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a b s t r a c t

Here we evaluated the response to eutrophication in terms of abundance and diversity of flora and fauna
in a semi-desert macrotidal coastal system (San Antonio bay, Patagonia, Argentina, 40� 480 S) where signs
of eutrophication (high nutrient concentration, seaweed blooms, high growth rate of macroalgae) have
been reported. We compared abundances and species composition of macroalgae, small infaunal and
epifaunal invertebrates, and birds associated with tidal channels of the San Antonio Bay subject to
contrasting anthropogenic influence. Macroalgae were more abundant and diverse in the channel closer
to human activity where nutrient concentrations were also higher. In contrast to what others have
observed in eutrophic sites, small invertebrates and birds were also more abundant and diverse in the
channel with macroalgal blooms and high nutrient concentration. The large water flushing during the
tidal cycle could prevent anoxic or hypoxic events, making the environment suitable for consumers.
Thus, this could be a case in which eutrophication supports high densities of consumers by increasing
food availability, rather than negatively affecting the survival of organisms.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Eutrophication is one of the most significant consequences of
human alteration of coastal habitats (Valiela, 2006). Its broad
geographic scope, impact on resources, widespread effects, and
evident anthropogenic influence have made eutrophication a high
priority as an agent of change in coastal environments (Bricker
et al., 1999; Valiela, 2006; Smith and Schindler, 2009).

Eutrophication is typically triggered by the addition of nutrients,
mainly land-derived (Nixon, 1995; Cloern, 2001; Valiela, 2006). As
a consequence of high nutrient loads to coastal waters there is an
increase in primary production followed by changes in composition
and abundance of flora and fauna (e.g., Duarte, 1995). The initial
increased growth of macroalgae can have beneficial effects,
including short-term nutrient sequestration (Howarth et al., 1996;
Boyer et al., 2002) and supply of more and better food particles
for consumers (see Valiela, 2006). In the more advanced stages of
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eutrophication, the macroalgae canopy may have detrimental
effects (Smith and Schindler, 2009). For instance, the overgrowth of
opportunistic seaweeds usually has deleterious effects on the
previously dominant species (e.g., losses of eelgrass habitats), and
can lead to decreases in shellfish and finfish populations, increases
in frequency of harmful algal blooms, and hypoxic or anoxic events
(e.g., Duarte, 1995; Short and Burdick, 1996; Valiela et al., 1997;
Hauxwell et al., 1998). Negative effects, are not limited to the
water. Seaweed wracks accumulated along shorelines can also
negatively affect intertidal and terrestrial communities (e.g.,
Hauxwell et al., 2001; Piritz et al., 2003) by generating anoxic
conditions in the sediment as algal material decays (e.g., Valiela
et al., 1992; D’Avanzo and Kremer, 1994). Thus, macroalgal
blooms can reorganize natural communities and ecosystem func-
tion (e.g., Duarte, 1995; Valiela et al., 1997; Raffaelli et al., 1998;
Osterling and Pihl, 2001).

Stable isotopes have been broadly used to evaluate the source of
nutrients to coastal systems (e.g., McClelland et al., 1997; Cole et al.,
2004, 2005). Nitrogen in wastewater effluent is typically in the
form of NH4

þ (Valiela et al., 1997), with a d15N of 6&. As ground-
water moves through the aquifer, NH4

þ carried by it undergoes
several transformations. Some NH4

þ volatilizes, leaving the residual
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NH4
þ enriched in 15N (Aravena et al., 1993). NH4

þ may also be con-
verted to NO3

�, by the process of nitrification. Some of the NO3
-

produced in this way may then be denitrified, a process which also
discriminates against the 14N bearing molecules, leaving the
remaining NO3

� with an even more elevated d15N (Aravena et al.,
1993). The d15N of primary producers reflects N inputs from land
to the water body (McClelland et al., 1997; Martinetto et al., 2006)
and has been correlated to the percentage wastewater contribution
(Cole et al., 2005). Thus, NO3

� derived from wastewater typically
carries a high d15N, which can be traced into estuaries.

The SW Atlantic Patagonian coast, an almost pristine area
(see Orensanz et al., 2002), is also receiving increasing nutrient
loads (e.g., Teichberg et al., in press). Given the lack of agricultural
activities, nutrients inputs from fertilization are negligible in this
region, but thewastewater produced by human coastal populations
may become an important nutrient source. Wastewater treatment
plants are uncommon in this area, thus domestic wastewater enters
the groundwater via on-site septic systems and moves to the
aquifer. For this reason, events of eutrophication near human
settlements are expected (see Johannes, 1990). In addition, given
the unconsolidated sandy sediments that underlay several
Patagonian cities, percolation of wastewater and rainwater through
the sediment and into the aquifer is expected to be fast (see
LeBlanc, 1984).

The San Antonio Bay (40� 480 S, Fig. 1) is located at the northern
Argentinean Patagonia and is an important biological conservation
site. The area is a Western Hemisphere Shorebird Reserve Network
International site (WHSRN) given its importance as stopover site for
Neotropical migratory shorebirds (González et al., 1996). High
nutrient concentrations, macroalgae blooms, and high growth rates
of Ulva lactuca have been reported near the town of San Antonio
Oeste (Teichberg et al., in press). The most likely nutrient source
driving this eutrophication is the discharge of wastewater from the
coastal town of San Antonio Oeste (w25,000 inhabitants). As in
other Patagonian towns, wastewater passes through septic tanks
into the groundwater and then into the bay without further treat-
ments, likely delivering nutrients to the bay and thus changing the
ecosystem.
Fig. 1. 1. Map of San Antonio Bay showing the flooded area during high tide (light grey) and t
of San Antonio Oeste and the control channel located further from human activities.
Most eutrophic coastal sites are estuaries, bays or semi-closed
areas subject to low water exchange that retains nutrients in the
system (Livingston, 2001). If tidal exchange is high, nutrients may
be swept to the sea quickly (Howarth et al., 1996) and the residence
time of nutrients within the system might be insufficient to allow
assimilation by primary producers (Monbet, 1992; Pace et al., 1992;
Cloern, 2001). In San Antonio Bay, the tidal amplitude is up to 9 m,
generating a large water exchange twice a day. In spite of this high
tidal amplitude, DIN concentrations reported during low tide are
2-fold the concentrations found in Venice Lagoon (88.6 � 5.6 mM in
San Antonio Bay and 43.5 � 6.2 mM in Venice Lagoon, Carrer et al.,
2000; Teichberg et al., in press), which is a recognized highly
eutrophic site. In addition, the net growth of U. lactuca in this site is
2- to 5-fold higher than in other sites around the world (Teichberg
et al., in press). Thus, despite the large water exchange, nutrients
seem to remain at high concentrations long enough to promote
macroalgal blooms.

The influence that the large land-derived nutrient input has on
the composition and abundance of flora and fauna in this system is
unknown. We hypothesize that the ecosystem response to eutro-
phication under this unusual condition of high water exchange and
high nutrient concentrations might be different compared to other
eutrophic sites. Based on this, in this study we evaluated the
response to eutrophication in terms of abundance and diversity of
flora and fauna in a macrotidal coastal system in an arid, semi-
desert region. To do this, we first measured NH4

þ and NO3
�

concentrations in the water column and determined the d15N
signature in fronds ofU. lactuca, and thenwe compared abundances
and diversity of macroalgae, small infaunal and epifaunal inverte-
brates, and birds associated to tidal channels of the San Antonio Bay
subject to contrasting anthropogenic influence.

2. Materials and methods

2.1. Study area

The bay is an 80 km2 body of marine water affected by a semi-
diurnal symmetrical macrotidal regime (up to 9 m tidal amplitude)
he area under water during low tide (white). The SAO channel passes through the town
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and is characterized by an extensive intertidal (mainly sand/pebble
flats) surrounded by salt marshes (mainly Spartina alterniflora;
Isacch et al., 2006). Sampling was performed year round (2003) in
two tidal channels of San Antonio Bay: one that runs along the town
of San Antonio Oeste (hereafter SAO channel) and another that runs
parallel to the first, but is separated by a long bar breaking contact
to populated areas (hereafter control channel, Fig. 1). Given the low
average rainfall (w250 mm year�1; see Isacch et al., 2006), there is
almost no freshwater input via precipitation and as a result, the bay
is generally hypersaline (see Pascual et al., 2001). The main fresh-
water input is groundwater introduced via septic systems. This
freshwater input is nitrogen-rich and affects the SAO channel,
where high DIN concentrations and canopies of opportunistic fast-
growing seaweeds had been reported (Teichberg et al., in press).
Dense canopies of seaweeds have never been reported in the
control channel suggesting that the nutrients derived from town do
not affect this channel. Truly independent site replication is virtu-
ally impossible to find in nature, but this sampling design in the San
Antonio Bay offers an opportunity to examine the effect of
anthropogenic N inputs on receiving waters by comparing the
biological and chemical characteristics of these two well matched
sites (e.g., size, depth, water time residence). Other investigators
have used a similar sampling design, using natural, but imperfect
replicates to draw comparison (e.g., Pickett, 1989; Geertz-Hansen
et al., 1993; McClelland and Valiela, 1998; Hauxwell et al., 2003,
2006). This is a limitation imposed by the nature of the system
that we cannot solve, so we assume limitations on the inference to
other systems.

2.2. Freshwater contribution, nitrogen concentrations, and 15N
labeling of Ulva lactuca

Groundwater travels through the aquifer and drains into the bay
along a narrow band (i.e., seepage face). This water may have two
origins: (a) seawater forced into the ground by the high tide and/or
(b) freshwater coming from the groundwater (mainly from
household consumption given the low precipitation). Water from
the first source is expected to be nitrogen-poor, whereas water
from the second is expected to be freshwater and have high N load
because of its septic origin. To evaluate these possibilities samples
from the water surfacing at the intertidal from the seepage face
were taken to determine the salinity. With this aim, 10 samples of
groundwater were obtained from the high intertidal during
a complete tidal cycle at both channels at the same time. Sample
salinity was measured in situ with a refractometer. In addition, we
measured ammonium (NH4

þ) and nitrate (NO3
�) concentration at

the two channels during low tide. Ten samples of water from each
channel were filtered (Whatman GF/F) and frozen immediately for
later standard colorimetric analyses. To evaluate differences in
salinity between channels we used t-tests for each tidal level and
a one way ANOVA to evaluate differences in salinity along the tidal
cycle in each channel. Differences in NH4

þ and NO3
- concentrations

between channels were evaluated with t-tests. Here and thereafter,
when a t-test was used, a Welch correction was applied to fix for
heterogeneity of variances (Zar, 1999).

To evaluate if algae growing in different channels incorporate N
in the tissue from different sources we used stable isotopes anal-
ysis. Five samples of U. lactuca fronds were obtained from the SAO
and the control channel. The fronds were rinsed with distilled
water to remove any attached organisms or detritus, then dried in
oven (60 �C) and ground to a fine powder. All samples were
weighed and loaded into tin capsules and d15N signatures were
determined with a mass spectrometer by the University of
California-Davis Stable Isotope Facility (see Lajtha and Michener,
1994 for details). The stable isotopes ratios were expressed as:
d15N (&) ¼ [(Rsample � Rstandard)/Rstandard] � 10�3, where R is the
ratio 15N/14N. The standard was N2 in air. A t-test was used to test
the null hypothesis of no differences in the d15N signature of
U. lactuca between channels.

2.3. Diversity and abundance of macroalgae

To evaluate differences in macroalgae diversity between chan-
nels, we collected algae from 8 randomly sampled quadrates (30 cm
side) at both the SAO and the control channels during the period of
higher algal cover (October 2003). Algae was carefully removed and
transported to the laboratory. Species were identified under
microscope (to the lowest taxonomic level possible) and then the
dry weight (dried at 60 �C for 48 h) for each species was obtained.
The null hypothesis of no differences in total algal biomass between
channels was evaluated using t-test. Diversity was analyzed using
Shannon diversity index (H0; see Wilhm, 1968) and t-test was used
to evaluate the null hypothesis of no differences in species diversity
between channels.

To evaluate changes in the algal coverage throughout the year,
algal cover was visually estimated in 10 squares (1 m2 area) in each
channel bi-monthly between January and December 2003. Differ-
ences in algal cover between channels for each sampled month
were evaluated with t-tests. Changes in algal cover throughout the
year were evaluated for each channel using one way ANOVA.

2.4. Diversity and abundance of small invertebrates

To evaluate if the diversity and abundance of small infaunal and
epifaunal invertebrates was different between channels and
throughout the year, we sampled bi-monthly in each channel from
January to December 2003. On each sampling date, 10 sediment
samples (10 cm diameter and 15 cm depth) were obtained from the
low intertidal at each channel and sieved through a 500-mm mesh.
The retained organisms were preserved in 70% ethanol, identified,
and counted using a 20� binocular microscope. Diversity was
analyzed using the Shannon diversity index and t-test was used to
evaluate the null hypothesis of no differences in diversity between
channels. Differences in abundance of invertebrates between
channels for each sampled month were analyzed using a t-test, and
differences throughout the year were evaluated using one way
ANOVA for each channel.

2.5. Diversity and abundances of birds

To evaluate if the abundance and diversity of birds differed in
tidal channels subjected to contrasting anthropogenic influence,
we carried out a sampling in the SAO and the control channel. The
sampling were done bi-monthly between January and December
2003, and consisted of 11 transects (100 m long and using 8 � 40
binoculars) following a line along the tidal channels and walking at
an approximate rate of 5 min per transect (following Conner and
Dickson, 1980). Each transect included both sides of the channel
(width 15 m from each side; covering a total area of 0.003 km�2 per
transect). Numbers of individuals per species were recorded during
the 2 h around the time of low tide. For the analysis, the most
abundant species were grouped by taxonomic group and trophic
habits as: gulls (Larus dominicanus, Larus atlanticus, Larus mac-
ulipennis), oystercatchers (Haematopus palliatus), migratory shore-
birds (plovers, godwits, yellowlegs and sandpipers; see scientific
names in Table 3), and ducks (dominated by Anas specularoides). For
each bird species, density was expressed as birds per transect. The
null hypothesis of no difference between channels in species
richness and abundance of each group for each date was evaluated



Table 1
Ammonium and nitrate concentrations (mean � SE) measured in two channels of
San Antonio Bay (Argentina), and d15N signature of Ulva lactuca fronds collected in
the same channels. The SAO channel is located close to the town of San Antonio
Oeste and the control is farther from town.

NH4
þ (mM) NO3

� (mM) d15N (&)

SAO 15.2 � 14.4 70.7 � 14.1 15.4 � 1.8
Control 1.7 � 1.5 40.6 � 16.3 5.2 � 0.7
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with a t-test. Data transformation (Log10[Y þ 1]) was used when
needed to meet homocedasticity (Zar, 1999).

3. Results

3.1. Freshwater contribution, nitrogen concentrations, and 15N
labeling of Ulva lactuca

Salinity in the water from the seepage face in the control
channel was stable through the tidal cycle (F5,54 ¼ 3.689, p¼ 0.056)
and higher than in the SAO channel (Fig. 2). Salinity values in the
SAO channel decreased during the ebbing tide (F5,54 ¼ 22.626,
p < 0.001; Fig. 2).

Concentration of both NH4
þ and NO3

� were higher in the SAO
channel than in the control channel (Table 1; t ¼ 2.087, p ¼ 0.045
and t ¼ 3.120, p ¼ 0.011 for NH4

þ and NO3
� respectively). The d15N

signature of U. lactucawas enriched by 10& in fronds from the SAO
channel compared to those from the control channel (Table 1;
t ¼ 5.5, df ¼ 8, p < 0.05).

3.2. Abundance and diversity of macroalgae

A total of 13 macroalgae taxa were recorded. Eight taxa were
present only in the SAO channel, while only one species, Blidingia
minima, was found exclusively in the control channel (Table 2).
Algal biomass (SAO channel ¼ 125.333 g m�2, se ¼ 1.623; control
channel ¼ 62.515 g m�2, se ¼ 1.009; t ¼ 4.41, df ¼ 15, p < 0.01) as
well as species diversity (HSAO

0 ¼ 0.48, Hcontrol
0 ¼ 0.22; t ¼ 5.3;

df ¼ 92; p < 0.01) was higher in the SAO channel compared to the
control channel. In addition, the algal cover was higher in the SAO
than in the control channel during all sampled months except
September when there was no difference (Fig. 3). Algal cover also
changed through the year at both the control (F4,45 ¼ 18.980,
p < 0.001) and the SAO channel (F4,45 ¼ 77.687, p < 0.001). In both
channels, the algal coverage was similar in January and April and
different between all other comparisons with higher values during
September and December (Fig. 3).

3.3. Abundance and diversity of small invertebrates

Twelve main invertebrate taxa were identified (Table 3). Poly-
chaetes from the families syllidae and sipunculidae were more
abundant in the SAO channel, while all other polychaetes did not
show differences between channels (Table 3). The mud crabs
Cyrtograpsus altimanus and Cyrtograpsus angulatus, the amphipods
Corophium sp. and Mellita palmata and the snail Buccinanops
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Fig. 2. Salinity (mean � SE) of water surfacing at the seepage face throughout a tidal
cycle in the SAO and control channel of San Antonio Bay. Different letters indicate
differences in salinity in the SAO channel along the tidal cycle (Tukey test). Asterisks
indicate difference in salinity between channels (t-test; *: p < 0.050, **: p < 0.010, ***:
p < 0.001).
globosum were also more abundant in the SAO channel (Table 3),
while the snail Heleobia australiswas more abundant in the control
channel. The abundance of the mussel Brachidontes rodriguezii did
not show difference between channels, but in December it was
more abundant in the control channel (Table 3). Diversity of
invertebrates in April and September was higher in the SAO
channel (Table 4), while in all other months there were no
differences.

3.4. Diversity and abundance of birds

A total of 20 bird species were recorded (Table 5). The Neotropic
cormorant and the White-rumped Sandpiper were seen on a few
occasions exclusively in the control channel (Table 5). In contrast,11
species were observed exclusively in the SAO channel (Table 5).
Species richness peaked in April and June with higher values in the
SAO channel (Fig. 4; April: t¼ 3.50, df¼ 20, p¼ 0.02; June: t¼ 6.90,
df¼ 20, p< 0.001). Duck and gull abundance was higher in the SAO
channel than in the control channel during April and June (Fig. 5;
Ducks: April: t ¼ 2.47, df ¼ 20, p ¼ 0.002; June: t ¼ 3.51, df ¼ 20,
p ¼ 0.002; Gulls: April: t ¼ 2.20, df ¼ 11, p ¼ 0.049; June: t ¼ 4.74,
df ¼ 12, p ¼ 0.001) while no difference was observed in the
other sampled months (Fig. 5). Migratory shorebird abundance
was not different between channels (Fig. 5), while Oystercatchers
H. palliatus were more abundant during January and December in
the control channel (Fig. 5; January: t ¼ 3.22, df ¼ 20, p ¼ 0.004;
December: t ¼ 3.19, df ¼ 20, p ¼ 0.005) and during April in the SAO
channel (Fig. 5; April: t ¼ 2.57, df ¼ 20, p ¼ 0.018).

4. Discussion

Our results show evident signs of eutrophication in the SAO
channel. The changes in salinity in the water from the seepage face
in this channel indicate delivery of freshwater from groundwater.
Groundwater in this arid system is typically derived from domestic
use and is expected to carry high nitrogen loads associated with
Table 2
Biomass (g m�2, means � SE) of algal species recorded in two channels of San
Antonio Bay (Argentina), one of them close to the town of San Antonio Oeste (SAO
Channel) and the other farther from town (Control Channel). Group Blidingia-
Enteromorpha includes undistinguished species within these genera.

Algal species SAO Control

Blidingia minima 0 42.74 � 1.05
Group Blidingia e Enteromorpha 52.51 � 1.85 0
Chaetomorpha aerea 0.56 � 0.05 0
Enteromorpha spp. 46.76 � 1.89 0
Gymnogongrus sp. 3.42 � 0.15 0
Hincksia granulosa 1.91 � 0.11 0
Monostroma sp. 0.51 � 0.04 10.88 � 0.40
Polysiphonia abscissa 0.34 � 0.02 0.81 � 0.07
Polysiphonia argentinica 1.18 � 0.08 0.66 � 0.06
Polysiphonia hassleri 0.26 � 0.02 0
Punctaria sp. 0.74 � 0.04 1.21 � 0.11
Streblocadia comptoclada 0.42 � 0.04 0
Ulva lactuca 16.86 � 0.35 0
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Table 4
Shannon diversity indices for small invertebrates from two channels of San Antonio
Bay (Argentina), the first passes through the town of San Antonio Oeste (SAO) and
the second is further from human activities (control). Asterisks indicate difference in
diversity between channels (t-test, *<0.050, **<0.010).

SAO Control

January 0.68 0.63
April 0.68 0.51**
June 0.67 0.62
September 0.72 0.65*
December 0.67 0.64
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wastewater plumes. Thus, the high nutrient concentration found
near the town of San Antonio Oeste is most likely land-derived and
related to human population. The land-derived nitrogen was
assimilated by macroalgae, as was evident by the high stable
Table 3
Abundances (individuals per sample) of small invertebrates (mean (SE)) in two
channels of San Antonio Bay (Argentina), the first passes through the town of San
Antonio Oeste (SAO) and the second is further from human activities (Control).
Asterisks indicate difference between channels (t-test; *: p < 0.05, **: p < 0.01, ***:
p < 0.001). (p): Polychaeta, (c): Crustacea, (m): Mollusca.

January April June September December

Sylidae (p)
SAO 15.9 (7.6) 13.5 (5.9) 17.9 (8.5) 12.7 (16.9) 10.2 (9.6)
Control 6.9 (5.7)*** 9.4 (2.9)* 6.6 (6.2)*** 9.6 (5.0) 12.1 (4.2)

Maldanidae (p)
SAO 0.5 (0.2) 0.3 (0.1) 0.6 (0.2) 0.8 (0.2) 0.4 (0.1)
Control 0.1 (0.03) 0 0.2 (0.1) 0.2 (0.1) 0.7 (0.1)

Orbinidae (p)
SAO 5.1 (2.5) 5.2 (3.6) 4.3 (2.3) 4.2 (3.2) 4.1 (3.9)
Control 3.4 (0.9) 4.0 (2.5) 3.6 (1.9) 4.1 (1.6) 2.8 (2.3)

Lumbrinidae (p)
SAO 0.4 (0.2) 0.5 (0.2) 0.6 (0.2) 0.5 (0.1) 0.9 (0.2)
Control 0.1 (0.03) 0.1 (0.03) 0.2 (0.1) 0.2 (0.1) 0.4 (0.2)

Sipunculidae (p)
SAO 1.1 (1.0) 1.8 (0.4) 1.7 (0.4) 1.9 (0.5) 1.5 (0.4)
Control 0.3 (0.2)* 0.2 (0.1)** 0.4 (0.1)** 0.6 (0.1)** 0.8 (0.2)

Cyrtograpsus altimanus (c)
SAO 0.7 (0.1) 0.5 (0.2) 0.2 (0.1) 1.4 (0.) 2.1 (0.3)
Control 0.1 (0.03)* 0.1 (0.03) 0.2 (0.1) 0.3 (0.1)* 0.3 (0.1)***

Cyrtograpsus angulatus (c)
SAO 0.8 (0.2) 0.2 (0.1) 0.6 (0.4) 1.0 (0.2) 1.5 (0.3)
Control 0.1 (0.03)* 0.1 (0.03) 0.3 (0.1) 0.1 (0.03)** 0.1 (0.03)**

Corophium sp. (c)
SAO 8.6 (6.5) 8.5 (0.8) 8.1 (11.4) 11.2 (14.2) 15.5 (47.6)
Control 1.3 (0.2)*** 0.7 (0.2)** 1.2 (0.2)** 0.8 (0.1)*** 1.2 (0.3)**

Mellita palmata (c)
SAO 1.1 (0.2) 1.1 (0.8) 1.0 (0.2) 1.1 (0.3) 1.4 (0.5)
Control 0.4 (0.1)* 0.1 (0.03) 0.2 (0.1)* 0.6 (0.2) 0.5 (0.2)

Heleobia australis (m)
SAO 1.4 (0.2) 1.2 (0.1) 0.6 (0.2) 1.2 (0.2) 0.4 (0.2)
Control 1.1 (0.2) 0.7 (0.2) 2.3 (1.7)* 4.3 (2.1)** 4.2 (1.9)***

Brachidontes rodriguezii (m)
SAO 0.5 (0.4) 2.2 (1.2) 1.7 (1.3) 1.1 (0.5) 0.2 (0.1)
Control 0.7 (0.4) 1.8 (1.4) 1.7 (1.3) 0.8 (0.3) 1.0 (0.3)*

Buccinanops globosum (m)
SAO 1.9 (1.5) 2.1 (1.8) 2.9 (2.1) 1.4 (0.8) 0.8 (0.7)
Control 1.7 (1.0) 1.7 (0.7) 0.6 (0.1)* 1.5 (0.7) 1.0 (0.5)
isotopic signature of U. lactuca fronds. The abundance and diversity
of macroalgae were higher in the channel with higher nutrient
concentration, dominated by opportunistic green algae species (i.e.,
Enteromorpha sp., U. lactuca). In contrast to what others have
observed, higher abundance of small infaunal and epifaunal
invertebrates was associatedwith high nutrient concentrations and
large macroalgal canopies, as well as higher abundance and
diversity of birds.

Nutrient concentrations in the SAO channel were among the
higher values in a record of more than one hundred estuaries in the
US (Holmes, 2008) and were higher than the concentrations found
in other eutrophic coastal areas such as Venice lagoon in Italy,
Mondego River in Portugal, and Urias estuary in Mexico (Teichberg
et al., in press). Nitrogen in wastewater effluent is typically in the
form of NH4

þ, but DIN in the SAO channel wasmostly NO3
�. Although

NH4
þ may be the physiologically preferred form of N (Thomas and

Harrison, 1987), macroalgal blooms have been observed in estu-
aries that received nitrate-rich wastewater, and macroalgae in
enriched estuaries often bear the d15N of NO3

� entering the estuary
(McClelland et al., 1997; McClelland and Valiela, 1998; Cole et al.,
2006). Our results show that in this system there is a high avail-
ability of N in terms of NO3

�. This NO3
� can be used by macroalgae

under low supply of NH4
þ and supports blooms. The high d15N

signature of macroalgae fronds supports the idea that macroalgae
are using land-derived NO3

� as an N source.
Table 5
Bird species (common and scientific names) observed in two channels of San
Antonio Bay (Argentina), the first passes through the town of San Antonio Oeste
(SAO) and the second is further from human activities (Control). þ: presence, �:
absence.

SAO Control

Ducks
Speckled teal-Anas flavirostris þ e

Crested duck-Anas specularioides þ þ
Oystercatcher
American oystercatcher-Haematopus palliatus palliatus þ þ
Migratory shorebirds
Two-banded plover-Charadrius falklandicus þ þ
Hudsonian godwit-Limosa haemastica þ e

Greater yellowlegs-Tringa melanoleuca þ þ
Lesser yellowlegs-Tringa flavipes þ e

White-rumped sandpiper-Calidris fuscicollis e þ
Gulls
Olrog’s gull-Larus atlanticus þ e

Kelp gull-Larus dominicanus þ þ
Brown-hooded gull-Larus maculipennis þ þ
Trudeau’s tern-Sterna trudeaui þ e

Others
Pale-faced sheathbill-Chionis alba þ e

Chilean skua-Catharacta chilensis þ e

Chimango caracara-Milvago chimango þ e

Great grebe-Podiceps major þ þ
Imperial shag-Phalacrocorax atriceps þ e

Neotropic cormorant-Phalacrocorax olivaceus e þ
Great white egret-Egretta alba þ e

Chilean flamingo-Phoenicopterus chilensis þ e
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Fig. 4. Bird species richness in the SAO and the control channel of San Antonio Bay
throughout the year. Asterisks indicate difference in bird abundance between channels
(t-test; *: p < 0.050, **: p < 0.010, ***: p < 0.001).
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Macroalgal respiration consumes oxygen at night driving
hypoxic/anoxic events. During the day, this can be reversed by
production of oxygen during photosynthesis. Several cloudy days,
may decrease photosynthesis resulting in greater consumption of
oxygen than production, and turn the system anoxic (D’Avanzo and
Kremer, 1994). These events of hypoxia and anoxia affect the
survival of many organisms such as fishes, shellfishes, and other
consumers, including macroalgal grazers (D’Avanzo and Kremer,
1994; Fox et al., 2009). Thus, highly eutrophic sites are character-
ized by high nutrient loads, dominance of fast-growing seaweeds,
and consequently lower abundance and diversity of organisms. It
seems that in San Antonio in spite of high nutrient availability, high
macroalgal biomass and the high growth rate of U. lactuca
(Teichberg et al., in press), the system remains as in initial state of
eutrophication where there is abundant high quality food for
herbivores, but the system does not shift towards the anoxia typical
of advanced eutrophication. This is also evidenced by the higher
density of invertebrates found in the SAO channel. Dissolved
oxygen values recorded in the SAO channel (2 years survey,
Martinetto unpublished data) have never been low enough to turn
the system anoxic (considering 4.6 mg O2 l�1 as the limit to
maintain most taxa (Vaquer-Sunyer and Duarte, 2008)). One
possible explanation is that pronounced tidal flushing provides
a continuous input of oxygen-rich water that limits anoxic or
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Fig. 5. Bird abundances grouped by migratory shorebirds, oystercatchers, ducks, and gulls
indicate difference in bird abundances between channels (t-test; *: p < 0.050, **: p < 0.010
hypoxic events. Thus, this could be a case in which eutrophication
supports high densities of herbivores by increasing food availability
(Nixon and Buckley, 2002), rather than negatively affecting the
survival of organisms.

Negative effects of macroalgae on habitat use by shorebirds and
seabirds have also been reported. For instance, macroalgae can
cover the foraging area and affect sediment penetrability (see
Bryant, 1979; Quammen, 1984; Mouritsen and Jensen, 1992). The
SW Atlantic intertidals are important stopover sites for migratory
shorebirds that breed in the northern hemisphere and spend their
winter in the southern hemisphere (Morrison and Ross, 1989; Botto
et al., 1998). In particular, San Antonio Bay, whichwas designated as
a Western Hemisphere Shorebird Reserve Network International
Site (WHSRN; González et al., 1996), is an important stopover site
for Neartic migratory shorebirds. Thus, alteration of these habitats
may have strong effect on migratory shorebirds and other endan-
gered seabirds such as L. atlanticus (Birdlife, 2004). However, bird
species richness and abundancewas higher in the areas with higher
algae biomass. This pattern may be due to higher densities of
epibenthic organisms that birds use for food (see Soulsby et al.,
1982; Raffaelli et al., 1998; Cabral et al., 1999; Raffaelli, 1999;
Lopes et al., 2000).

In spite of significant tidal flushing, nutrients seem to remain in
the system long enough to be assimilated by macroalgae and to
support blooms. The system also allows a high abundance of
consumers including herbivores. The implication of these results is
that, in contrast to other eutrophic coastal areas that are clearly
controlled by nutrients from the bottom-up, top-down forces could
be also strong in this system. Indeed, herbivores in the SAO channel
reduce the growth rate of U. lactuca by 65% (Martinetto unpub-
lished data). This reduction is quite high compared to other
eutrophic systems (e.g., 29.3% in Maasholm Bay, Baltic Sea (Lotze
and Worm, 2000), negligible in the eutrophic inner part of the
Roskilde Fjord estuary in Denmark (Geertz-Hansen et al., 1993) and
in Childs River, Waquoit Bay, USA (Morgan et al., 2003)). Thus, high
land-derived nutrients in this system support macroalgal blooms as
is typical in eutrophic systems. However, the process of eutrophi-
cation seems to remain in an initial state, resulting in beneficial
effects, such as sequestering of nutrients by macroalgae and
furnishing better food particles, but not reducing abundances of
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consumers due hypoxic or anoxic events. In consequence, the
competing controls by bottom-up and top-down forces appear to
be in balance in San Antonio Bay.
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