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Abstract 

Neural synchrony in the γ-band is considered a fundamental process in cortical computation and 

communication and it has also been proposed as a crucial correlate of consciousness. However, the latter 

claim remains inconclusive, mainly due to methodological limitations, such as the spectral constraints of 

scalp-level electroencephalographic recordings or volume-conduction confounds. Here, we circumvented 

these caveats by comparing γ-band connectivity between two global states of consciousness via intracranial 

electroencephalography (iEEG), which provides the most reliable measurements of high-frequency activity 

in the human brain. Non-REM Sleep recordings were compared to passive-wakefulness recordings of the 

same duration in three subjects with surgically implanted electrodes. Signals were analyzed through the 

weighted Phase Lag Index connectivity measure and relevant graph theory metrics. We found that 

connectivity in the high-γ range (90-120 Hz), as well as relevant graph theory properties, were higher 

during wakefulness than during sleep and discriminated between conditions better than any other 

canonical frequency band. Our results constitute the first report of iEEG differences between wakefulness 

and sleep in the high-γ range at both local and distant sites, highlighting the utility of this technique in the 

search for the neural correlates of global states of consciousness. 

 

Highlights 

• IEEG recordings overcome the methodological limitations of other techniques 

• IEEG high-γ connectivity is higher during wakefulness than during sleep 

• It distinguishes between states better than any other canonical frequency band 

• Connectivity differences are present at both local and distant sites 

 

1. Introduction 

Mainstream theories of consciousness converge on considering information integration 

across brain regions as a fundamental explanatory principle (Dehaene and Naccache, 

2001; Tononi et al., 2016). However, no consensus exists on the putative mechanisms 

coordinating distributed neural activity. One possible candidate is neural synchrony 

(Uhlhaas et al., 2009). Indeed, temporal relationships between oscillatory processes are 

considered to be fundamental for both local and global coordinated brain activity 
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(Buzsáki, 2006). Moreover, phase relationships between activity in task-relevant areas 

prove critical for learning and memory, multisensory integration, selective attention, and 

working memory, among other domains (Wang, 2010). In particular, γ (30-90 Hz) and 

high-γ (> 90 Hz, or ε-band) synchronization seems critical for cortical computation 

(Buzsaki and Schomburg, 2015; Buzsaki and Wang, 2012; Fries, 2009), with temporal 

binding in the γ-range emerging as a potentially crucial marker of consciousness 

(Dehaene and Changeux, 2011; Engel and Singer, 2001). 

However, the role of γ-synchronization in consciousness and cognition is not free 

of controversies. Studies typically compare healthy awake states with pathological or 

non-pathological loss of consciousness (e.g., coma and non-REM sleep, respectively; 

Bayne et al., 2016; Hohwy, 2009; Overgaard and Overgaard, 2010), or consciously vs. 

unconsciously perceived stimuli (Dehaene and Changeux, 2011). Propofol-induced 

(Murphy et al., 2011) and seizure-related (Pockett and Holmes, 2009) loss of 

consciousness have been shown to correlate with decreases, persistence, and increases of 

low-γ connectivity (Koch et al., 2016). Also, induced γ-band responses correlate with 

consciously perceived stimuli in multiple tasks, but extant results are confounded by 

several factors, such as artifacts from miniature saccades (Fries et al., 2008; Yuval-

Greenberg et al., 2008). 

Methodological limitations also pervade the field. The most common technique to 

study γ-band oscillations in humans is electroencephalography (EEG). EEG signals in the 

γ-range can be contaminated by external noise and muscular artifacts, leading many 

researchers to adopt an upper-limit of ~30 Hz in their analyses (Cohen, 2014). 

Magnetoencephalography features similar caveats (Muthukumaraswamy, 2013), and 

hemodynamic methods, such as functional magnetic resonance imaging, lack the 

temporal resolution to tap this frequency band (Huettel et al., 2014). To date, the only 

technique enabling reliable measurements of high-frequency activity in the human brain 

is intracranial EEG (iEEG; Lachaux et al., 2003; Muthukumaraswamy, 2013). In some 
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cases of pharmacoresistant epilepsies, surgical intervention planning requires monitoring 

brain activity via implanted electrodes (Engel et al., 2005; Engel, 2005) to locate epileptic 

foci for future resection. This provides inestimable information about brain functions, as 

electrodes record direct brain activity in both epileptic and non-epileptic sites, with the 

best spatial and temporal resolution available (Jacobs and Kahana, 2010). 

 Despite the proposed prominent role of γ-synchrony in consciousness, and even 

though γ-oscillations are present during both wakefulness and sleep (Le Van Quyen et al., 

2010; Valderrama et al., 2012), only two iEEG studies have assessed synchronization of 

γ-oscillations above 40 Hz considering those two conditions. Bullock et al. (1995) found 

no differences between conditions, but they only computed connectivity among adjacent 

electrodes. Cantero et al. (2004) reported higher γ-coherence during wakefulness, but 

their analysis was restricted to the low-γ range (35-58 Hz). A major caveat in both cases 

is the use of the “coherence” measure, whose susceptibility to volume conduction and 

common reference problems calls for cautious interpretation of results (Bastos and 

Schoffelen, 2015). Moreover, until now, no human studies have investigated connectivity 

differences between wakefulness and sleep in frequency bands above 100 Hz.   

 Here, for the first time, we profit from iEEG to examine local and distributed 

high-γ connectivity during wakefulness and sleep. We assessed three patients with 

intracranial electrodes and compared phase synchronization between states via weighted 

Phase Lag Index (wPLI), a connectivity measure that circumvents volume conduction 

and common pick-up problems (Vinck et al., 2011). We found that connectivity in the 

high-γ band was higher during wakefulness and discriminated between states better than 

any other canonical frequency band. 

 

2. Materials and Methods 

2.1 Subjects. Three patients from an ongoing protocol (Canales-Johnson et al., 2015; 

Chennu et al., 2013; Hesse et al., 2016) with pharmacologically resistant epilepsy 
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participated in the study after signing informed consent. Subject 1 (S1) was a 19-year old 

right-handed female (13 years of education); Subject 2 (S2) was a 57-year-old left-

handed male (16 years of education); Subject 3 (S3) was an 18-year-old right-handed 

male (12 years of education). Subjects were undergoing intracranial monitoring for which 

they had been implanted with depth electrodes (Engel, 2005) in loci entirely determined 

by clinical criteria (see Supplementary Tables ST1 to ST6 for further details). The study 

was conducted in accordance with the Declaration of Helsinki and approved by the local 

ethics committee. 

2.2 Data acquisition. Direct recordings of local field potentials (LFPs) were obtained 

from semi-rigid, multi-lead electrodes (DIXI Medical Instruments), which contained 5 to 

15 contact leads (0.8 mm diameter, 2 mm wide, 1.5 mm apart). Simultaneous iEEG and 

video were recorded using a standard video-iEEG monitoring system (Micromed S.p.A) 

with a 512 Hz sampling rate and common reference. 

Whole-brain post-implant computerized tomography (CT; Emotion 16, Siemens) 

and structural magnetic resonance images (MRI; Eclipse 1.5T, Marconi Medical Systems 

Inc.) were obtained from each subject as part of their clinical procedure (El-Baz et al., 

2011).  

2.3 Experimental Design. Video-recordings and iEEG were visually inspected in search 

of night-sleep periods where subjects appeared behaviorally asleep (immobile, in 

recumbent position, with eyes closed; Goupil and Bekinschtein, 2012) and iEEG 

recordings were artifact-free. Fifteen to 25 minutes of recording were selected from each 

subject (S1: 20 m; S2: 15 m; S3: 25 m). For comparison purposes, recordings of the same 

duration were obtained from each subject while they were passively awake (S1: 20 m; 

S2: 15 m; S3: 25 m). As the clinical set-up precluded the possibility of scalp-EEG sleep-

scoring, we confirmed the distinction between wakefulness and sleep using the 

Dimension of Activation (DA) measure (see below), which has been validated against 

other conventional scoring methods and has been successfully used in previous iEEG 
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research (Magnin et al., 2010). All recordings were performed in a quiet room and 

environmental conditions were held constant between conditions (same room and 

apparatus, lights turned off and no interferences). 

2.4 Data processing and Statistical Analysis. Electrode location was determined by co-

registering the patient’s post-implant CT and MRI scans (Tao et al., 2009), on the 3D 

Slicer software (Fedorov et al., 2012). Further analyses were restricted to contacts that 

were located in non-dysplastic grey matter (Kabat and Krol, 2012) and proved free of 

clear epileptic activity (as identified by a neurologist specialized in epilepsy: MCG), 

namely, 51/68, 40/65, and 77/127 from S1, S2, and S3, respectively. To further assess the 

presence of artifacts and epileptic activity, we ensured that signal values did not exceed 

five times the channel mean and no consecutive samples exceeded five SDs from the 

gradient mean (Chen et al., 2013; Fell et al., 2008). Plots of electrode locations were 

created using the BrainNet Viewer toolbox (Xia et al., 2013). 

 Data was low-pass filtered at 240 Hz and notch filtered at 50, 100, 150, and 200 

Hz using EEGLAB (Delorme and Makeig, 2004) on Matlab (Mathworks Inc.). The 

ensuing signals were then segmented into 16-second epochs (Magnin et al., 2010), with 

an automatic epoch rejection threshold of 150 µV peak-to-peak amplitude. To validate 

our distinction between wake and sleep recordings, the DA was calculated for each 

channel and epoch using a bipolar reference scheme and a temporal separation between 

samples of ~16 ms, following standard parameters (Magnin et al., 2010). The DA is a 

non-linear measure, based on the dimensional complexity approach (Achermann et al., 

1994; Shen et al., 2003), which provides an index that can be used for identifying non-

REM sleep periods (and sleep onset) from EEG and iEEG data (Rey et al., 2007). This 

measure is widely used in sleep research and has also been validated against conventional 

spectral measures (Acharya et al., 2005; Fell et al., 1996; Pereda et al., 1999). We 

employed it to validate our distinction between sleep and wake data by taking the average 

across channels, low-pass filtering it (Savitzky-Golay filter, window length = 15, 
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polynomial order = 3), and using a cut-off score of 5 (see Magnin et al., 2010). We also 

tested their difference by comparing their distributions using non-parametric permutation 

Welch t-tests (Cohen, 2014; Maris and Oostenveld, 2007) with 104 permutations, and 

estimated p-values (pn) based on the proportion of suprathreshold tests as: 

pn = B +1

M +1
 

 

(1)

where B corresponds to the number of random permutations in which a statistic greater or 

equal than the observed is obtained, and M represents the total number of random 

permutations sampled. We employed this approach for estimating p-values as it provides 

appropriate control of type-I and family-wise error rates (Phipson and Smyth, 2010). 

Subsequent iEEG analyses were performed using the MNE toolbox (Gramfort et 

al., 2013; Gramfort et al., 2014) and custom scripts in Python. Data was segmented into 

8-second epochs (to allow for at least 7 cycles of the lowest estimated frequency, see 

below) and re-referenced to the average of all grey-matter contacts. Weighted Phase Lag 

Index (wPLI) was calculated for each pair of electrodes on each condition (Vinck et al., 

2011) for the three frequency bands of interest: low-γ (30-60 Hz), medium-γ (60-90 Hz), 

and high-γ (90-120 Hz). Spectral densities were estimated using the multitaper method 

provided by the MNE toolbox. The wPLI is a bivariate, phase-based functional 

connectivity measure that is computed as follows (Vinck et al., 2011): 

   

wPLI =
E{ I{X} sgn(I{ X})}

E{ I{ X} }
 

 

(2)

 

where E{.} is the expected value operator, I{X} denotes the imaginary part of the cross-

spectrum between channels, and sgn the sign function.  

WPLI was chosen as the connectivity measure because it has several advantages 

over other indexes. It measures the consistency in the phase difference between 
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channels, weighting the estimate by how far the difference is from 0º or 180º in the 

polar plane (see Vinck et al., 2011). Therefore, it is robust against volume conduction, 

which is instantaneous within iEEG measurement capabilities (0º or 180º; Cohen, 

2014). Moreover, it affords a clear neurophysiological interpretation, unlike other types 

of measures as those derived from information theory (Cohen, 2014). Also, it proves 

robust against uncorrelated noise and inter-subject variation in sample size (Vinck et al., 

2011). In addition, previous scalp EEG studies have successfully relied on it to 

distinguish between control subjects, patients in minimally conscious state and patients 

in vegetative state (Chennu et al., 2014), and between responsive and unresponsive 

subjects during propofol-induced transitions of consciousness (Chennu et al., 2016). 

 As γ-oscillations typically arise locally (Buzsaki and Wang, 2012) and co-

detection probability of γ-oscillations decays with increasing distance during slow wave 

sleep (Valderrama et al., 2012), we computed the Pearson correlation coefficient of 

wPLI values and the Euclidean distance between contacts for each frequency band to 

verify that our results were not driven by local interactions. If connectivity values 

decreased with increasing distance (negative correlation), they could be assumed to 

depend on the distance between contacts.  

We compared the connectivity results between states using two complementary 

strategies: from a network perspective and from an electrode perspective. In the former, 

we characterized the networks calculating each channel’s Degree, a graph-theory metric 

which corresponds to the number of connections of the channel after binarizing the 

connectivity matrix by a certain threshold (Rubinov and Sporns, 2010). This approach 

reduces the dimensionality of the data and provides a quantification of relevant network 

properties. In particular, the Degree distribution is a measure of the density of the 

connections in the network (Rubinov and Sporns, 2010). It was chosen because it is the 

most fundamental network measure, it has been widely used for comparing brain 

networks (Bullmore and Sporns, 2009), and it directly quantifies the property 
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concerning our hypothesis of a difference in connection density between wakefulness 

and sleep. The graph-theory analysis was performed using the NetworkX toolbox 

(Hagberg et al., 2008). As subjects had different numbers of electrodes, Degrees were 

normalized by the subject’s total number nodes. We compared the network’s degree 

distribution at 100 ascending thresholds (0 to 1 in 0.01 steps) using non-parametric 

permutation Welch t-tests with 103 permutations and correcting for multiple 

comparisons using pixel-based statistics (Cohen, 2014). Within this first strategy, we 

only performed between-conditions within-subject analyses because subjects had 

different electrode placement and it is not possible to compare networks that use 

different parcellation schemes (Honey et al., 2009; Wang et al., 2009). The non-

parametric permutation approach was preferred over parametric tests because it is the 

recommended framework for comparing graph-theory-based measures, as it does not 

rely on specific data distributions (Cohen, 2014).   

 In order to test the specificity of the effect, we repeated the aforementioned 

procedure with other frequency bands: δ (1-4 Hz), θ (4-7 Hz), low-α (7-10 Hz), high-α 

(10-13 Hz), and β (13-30 Hz). The α band was subdivided to control for the effect of 

sleep spindles, whose frequency band approximately corresponds to high-α (De 

Gennaro and Ferrara, 2003). We also tested whether connectivity differences were 

associated with differences in power by running comparisons between conditions using 

the multitaper method, non-parametrical permutation Welch t-tests with 104 

permutations, p-values (pn) based on the proportion of suprathreshold tests as described 

by Equation 1, and Holm-Bonferroni multiple comparisons correction (Cohen, 2014; 

Holm, 1979; Maris and Oostenveld, 2007; Phipson and Smyth, 2010). 

The second analysis strategy had three objectives: to test the difference between 

conditions at the group level, to compare the discrimination performance of the studied 

frequency bands, and to account for possible subtle differences in epileptic activity 

between wakefulness and sleep. Interictal epileptiform discharges have been shown to 
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vary between wakefulness and sleep (Clemens et al., 2003; Sammaritano et al., 1991) 

and epileptic activity has been show to be related to neuronal networks dynamics (Pittau 

et al., 2014; Stefan and Lopes da Silva, 2013). Consequently, even though contacts with 

clear epileptiform activity were discarded from the analysis, it was still possible that our 

results were driven by subtle differences in epileptic activity between conditions. We 

therefore used an automatic detection algorithm, the Short Line Length detector 

(Gardner et al., 2007), from the RIPPLELAB toolbox (Navarrete et al., 2016), to find 

and classify interictal spikes and ripples (Jacobs et al., 2012). Then, we conducted a 

Generalized Estimating Equations (GEE) analysis for each frequency band, which 

included Condition (wake/sleep) as dependent variable; channel mean-wPLI, channel 

spikes, and channel ripples as predictors; and subjects as independent clusters. Robust 

estimation and independent working correlation structure were used in these analyses. 

Spikes and ripples were normalized by the total length of the recording to account for 

the difference in recording durations between subjects. The GEE method was chosen 

because of the dependent nature of within-subject observations (Aarts et al., 2014; 

Sainani, 2010). Collinearity was assessed via Variance Inflation Factor (VIF) with a 

threshold of 3 (O'brien, 2007) and goodness-of-fit of the models via quasi-likelihood 

under the independence model criterion (QIC), which is an extension of the Akaike’s 

Information Criterion (AIC) for GEEs (Pan, 2001). The mean-wPLI of individual 

contacts were plotted in the MNI152 common space (Mazziotta et al., 1995), using the 

Nilearn toolbox (Abraham et al., 2014). Finally, we performed post hoc tests between 

conditions at each anatomical region, to further assess the topographical profile of the 

differences. To this end, we employed GEEs with target-regions as clusters, robust 

estimation and independent working correlation structure. The GEE method was again 

chosen because of the dependent nature of within-subject observations (Aarts et al., 

2014). Results were corrected for multiple comparisons using the Holm-Bonferroni 

method (Holm, 1979). Mapping of coordinates to anatomical regions was performed 
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automatically using the label4MRI R package, following the Automated Anatomical 

Labeling naming-convention (Tzourio-Mazoyer et al., 2002). 

All statistical analyses were performed on R software (R Core Team, 2015) and 

Python.  

 

3. Results 

The behavioral distinction of wakefulness and sleep recordings was validated by DA 

results (Figure 1). Wake data was consistently above the cut-off score of 5 and sleep 

data was consistently below it for the 3 subjects (Magnin et al., 2010). Their difference 

was significant in all cases (S1: t(154.33) = 26.03, pn < .001; S2: t(84.48) = 73.86, pn < 

.001; S3: t(180.22) = 61.66, pn < .001). 

 

Figure 1. Validation of the behavioral distinction between wakefulness and sleep data. A) 

Low-pass filtered (dark lines) Dimension of Activation (DA) scores averaged across channels (light 

lines) were consistently above the cut-off score of 5 on wake condition and consistently below it on 

sleep condition. B) Histogram of the non-parametric permutation test t-values and t-value of the 

original comparison (dotted vertical line). No permuted comparison yielded a statistic above the one 

obtained in the original comparison. C) Distribution of DA values for each condition. 
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Visual inspection of wPLI distributions (Figure 2A) and matrix representations 

(Figure 2B) suggests that the wake condition had higher connectivity in the three 

frequency bands of interest for the three subjects, except for the medium- and low-γ 

bands in S2 (see also Supplementary Figure SF1 for other frequency bands). 

Interestingly, high connectivity values in the high-γ range seem to be distributed across 

all intra- and inter-lobular electrode pairs with the exception of temporo-temporal and 

parieto-parietal pairs in S1. In addition, relatively high values do not appear to be 

circumscribed to neighboring pairs, as would be shown by clustering of high values 

along the matrices’ top-left to bottom-right diagonal. Remarkably, some pairs showed 

relatively high values during the sleep condition, but these were restricted to adjacent or 

within-lobe contacts (e.g. temporal lobe sites in S1 and occipital lobe sites in S3). 
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Figure 2. Connectivity analysis results for each subject, condition and frequency band. 

A) Violin plot of wPLI distributions. Vertical dotted lines indicate extremes and median. 

Vertical axes correspond to frequency bands and horizontal axes to wPLI values. B) Left: 

channel-by-channel matrix representation of wPLI values. Vertical and horizontal axes 

represent electrodes, ordered and color-coded by lobe. Colormap indicates wPLI values. 

Within-subject top panels indicate wake condition and bottom panels indicate sleep condition. 

Right: Electrode location by subject, color-coded by lobe. wPLI: weighted Phase Lag Index. 

 

Pearson’s correlation coefficients of wPLI values and Euclidean distance 

between contacts (Figure 3) showed that wPLI estimates were not driven by local 

interactions (x̅  r = 0.01, σ r = 0.05, min r = -0.07, max r = 0.12; across all subjects, 

conditions and frequency bands; see also Supplementary Figure SF2).  

 

Figure 3. Connectivity vs. distance correlation matrix. Pearson’s correlation coefficient between 

connectivity values and Euclidean distance for each subject, condition and frequency band. 

 

Results of the network-based analysis are summarized in Figure 4. Within the γ-

range, the high-γ band was the only one to show differences between conditions on the 

three subjects (Figure 4A). The consistently increased connectivity during wakefulness 

that we found in the high-γ band did not occur in other frequency bands, thus 

confirming the specificity of the effect (Figure 4B; see also Supplementary Figure SF1). 

Interestingly, the high-α band showed increased connectivity during sleep across the 

three subjects. 
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Figure 4. Network-based analysis. Upper panels. Normalized mean degree (lines) and standard deviation 

(shades) as a function of thresholding value. Lower panels. Welch t-value as a function of threshold. 

Shaded area represents p < .05 after correction for multiple comparisons. Color represents condition with 

higher mean. Within-subject panels correspond to frequency bands. wPLI: weighted Phase Lag Index. A) 

Results for the γ-range. B) Results for the remaining canonical frequency bands. 

In order to test if connectivity differences were associated with differences in 

power we compared it between conditions for each frequency band of interest (Figure 

5). Power was significantly higher during wakefulness than during sleep in the three 
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sub-bands of the γ-range for S1 (low: pn < .001; medium: pn < .001; high: pn < .001) and 

S2 (low: pn < .001; medium: pn < .001; high: pn < .001). Interestingly, in S3, it was 

higher during sleep in the low-γ band (pn < .001) and the difference was not significant 

in the medium and high-γ bands (medium: pn = 0.360; high: pn = 0.058).  

 

Figure 5. Power analysis. Violin plots of the power estimates for each subject and frequency band. 

Horizontal lines represent extremes and mean of the distributions. pn: p-value based on the number of 

suprathreshold permutation tests, corrected for multiple comparisons using the Holm-Bonferroni method. 

 

The electrode-based analysis showed that the model with high-γ obtained the 

best goodness-of-fit score (QIC, lower values indicate better fit) and that its only 

significant predictor was high-γ mean-wPLI (Table 1). In other words, high-γ 
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connectivity discriminated between states better than any other canonical frequency 

band and none of the epileptic activity indexes, nor their interactions with high-γ, were 

statistically significant. Distributions and logistic curve for the high-γ predictor are 

illustrated in Figure 6. VIFs showed that collinearity was not an issue for the model 

(high-γ: 1.22, ripples: 1.01, spikes: 1.23).  

 

Table 1. Generalized Estimating Equations analysis. A) Estimates and significance tests of each 

predictor and their interactions for the model with high-γ connectivity. B) Ranking of goodness-of-fit of the 

models for each frequency band (lower values indicate better fit). QIC: quasi-likelihood under the 

independence model criterion. *** p < .001 

 

 

Figure 6. Logistic curve of the high-γ predictor of the Generalized Estimating Equations model. 

Histograms represent distribution of mean wPLI values for each condition. wPLI: weighted Phase Lag 

Index. 
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The high-γ band showed the larger and more consistent effect across subjects 

and analyses. Consequently, region-based post hoc statistical analyses were restricted to 

this specific frequency band.  Both the spatial distribution of mean-wPLI values and the 

region-based analyses indicate that connectivity was lower during sleep in almost all 

sampled areas (Figures 7 to 9; see also Supplementary Figures SF3 and SF4 for the 

spatial profile of the lower frequency bands). Interestingly, during wakefulness, subjects 

showed different spatial profiles. S1 exhibited higher values in electrodes located in 

frontal areas, S2 in temporal regions, and S3 presented a more homogeneous pattern.  
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Figure 7. Electrode location and mean high-γ wPLI for each subject. Within-subject top and 

bottom panels correspond to wake and sleep conditions respectively. Color represents mean wPLI 

values and symbols denote subjects. wPLI: weighted Phase Lag Index. 
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Figure 8. Combined electrode location and mean high-γ wPLI. Top and bottom panels 

correspond to wake and sleep conditions respectively. Color represents mean wPLI values and 

symbols denote subjects. wPLI: weighted Phase Lag Index. 

 

 

 

Figure 9. High-γ wPLI by anatomical region for each subject. Circles represent mean-wPLI 

value and lines represent Inter Quartile Range (IQR). Areas are shown in descending order of 

mean wPLI in the wake condition. Squares’ colours represent corresponding brain lobes of 

anatomical regions. Asterisks denote statistical significance (corrected for multiple comparisons). 

Region names follow the Automated Anatomical Labeling naming-convention. Frontal Inf Tri: 

inferior frontal gyrus pars triangularis; Cingulum Ant: anterior cingulate gyrus; Frontal Inf Oper: 
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inferior frontal gyrus pars opercularis; Supp Motor Area: supplementary motor area; Frontal Mid: 

middle frontal gyrus; Frontal Sup Medial: superior frontal gyrus medial part; Supra-marginal: 

supramarginal gyrus; Rolandic Oper: rolandic operculum; Temporal Mid: middle temporal gyrus; 

Frontal Sup: superior frontal gyrus; Temporal Sup: superior temporal gyrus; Temporal Pole Sup: 

superior temporal pole; Temporal Inf: inferior temporal gyrus; Fusiform: fusiform gyrus; Parietal 

Inf: inferior parietal lobule; Cingulum Mid: middle cingulate gyrus; Occipital Mid: middle 

occipital gyrus; Calcarine: calcarine sulcus; Occipital Sup: superior occipital gyrus; Parietal Sup: 

superior parietal lobule; Para-hippocampal: parahippocampal gyrus; Occipital Inf: inferior 

occipital gyrus; Angular: angular gyrus; Cingulum Post: posterior cingulate gyrus; wPLI: 

weighted Phase Lag Index; n.s.: non-significant (alpha-level: 0.05); * p < .01; ** p < .001 

 

4. Discussion 

Our study was the first to test medium-γ (60-90 Hz) and high-γ (> 90 Hz) connectivity 

differences between wakefulness and sleep at both local and distant areas. Results 

showed that connectivity in the high-γ band (or ε-band) was higher in the wake state 

and consistently differentiated between conditions in all the analyses performed. 

Moreover, our results showed that these connectivity differences were not driven by 

local interactions, nor by differences in epileptiform activity between states. 

Furthermore, connectivity differences existed even when high-γ power was not 

significantly different between conditions (S3). 

  Contemporary accounts of consciousness, such as Integrated Information Theory 

(IIT; Tononi and Massimini, 2008) and Global Neuronal Workspace Theory  (GNWT; 

Dehaene and Changeux, 2005; Dehaene and Changeux, 2011), consider information 

integration across brain regions as a fundamental process. Our results are, in principle, 

in line with both of them as they show that interregional high-γ synchrony, one of the 

putative mechanisms of brain communication (Buzsaki and Schomburg, 2015), is 

higher during wakefulness than during sleep. However, different theories ascribe 

dissimilar importance to the role of specific brain regions in the emergence of 

consciousness. The main anatomical postulates of GNWT are that long-distance cortical 
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networks are fundamental for conscious processing, with crucial contributions of the 

prefrontal, parieto-temporal and cingulate cortices (Dehaene and Changeux, 2011). The 

importance given to the parietal and prefrontal cortices is also congruent with other 

theories of consciousness, as Dynamic Core and Causal Density theories (Bor and Seth, 

2012). IIT, on the other hand, does not assign any particular role to the aforementioned 

areas. Instead, it defines the physical substrate of consciousness in terms of cause-effect 

power (Tononi et al., 2016). Interestingly, our results indicate the frontal, cingulate and 

parietal cortices were among the mostly connected areas, but they also show that in one 

subject the temporal cortex was the most connected region, even though frontal and 

parietal areas were also sampled. Whichever the case may be, the small number of 

subjects in our study, combined with the partial brain coverage of intracranial 

recordings, undermines any conclusion regarding the role of specific regions. Future 

studies combining a large number of subjects will be required to delve into the matter. 

 Neural synchrony in the γ-range, by itself, has been proposed as being crucial 

for consciousness (Cavinato et al., 2015; Engel and Singer, 2001; Melloni et al., 2007; 

Varela et al., 2001). Our results showed that the high-γ band differentiated between 

states better than any other canonical frequency band and that it was the only sub-band 

of the γ-range that consistently showed differences in all analyses across all subjects. 

Interestingly, however, some pairs of adjacent or within-lobe contacts showed relatively 

high connectivity values in the γ-range during sleep, suggesting some degree of 

preserved local γ-synchrony. 

A growing body of literature indicates that LFP-measured high-γ activity 

constitutes a reliable index of multiunit activity, that is, an index of spiking activity in 

the vicinity of the electrode (Crone et al., 2001; Edwards et al., 2009; Jenison et al., 

2015; Miller et al., 2014; Ray et al., 2008; Ray and Maunsell, 2011; Steinschneider et 

al., 2008; Tang et al., 2017). Consequently, the specificity of the high-γ band observed 

our study could be attributed to synchrony differences between wakefulness and sleep at 
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the aforementioned hierarchical level of physiological activity. However, a 

comprehensive analysis of spiking activity (Rasch et al., 2008) is beyond the scope and 

methodological capability of our study, and it should therefore be pursued in future 

investigations.  

 Importantly, the difference between wakefulness and sleep is not circumscribed 

to the conscious global state but also includes differences in other domains, such as 

attention (Koch et al., 2016). Synchronization in the γ-range has been shown to play a 

role in memory (Fell et al., 2001; Sederberg et al., 2007), attention (Fries et al., 2001), 

and sensory integration (Ghazanfar et al., 2008; Maier et al., 2004), among many other 

domains (for a review see, Wang, 2010). Therefore, even though our results are in line 

with the hypothesis of the role of γ-synchrony in consciousness, other confounding 

factors cannot be ruled out. However, the relationship between consciousness and the 

mentioned domains is far from being clear (Dehaene et al., 2006; Graziano and Kastner, 

2011; Koch and Tsuchiya, 2007). The entanglement of consciousness with other brain 

processes is an intrinsic limitation of studies investigating levels of consciousness. 

Converging evidence from multiple experimental designs will be required to overcome 

this limitation and decide on the role that phase-relationships play in the emergence of 

consciousness on the brain. 

We also found increased connectivity during sleep in the high-α band. This 

result could have been caused by sleep spindles (Sakellariou et al., 2016). However, 

synchrony and propagation of sleep spindles are still a matter of debate (Andrillon et al., 

2011; Frauscher et al., 2015; Souza et al., 2016). Moreover, the role of α-

synchronization in brain dynamics is also a matter of discussion, as it has been shown to 

be associated with both suppression of communication and active information 

processing (Palva and Palva, 2007, 2011). An in depth discussion of this finding is 

beyond the scope of the present article. Future studies will be required to replicate this 

finding, test its relationship with sleep spindles and discuss its theoretical significance.  
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Brain signals in the higher range of the γ-band can only be reliably measured in 

humans via intracranial recordings; this restriction can explain the controversies found 

using other techniques that lack the spectral extension of iEEG. For example, increased 

EEG γ-synchrony during propofol-induced loss of consciousness (Murphy et al., 2011) 

could be possibly explained by confounding factors of the technique, as miniature 

saccades (Fries et al., 2008; Yuval-Greenberg et al., 2008) and muscle artifacts 

(Muthukumaraswamy, 2013; Walder et al., 2002). Furthermore, EEG and MEG signals 

are prone to distortions because of the skull and intermediate tissue between sources and 

sensors (Buzsaki et al., 2012). In our study, any substantial influence of these possible 

confounds was unlikely because we used a non-zero phase lag measure of connectivity, 

which is robust against muscular and ocular artifacts, and iEEG, which records direct 

brain activity. 

  Previous studies that compared synchrony in the γ-range between wakefulness 

and sleep used “coherence” as the connectivity measure (Bullock et al., 1995; Cantero 

et al., 2004). This approach, besides measuring the consistency of the phase difference 

between oscillations from different sources, is sensitive to volume conduction, common 

pick-up, and common references (Bastos and Schoffelen, 2015; Cohen, 2014). These 

three problems, which are instantaneous within current measurement capabilities, 

produce spurious connectivity at 0 or 180º phase differences. Even though volume 

conduction is less problematic in iEEG than in scalp EEG, it cannot be considered 

irrelevant (Herreras, 2016). Besides, when measuring iEEG γ-connectivity, an often-

neglected artifactual source of synchrony is volume-conducted head and neck muscular 

activity, which also produces spurious connectivity at 0 or 180º (Buzsaki and 

Schomburg, 2015; Kovach et al., 2011). Therefore, connectivity measures that do not 

take into account 0 and 180º phase differences provide more reliable estimates. In our 

case we used the wPLI (Vinck et al., 2011), which is weighted by the distance from 0 

and 180º and therefore overcomes the limitations of previous studies (see Equation 2). 
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Bullock et al. (1995) found no differences between wakefulness and sleep, but their 

analysis was restricted to adjacent electrodes and focused on the fluctuation of 

coherence values. They also found that results were positively correlated between 

frequency bands. Our results showed that the high-γ and high-α bands differentiated 

between conditions and that high-γ was higher during wakefulness whilst high-α was 

higher during sleep. Cantero et al. (2004) showed that within- and between-regional γ-

coherence (35-58 Hz) was higher during wakefulness. Our results showed that in two 

out of three subjects the low-γ band (30-60 Hz) differentiated between conditions, and 

the high-γ band (90-120 Hz) in all subjects. In addition, our results exhibited that high 

connectivity values were present both within and between regions. Consequently, our 

results are in line with the findings of Cantero et al. (2004) and contrast with those 

obtained by Bullock et al. (1995).  

Power in the ranges of 50-90 and 90-150 Hz are thought to be generated by 

different physiological mechanisms (Belluscio et al., 2012; Buzsaki and Wang, 2012). 

Our results showed that connectivity differences between conditions were not 

homogeneous within sub-bands of the γ-range. Consequently, future studies should 

consider discriminating this frequency bands in the search for neural correlates of global 

conscious states. 

 In sum, our results constitute the first demonstration of high-γ connectivity 

differences between wakefulness and sleep at both local and distant sites. They are in 

line with the most influential contemporary theories of consciousness, as they showed 

that interregional communication is higher during wakeful consciousness than during 

sleep, and that this effect was restricted to the γ-range. Finally, they also provide 

insights about the cerebral dynamics of the sleep-wake cycle. 

 

5. Limitations and further research 
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Our study is not without limitations. First, we could not score sleep stages as the 

experiment’s clinical set-up precluded hypnogram recordings. However, we 

discriminated between wakefulness and sleep using the robust DA measure, which has 

been validated against other conventional scoring methods and successfully used in 

previous iEEG research (Magnin et al., 2010). Future studies could use simultaneous 

iEEG-EEG-EOG-EMG to establish more precise distinctions of sleep stages and 

investigate connectivity differences among them. Second, use of the iEEG technique 

offered only limited spatial coverage of the participants’ brains. However, results 

proved consistent across subjects even though the spatial distribution of the electrodes 

varied among them. Collaborative efforts from multiple laboratories will be required to 

gather enough information in order to achieve a relatively large between-subject spatial 

coverage. Finally, present results include a caveat, as they are derived from epileptic 

patients and may not accurately represent a healthy population. To account for it we 

controlled for relevant factors. Intracranial recordings typically include both 

pathological and non-pathological brain regions (Engel et al., 2005). We addressed this 

issue by: (i) excluding channels in epileptic foci regions, (ii) using stringent inclusion 

criteria for the remaining channels (see Materials & Methods), (iii) carefully inspecting 

MRI scans to rule out structural abnormalities, and (iv) testing the difference between 

conditions including subtler epileptic activity, by incorporating automatically detected 

ripples and spikes in the analyses (GEE models). It is again a trade-off of the iEEG 

technique which counterweights its limitations by providing the best spatiotemporal 

resolution currently available in humans. For a discussion of the last two mentioned 

limitations see (Lachaux et al., 2003). 

 

6. Conclusion 

The role of γ-synchrony in consciousness and cognition constitutes a matter or ardent 

debate. Our study showed, for the first time, that wakefulness and sleep are selectively 
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differentiated by high-γ connectivity at both short and long distances. This was achieved 

via a state-of-the-art connectivity measure that overcomes limitations of previous 

works. Previous studies lacking the spectral resolution of iEEG should be interpreted 

cautiously in their claims about the role of γ-synchrony in consciousness. Our study also 

showed that results were not homogeneous across sub-bands of the γ-range and 

therefore, in line with physiologically grounded recommendations (Buzsaki and Wang, 

2012), future investigations should consider separating them. Our findings provide 

evidence in line with contemporary theories of consciousness and also contribute to 

understanding the cerebral dynamics of the sleep-wake cycle. 
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Figure Legends 

Figure 1. Validation of the behavioral distinction between wakefulness and sleep data. A) 

Low-pass filtered (dark lines) Dimension of Activation (DA) scores averaged across channels 

(light lines) were consistently above the cut-off score of 5 on wake condition and consistently 

below it on sleep condition. B) Histogram of the non-parametric permutation test t-values and t-

value of the original comparison (dotted vertical line). No permuted comparison yielded a statistic 

above the obtained in the original comparison. C) Distribution of DA values for each condition. 

 

Figure 2. Connectivity analysis results for each subject, condition and frequency band. A) 

Violin plot of wPLI distributions. Vertical dotted lines indicate extremes and median. Vertical 

axes correspond to frequency bands and horizontal axes to wPLI values. B) Left: channel-by-

channel matrix representation of wPLI values. Vertical and horizontal axes represent electrodes, 

ordered and color-coded by lobe. Colormap indicates wPLI values. Within-subject top panels 

indicate wake condition and bottom panels indicate sleep condition. Right: Electrode location by 

subject, color-coded by lobe. wPLI: weighted Phase Lag Index. 

 

Figure 3. Connectivity vs. distance correlation matrix. Pearson’s correlation coefficient between 

connectivity values and Euclidean distance for each subject, condition and frequency band. 

 

Figure 4. Network-based analysis. Upper panels. Normalized mean degree (lines) and standard deviation 

(shades) as a function of thresholding value. Lower panels. Welch t-value as a function of threshold. 

Shaded area represents p < .05 after correction for multiple comparisons. Color represents condition with 

higher mean. Within-subject panels correspond to frequency bands. wPLI: weighted Phase Lag Index. A) 

Results for the γ-range. B) Results for the remaining canonical frequency bands. 

 

Figure 5. Power analysis. Violin plots of the power estimates for each subject and frequency band. 

Horizontal lines represent extremes and mean of the distributions. pn: p-value based on the number of 

suprathreshold permutation tests, corrected for multiple comparisons using the Holm-Bonferroni method. 

 

Table 1. Generalized Estimating Equations analysis. A) Estimates and significance tests of each 

predictor and their interactions for the model with high-γ connectivity. B) Ranking of goodness-of-fit of the 
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models for each frequency band (lower values indicate better fit). QIC: quasi-likelihood under the 

independence model criterion. *** p < .001 

 

Figure 6. Logistic curve of the high-γ predictor of the Generalized Estimating Equations model. 

Histograms represent distribution of mean wPLI values for each condition. wPLI: weighted Phase Lag 

Index. 

 

Figure 7. Electrode location and mean high-γ wPLI for each subject. Within-subject top and 

bottom panels correspond to wake and sleep conditions respectively. Color represents mean wPLI 

values and symbols denote subjects. wPLI: weighted Phase Lag Index. 

 

Figure 8. Combined electrode location and mean high-γ wPLI. Top and bottom panels 

correspond to wake and sleep conditions respectively. Color represents mean wPLI values and 

symbols denote subjects. wPLI: weighted Phase Lag Index. 

 

Figure 9. High-γ wPLI by anatomical region for each subject. Circles represent mean-wPLI 

value and lines represent Inter Quartile Range (IQR). Areas are shown in descending order of 

mean wPLI in the wake condition. Squares’ colours represent corresponding brain lobes of 

anatomical regions. Asterisks denote statistical significance (corrected for multiple comparisons). 

Region names follow the Automated Anatomical Labeling naming-convention. Frontal Inf Tri: 

inferior frontal gyrus pars triangularis; Cingulum Ant: anterior cingulate gyrus; Frontal Inf Oper: 

inferior frontal gyrus pars opercularis; Supp Motor Area: supplementary motor area; Frontal Mid: 

middle frontal gyrus; Frontal Sup Medial: superior frontal gyrus medial part; Supra-marginal: 

supramarginal gyrus; Rolandic Oper: rolandic operculum; Temporal Mid: middle temporal gyrus; 

Frontal Sup: superior frontal gyrus; Temporal Sup: superior temporal gyrus; Temporal Pole Sup: 

superior temporal pole; Temporal Inf: inferior temporal gyrus; Fusiform: fusiform gyrus; Parietal 

Inf: inferior parietal lobule; Cingulum Mid: middle cingulate gyrus; Occipital Mid: middle 

occipital gyrus; Calcarine: calcarine sulcus; Occipital Sup: superior occipital gyrus; Parietal Sup: 

superior parietal lobule; Para-hippocampal: parahippocampal gyrus; Occipital Inf: inferior 

occipital gyrus; Angular: angular gyrus; Cingulum Post: posterior cingulate gyrus; wPLI: 

weighted Phase Lag Index; n.s.: non-significant (alpha-level: 0.05); * p < .01; ** p < .001 

 


