indicators - above 3500 m.a.s.l. - may significantly dupli-295 cate the values found at sea level. In Northwestern 296 Argentina, other studies came to the same conclusion,²⁴ 297 where an increase in prematurity due to an increase in 298 altitude could even represent an adaptive advantage for 200 preterm births under those conditions, as was found in the 300 present study for wasting, with an adjusted risk reduc-301 tion of almost 40%. Another explanation is that there are 302 three possible alternatives for the presence of an insult 303 that jeopardizes fetal growth under these conditions: gesta-304 tional continuation, resulting in a newborn with fetal growth 305 restriction; spontaneous or medically indicated interruption 306 of pregnancy, with consequent premature birth; or fetal 307 death. 308

That background would support the hypothesis that in 309 altitude regions, and by an evolutionary mechanism, pre-310 maturity and fetal death may occur because of evident 311 reductions in O₂ tension above 2000 m.a.s.l., suggesting a 312 threshold effect beyond which small reductions in the pro-313 vision of O₂ may substantially reduce fetal oxygenation.²⁵ 314 This is sustained by a report of the Argentine Ministry of 315 Health's Bureau of Health Statistics and Information (DEIS), 316 informing that the contribution of premature fetuses (<37+0 317 weeks) to fetal mortality in Jujuy was 72% in 2013. 318

Geographic altitude and hypertension complications of pregnancy may independently reduce birth weight,²⁶ a phenomenon found in Jujuy Province newborns above 2000 m.a.s.l.^{12,15} and in the current study (Table 1).

Stunting constitutes a global indicator of child welfare, 323 reflecting social inequalities and describing frequent spe-324 cific results of the neonatal period (low birth weight, small 325 for gestational age, prematurity, short for gestational age 326 and small head circumference). For this reason, the assess-327 ment of this indicator in newborns has recently increased 328 in importance in the perspective of the first 1000 days of 329 life. Fetal stunting could be related to organic conditions 330 (e.g. malformations) and is widely regarded as a cumulative, 331 "long-term" process analogous to chronic undernutrition in 332 children,²⁷ that requires exposure to one or more risk factors 333 for several months or throughout pregnancy. Alternatively, 334 neonatal wasting is likely to reflect acute exposures in the 335 weeks before delivery, with more rapid fat deposition.²⁸ 336 Other studies, however, suggest that differences in sever-337 ity, rather than the timing and duration of the insults, result 338 in distinct phenotypes of impaired fetal growth, with wast-339 ing representing the more severe cases.²⁹ The fact that 340 phenotype prevalence differs in terms of GA presentation 341 and prevalence between preterm and term pregnancies sug-342 gests different risk factors (like diabetes, hypertension or 343 344 preeclampsia at HA) and consequently, increased medically-345 indicated interruption of pregnancies to protect maternal and fetal well-being. 346

Most maternal factors considered in this study were weakly associated with or constitute a protective factor to phenotype differences due to altitude (particularly stunting). Therefore, those differences may probably be attributed to the stressing effect of altitude hypoxia interacting with other characteristics of these ecosystems not considered in this analysis (nutritional, socioeconomic, genetic, ethnic, sociodemographic, and geographic).^{10,11,30} The prenatal growth pattern of newborns in the Jujuy Province resembles the pattern found in altitude ecosystems in other ontogenetic stages. In fact, several studies of Jujuy Province children, adolescents and adults' growth indicate that children are shorter and lighter than those living closest to sea level.^{10,13} However, since the impaired fetal growth found in the HA population is a complex syndrome, further characterization and validation of phenotypes in different populations is needed.

The main strengths of the study are the high representative sample of geographic altitude, the identification of risk factors of three phenotypes associated with fetal growth restriction knowingly associated with low birth weight, and the introduction of IG-21 as a robust epidemiological tool to be used in future studies.

Limitations

The main limitation is the final sample -61.2% of live newborns -, probably because only births registered in public facilities were included. Other limitations were incomplete information and GA estimated by the last menstrual date, as recommended by DEIS. On the other hand, models explained low altitudinal risks according to different phenotypes, since factors known to be associated with fetal growth (maternal smoking, use of illicit drugs, history of low birth weight and prematurity, social status, etc.) were not registered.

Conclusions

Underweight, stunting, and wasting risks were higher at a high altitude, and were associated with recognized maternal and fetal conditions. Usage of those three phenotypes will help to prioritize preventive interventions and focus the management of fetal undernutrition.

Conflicts of interest

The authors declare no conflicts of interest.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jped. 2018.03.007.

References

- 1. Rohrer F. Der Index der Körperfülle als Maß des Ernährungszustandes. Münch Med Wochenschr. 1921;68:580–2.
- Grandi C, Tapia JL, Marshall G, NEOCOSUR perinatal network.
 Avaliação da severidade, proporcionalidade e risco de morte em recém-nascidos de muito baixo peso com restrição do
 397

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

387

388

389

390

391

392

393

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

398

399

403

404

405

crescimento fetal. Análise multicêntrica sul-americana. J Pediatr (Rio J). 2005:81:198–204.

- Hunt K, Kennedy SH, Vatish M. Definitions and reporting of placental insufficiency in biomedical journals: a review of the literature. Eur J Obstet Gynecol Reprod Biol. 2016;205:146–9.
 - Soundarya M, Basavaprabhu A, Raghuveera K, Baliga B, Shivanagaraja B. Comparative assessment of fetal malnutrition by anthropometry and CAN Score. Iran J Pediatr. 2012;22:70–6.
- 406 5. Pereira da Silva L. Neonatal anthropometry: a tool to evaluate 407 the nutritional status and predict early and late risks. In: Preedy 408 VR, editor. Handbook of anthropometry: physical measures of 409 human form in health and disease. New York: Springer; 2012. p. 410 1079–104.
- 6. Garza C. Fetal neonatal, infant, and child international
 growth standards: an unprecedented opportunity for an integrated approach to assess growth and development. Adv Nutr.
 2015;6:383–90.
- 7. Villar J, Cheikh Ismail L, Victora CG, Ohuma E, Bertino E, Altman D, et al., International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384:857–68.
- 421 8. WHO Multicenter Growth Reference Study Group. Enrollment
 422 and baseline characteristics in the WHO Multicenter Growth
 423 Reference Study. Acta Paediatr. 2006;95:7–13.
- 9. Victora CG, Villar J, Barros FC, Ismail L, Chumlea C, Papageorghiou A, et al., International Fetal and Newborn Growth
 Consortium for the 21st Century (INTERGROWTH-21st). Anthropometric characterization of impaired fetal growth: risk factors
 for and prognosis of newborns with stunting or wasting. JAMA
 Pediatr. 2015;169:e151431.
- 430 10. Greksa E, Caceres LP, Paredes-Fernandez L, Paz-Zamora M, Cac 431 eres E. The physical growth of urban children at high altitude.
 432 Am J Phys Anthrop. 1984;65:315–22.
- 11. Román E, Bejarano I, Alfaro E, Abdo G, Dipierri J. Geographical altitude, size, mass and body surface area in children (1-4 years) in the Province of Jujuy (Argentina). Ann Hum Biol. 2015;42:431-8.
- 437 12. Alvarez P, Dipierri JE, Bejarano IF, Alfaro Gómez E. Variación altitudinal del peso al nacer en la Provincia de Jujuy. Arch
 439 Argent Pediatr. 2002;100:440–7.
- Hatarian 13. Bejarano IF, Alfaro EL, Dipierri J, Grandi C. Variabilidad interpoblacional y diferencias ambientales, maternas y perinatales del peso al nacimiento. Rev Hosp Mat Inf Ramón Sardá.
 2009;28:29–39.
- 444 14. Bejarano IF, Dipierri JE, Andrade A, Alfaro EL. Geographic
 altitude, surnames, and height variation of Jujuy (Argentina)
 446 conscripts. Am J Phys Anthropol. 2009;138:158–63.
- 447 15. Moreno Romero S, Dipierri J, Marrodán MD. Peso al nacimiento
 448 en ecosistemas de altura: noroeste argentino Susques. Obs Medioambient. 2003;6:161–76.

- Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol. 1996;87:163-8.
- 17. Revollo GB, Martínez JI, Grandi C, Alfaro EL, Dipierri JE. Prevalence of underweight and small for gestational age in Argentina: comparison between the INTERGROWTH-21st standard and an Argentine reference. Arch Argent Pediatr. 2017;115: 547–55.
- Durán P, Mangialavori G, Biglieri A, Kogan L, Abeyá Gilardon E. Estudio descriptivo de la situación nutricional en niños de 6-72 meses de la República Argentina: resultados de la Encuesta Nacional de Nutrición y Salud (ENNyS). Arch Argent Pediatr. 2009;107:397–404.
- 19. Villamonte-Calanche W, Manrique-Corazao F, Jerí-Palomino M, De-La-Torre C, Roque-Roque JS, Wilson NA. Neonatal anthropometry at 3400 m above sea level compared with INTERGROWTH 21st standards. J Matern Fetal Neonatal Med. 2017;30:155–8.
- Physical status: the use and interpretation of anthropometry, vol. 854. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser; 1995. p. 1–452.
- Victora C, de Onis M, Hallal P, Shrimpton R. Worldwide timing of growth faltering: revisiting implications for interventions. Pediatrics. 2010;125:e473–80.
- 22. Danaei G, Andrews K, Sudfeld C, Fink G, McCoy D, Peet E, et al. Risk factors for childhood stunting in 137 developing countries: a comparative risk assessment analysis at global, regional, and country levels. PLoS Med. 2016;13:e1002164.
- 23. Grandi C, Dipierri J, Luchtenberg G, Moresco A, Alfaro E. Effect of high altitude on birth weight and adverse perinatal outcomes in two Argentine populations. Rev Fac Cien Med Univ Nac Cordoba. 2013;70:55–62.
- Candelas N, Terán JM, López Barbancho D, Díaz M, Lomaglio D, Marrodán M. Altitude effect on birth weight and prematurity in the Province of Catamarca (Argentina). Am J Hum Biol. 2015;27:526–9.
- 25. Julian CG. High altitude during pregnancy. Clin Chest Med. 2011;32:21–31.
- Keyes LE, Armaza JF, Niermeyer S, Vargas E, Young D, Moore L. Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. Pediatr Res. 2003;54:20–5.
- 27. de Onis M, Branca F. Childhood stunting: a global perspective. Matern Child. 2016;12:12–26.
- Villar J, Belizan JM. The timing factor in the pathophysiology of the intrauterine growth retardation syndrome. Obstet Gynecol Surv. 1982;37:499–506.
- 29. Kramer M, McLean F, Olivier M, Willis DM, Usher RH. Body proportionality and head and length ''sparing'' in growth-retarded neonates: a critical reappraisal. Pediatrics. 1989;84:717–23.
- Pawson IG, Huicho L, Muro M, Pacheco A. Growth of children in two economically diverse Peruvian high-altitude communities. Am J Hum Biol. 2001;13:323–40.