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Abstract Guyed masts are examples of structures
extensively used in civil engineering. During the ser-
vice life of the structure, the guys tension values can
vary due to various circumstances. The consequences
can range from operational difficulties to failure of the
structure or some of its components. Thus, a study of
the sensitivity of the dynamic response of a guyed mast
to the initial pretension of the guys becomes relevant.
A three-dimensional guyed mast is herein represented
by a beam column and one level of three nonlinear
inclined cables, with a prescribed dynamic lateral load
acting on the mast. The second-order effect of the axial
load due to the cables pretension on the mast is also
considered. The load is designed to avoid resonance
effects and meet the maximum displacement limits
within the Euler–Bernoulli theory used in the beam-
columnmodel. The guys behavior is governed by cable
nonlinear equations that account for the extensibility
and the initial deformed configuration due to gravity.
An ad hoc algorithm was developed by the authors as
a tool to analyze 3D guyed masts with an arbitrary
number of guys and levels of guys. The partial differ-
ential equation system is discretized using finite ele-
ments and solved in the time domain throughNewmark
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and Newton–Raphson algorithms. A natural vibrations
study shows that a single eigenvalue could be associ-
ated to local cable or mast modes or global cable–mast
modes, depending on the initial pretension. The dis-
placements of the mast at two strategic points exhibit
a rich range of dynamic responses, showing different
bifurcation patterns, which can turn from periodic to
nonperiodic motions within small ranges of variation
of the initial pretension.

Keywords Guyed mast · Nonlinearity · Dynamic
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1 Introduction

Guyed masts are a structural typology extensively
employed to support devices such as antennas for radio,
TV and other types of telecommunication ancillaries
(Fig. 1a). Its low cost offers clear advantages in the
open country where there are no restrictions on the
position of the cable anchors. However, nowadays it
is commonly found in urban areas. Despite the large
potential of adverse impact (in particular, bad quality
of the signal transmission), the dynamic response is not
studied in detail with exception of special cases [1–
5]. On the other hand, the dynamic behavior of taut
cables is widely reported in the literature (i.e., [6–8]).
Other authors’works show through reduced ordermod-
els (ROM), that guyed structures have special sensitiv-
ity to the type and amplitude of the excitation [9–11],
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even avoiding the resonance effects. After the deriva-
tion of the equations ofmotion (EOM)of a cable-stayed
beam, the in-plane and out-of-plane eigenvalue prob-
lems are solved by [12]. Also, nonlinear modes are
studied along with the contribution of the coupling
term. In recent works by the authors [13,14], the non-
linear dynamic response of a plane guyed structure
is analyzed using a reduced order model considering
uncertainties in structural parameters and loads. Non-
linear dynamics and bifurcation analysis are frequently
conducted by means of ROM due to the computational
cost and available tools.

Finite element static analysis of guyed masts is per-
formed in [15]. The optimization of guyed structures
using finite element dynamic analysis and stochastic
loads is performed in [16].

In the present study and using the classical extended
Hamilton’s principle, the EOM that govern the vibra-
tions of the system are obtained. Afterward, the non-
linear model of the cable follows the approach reported
in [17]. Then, and after the statement of the weak
form, the governing system is discretized using finite
elements. The finite element method (FEM) approxi-
mation to the complete model in a dynamic nonlinear
analysis is computationally expensive. In order to alle-
viate this cost, an ad hoc, nonlinear, optimized code for
guyed structures was developed by the authors within a
FEM environment. With this tool, sensitivity analysis
is possible in reasonable times. The results here pre-
sented include eigenvalue and modal shape studies, in
which, among other features, the veering phenomena
is observed. Afterward, an uniformly distributed har-
monic load is applied on themast. The system response
(displacements of the column) exhibits a variety of dif-
ferent dynamic behaviors which are strongly sensitive
to the value of initial tension of the guys. The displace-
ments feature bifurcations at different values of the guy
tension. Both bifurcation and phase plots help to visu-
alize these phenomena.

2 Energy formulation of columns and taut cables

The following assumptions are made: (a) both the
cable and the beam column are considered as homo-
geneous one-dimensional elastic continua obeying a
linear stress–strain relationship; (b) the initial equilib-
rium configuration for the inclined cable is represented
by a quadratic parabola under the assumptions of small

sag to length ratio; (c) axial extensions of the cable
are described by the Lagrangian elongation of the cen-
terline; (d) the flexural, torsional and shear stiffnesses
of the cables are neglected; (e) the shear strain of the
beam column is assumed negligible; (f) the second-
order effect due to the axial load (assumed constant)
is accounted for in the beam-column equation and (g)
the nonlinearity of the problem arises from the cable
formulation. Under these assumptions and using the
classical extended Hamilton’s principle, the energies
governing the dynamic motions of columns and cables
are obtained.

For the column

δK =
∫ ti+1

ti

∫ l

0
m(v̇δv̇ + u̇δu̇ + ẇδẇ)dx dt (1)

δU =
∫ ti+1

ti

∫ l

0

[
E Izv

′′δv′′ + E Iyw
′′δw′′ + E Au′δu′

+ GIxθ
′δθ ′ + Nv′δv′ + Nw′δw′] dx dt, (2)

δV =
∫ ti+1

ti

∫ l

0

[
qyδv + qzδw + qx δu + qTδθ

]
dx

+Mz0δv
′
0 − Mzl δv

′
l + My0δw

′
0

−Myl δw
′
l − Qy0δv0 + Qyl δvl − Qz0δv0

+Qzl δvl + P0δuo − P1δu1
+T0δθo − T1δθ1 dxdt, (3)

By means of the extended Hamilton principle, the
energy formulation governing the dynamic motions of
columns is obtained by substracting potential energies
Eqs. 2 and 3 to the kinetic energy Eq. 1.

δL = δK − (δU + δV ) = 0 (4)

For the cables

δK =
∫ ti+1

ti

∫ l

0
m(u̇δu̇ + v̇δv̇ + ẇδẇ)dx dt, (5)

δU =
∫ ti+1

ti

∫ l

0
[E Aεδε + Hδε] dx dt, (6)

δV =
∫ ti+1

ti

∫ l

0

[
qyδv + qzδw + qxδu

]
dx

+Qy0δv0 + Qyl δvl − Qz0δv0

+Qzl δvl + P0δuo − P1δu1 dx dt, (7)

with:

δε = δu′ + Y ′δv′ + v′δv′ + w′δw′. (8)
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Fig. 1 Guyed mast. a
Typical guyed tower for
mobile signal transmission;
b model under study

Then, by introducing the Eqs. 5, 6 and 7 in Eq. 4, the
energy formulation governing the motion of taut cables
can be obtained.

K ,U and V are the kinetic energy, the (elastic defor-
mation) potential energy, and the work of the exter-
nal loads, respectively; δ is the operator indicating
the variation of a functional or function; ˙(∗) = d(∗)

dt ;

(∗)′ = d(∗)
dx , u, v and w are the displacements in the

axial (x) and transverse directions (y and z), respec-
tively. θ is the gyration about the axial axis. E is
the Young modulus, G is the shear modulus, I is the
second-order moment of the cross section area respect
to the axis indicated in the subindex, A is the cross
section area, m is the mass per unit length. ε is the
uniaxial Green–Lagrange elongation of the cable. H
is the initial tension of the cable (in the direction of
the sag). q are distributed loads in the direction corre-
sponding to the subindex (qT is a torsional distributed
moment); Q,M , T and P are the transversal forces, and
bending moments, (in the direction of the subindex)
and torsional moments and axial forces, respectively,
at the extremes (x = 0 and x = l) of the studied
section. Y is the initial deformed configuration of the
cable.

2.1 Weak formulation and finite element
discretization

A general form of the weak formulation writes as

M(v̈, φ)+C(v̇, φ) + K (v, φ)+BC(v, φ) = F(v, φ),

(9)

where M,C, F, K are the mass, damping, external
force and stiffness operators, respectively. BC is the
boundary condition operator. φ denote the admissible
functions and v = {u, v, w, θ} for the column or v =
{u, v, w} for the cables, are solutions of the equations.

The operators for the column are:

M(φ, v̈) =
∫ l

0
φm

(
ü + v̈ + ẅ

)
dx, (10a)

C(φ, v̇) =
∫ l

0
φc

(
u̇ + v̇ + ẇ

)
dx, (10b)

F(φ, v) =
∫ l

0
φ
(
qy + qz + qx + qT

)
dx, (10c)

K(φ, v) =
∫ l

0

(
E Izv

′′φ′′ + E Iyw
′′φ′′ + E Au′φ′

+GIxθ
′φ′ − PHv′φ′ − PHw′φ′)dx,

(10d)
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BC = E Izv
′′′φ

∣∣l
0 + E Iyw

′′′φ
∣∣l
0

−E Izv
′′φ′∣∣l

0 − E Iyw
′′φ′∣∣l

0

+PHv′φ
∣∣l
0 + PHw′φ

∣∣l
0

+E Au′φ
∣∣l
0 + GIxθ

′φ
∣∣l
0 (10e)

The operators for the cables are:

M(φ, v̈) =
∫ l

0
φm

(
ü + v̈ + ẅ

)
dx, (11a)

C(φ, v̇) =
∫ l

0
φc

(
u̇ + v̇ + ẇ

)
dx, (11b)

F(φ, v) =
∫ l

0
φ
(
qx + qy + qz

)
dx, (11c)

K(φ, v) =
∫ l

0

[
φ′Hv′ + φ′Hw′

+ φ′E A(Y ′ + v′)
(
u′ + Y ′v′ + v′2

2
+ w′2

2

)

+φ′E A

(
u′ + Y ′v′ + v′2

2
+ w′2

2

)]
dx, (11d)

BC = Hv′φ
∣∣l
0 + Hw′φ

∣∣l
0 + E A(Y ′ + v′)(

u′ + Y ′v′ + v′2

2
+ w′2

2

)
φ
∣∣l
0

+E A

(
u′ + Y ′v′ + v′2

2
+ w′2

2

)
φ
∣∣l
0 (11e)

After stating the weak formulation, the system is
discretized by means of an ad hoc nonlinear finite ele-
ment (NLFEM) formulation. The column is modeled
using two nodes, 6-DOF (transverse and axial displace-
ments and slope at each node) beam element (Her-
mite interpolation functions for the transverse displace-
ments and their derivatives and linear interpolation
functions for the axial displacements and the torsional
rotations) and the cable using a three nodes, 6-DOF
(axial and transverse displacements at each node) cable
element (quadratic interpolation functions). The non-
linear dynamic response is obtained using the Newton–
Raphson method for the iterations and the Newmark
method for the time integration. As an initialization
and before the dynamic run, the pretension of the guys
is applied through a deformation of the cables (step 1);
then, the self-weight of the guys is activated (step 2).
Figure 2a shows an schemeof the guyedmast geometry.
Steps 1 and 2 are depicted in Fig. 2b, c. The position
of the anchors and the initial pretension are checked

(step 3). If the error is less than 0.5%, the program uses
this deformed/stressed state as the initial state of the
dynamic analysis. Otherwise, the initial length of the
cable is modified (step 4) and steps 1–4 are repeated
until the error meets the prescribed tolerance.

To improve the runtime, the initial configurations
as well as rotation, mass and linear stiffness matrices
were first solved and preallocated. Thus, the solver only
needs to recalculate the linearized stiffness matrix of
the cable elements and the residual vectors at each iter-
ation. Also, a parallelization of the algorithm is imple-
mented.

2.2 Numerical illustration

The studied problem consists in a 20m height guyed
mast, as depicted in Fig. 2a, with one level of three
cables at the top. The anchors of the cables are sepa-
rated 10m from the mast and 120◦ of each other. The
mast is fixed at the base and is modeled using 5 beam
elements with consideration of the second-order effect.
The cables are pinned at the anchor point and each
cable is discretized with 5 three-node nonlinear cable
elements. The dynamic load (designed to obtain max-
imum column displacements within the limits of the
Bernoulli beam theory) is applied on the mast and con-
sists in a uniformly distributed load of 400N, with a
time variation given by f (t) = 0.5 cos(3π t)+1.1. The
assumed values of the constants are: E = 209MPa,
Ix = Iy = 3 × 10−5 m4, Iz = 6 × 10−5 m4, Ab =
1.5 × 10−3 m2, mb = 11.77kg/m, Ac = 7.85 × 10−5

m2, mc = 0.62kg/m and H = 1000–13,500N.

3 Results

3.1 Natural frequency analysis

The stiffness matrix of the elements is computed using
the initial deformed shape. The reduction of the stiff-
ness of the column due to the tension components of
the guys is also considered. In Fig. 3, the evolution
of some of the natural frequencies with the tension is
depicted. The excluded curves represent small varia-
tions of the ones depicted and are avoided in order
to make the plot clearer. The nonlinear evolution of
each eigenvalue with H is apparent, and it is a con-
sequence of the nonlinear formulation of the cables.
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Fig. 2 Geometry of the studied guyed mast and first two steps to get the initial deformed/stressed configuration for the
dynamic/uncertainty studies. a Guyed mast geometry. b Step 1: cables pretension. c Step 2: cables self-weight

Fig. 3 Eigenvalues
evolution with the initial
tension
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In some cases, the curves become parallel and close,
though no crossings are observed. At some values of
the initial tension, rapid changes (with respect to the
previous rate) in the derivative of the curves occur. In
these zones, the veering phenomena is observed and
the mode shape associated to a given eigenvalue starts
to change gradually, in general, from a local (cable or
column) shape to a global cable–column shape. Then,
when the changes in the derivative slow down, the
modal shape becomes local again. An example of this
process is illustrated in Fig. 4: the evolution of two
eigenvalues with the cable initial tension where the
veering phenomena is observed, is shown at the top
plot; the local and global modal shapes associated with
certain ranges of H are depicted with different line
patterns. The distinction between a local and a global

modal shape is performed using the so-called localiza-
tion factor [7]:

Λi, j = (R jφi )
TM(R jφi )

φT
i Mφi

; Λi, j ∈ [0, 1] (12)

whereφi is the i th eigenvector andM is themassmatrix
of the model while R j is a diagonal matrix of ones and
zeroes that allows a selection of the degrees of free-
dom along the cables. The Λi, j factor expresses the
localization level of the i th eigenvector in the j th cable
domain. Clearly, Λi, j = 0 corresponds to a local cable
modal shape and Λi, j = 1 to a local column modal
shape. When 0 < Λi, j < 1, a hybrid cable–column
modal shape is present. In Fig. 4 (bottom), the different
modal shapes associated with the corresponding eigen-
value and range of H are depicted. Here, a smooth but

123



J. S. Ballaben, M. B. Rosales

Fig. 4 Hybridization of
modal shapes and veering of
eigenvalues: evolution with
the initial tension and
veering of eigenvalues (top)
and modal shapes
associated with the
eigenvalues (bottom)
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Fig. 5 Peaks of FFT of top
displacements: evolution
with the cable initial tension

1500 2000 2500 3000 3500 4000 4500
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

F
re

qu
en

cy
 [

H
z]

Cable Initial Tension [N]

0

1

2

3

4

5
x 10

−3

rapid transition between a local (i.e., cable or column)
mode to other local shape (i.e., column or cable, respec-
tively) corresponds to the hybridization of the mode
shapes. Also, the hybridization regions correspond to
the veering zones, where an exchange of local modal
shapes occurs between the eigenvalues (as can be seen
in Fig. 4 top for H ≈ 9500N). The hybrid shapes are
rare (are apparent in small ranges of H ) probably due
to the difference in the stiffness between the cables and
the column.

Additionally, a decrease in the frequency is observed
in particular ranges of H (i.e., mode 1, H = 11,000:
13,500N or mode 7, H = 3000:9000N), for increas-

ingly higher values of H . This effect always happens
in local column modes and it is a consequence of the
second-order effect, which leads to a reduction in the
column stiffness, proportional to the initial tension of
the guys. If the second-order effect is neglected, this
particularity is lost.

3.2 Guyed mast under dynamic load

Regarding the behavior of the structure under dynamic
loading, the displacements at the top of the mast in
the load direction are herein presented. A Fast Fourier
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Fig. 6 Bifurcation diagram
of the Poincare map
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Transform (FFT) study (Fig. 5) shows that the main
frequency of vibration is 1.5Hz and matches the load
frequency. Other less important components can be
observable depending on the cable initial tension. The
first (3Hz) and second (4.5Hz) superharmonic fre-
quencies are present in the most of the cases with
H < 4000N. Also, the range of H < 2800N exhibits,
in general, a myriad of peaks of small importance,
which may indicate a nonperiodic or chaotic behavior.

The displacements exhibit a highly sensitive depen-
dence on the value of cable initial tension, affecting
both the amplitude and the dynamic response. In Fig. 6,
a bifurcation plot of the Poincaré map is depicted (the
sampling time corresponds to the load frequency). The
dots are colored from light gray to black, so the dark-
est are the latest dots sampled. Since this is a numeri-
cal study with a finite time span, by this means, some
attractor trends can be easily identified, even when the
time span studied may not be enough to fully stabilize
the dynamics. The zones delimited by the vertical lines,
indicated with lower-case letters a to i in Fig. 6, seem
to present a common attractor, except for the zone e
to f. The lines c to i also point out the values of ini-
tial pretension that lead to abrupt bifurcations in the
dynamic behavior. In the Figs. 8, 9 and 10, the char-
acteristic zones of the bifurcation diagram are isolated
and the attractors are depicted with the help of partial
state space plots (force vs displacement and force vs
velocity).

The periodicity ratio (PR) [18,19] is also computed
and illustrated in Fig. 7. This parameter, which is calcu-
lated starting from the Poincaré map, allows to classify
the dynamic of a signal from periodic (PR = 1) to non-

periodic and potentially chaotic (PR = 0) and all the
intermediate cases.

The range of values where the nonlinearity of
the guys becomes more relevant (H ∈ [1450:3300])
includes bothpotentially chaotic andperiodic responses.
The region of Fig. 6 with a disperse set of points with
no clear trend (e.g., H = 2000N) can be an indicator
of aperiodic or chaotic motion (within the studied time
span). The behaviors observed for each value of H in
Fig. 6 can be classified—or confirmed—with the aid
of Fig. 7. Also, the point to point variability observed
of Fig. 7 gives further insights of the high sensitiv-
ity of the structure to the values of initial tension H .
There are four characteristic zones in the periodicity
ratio diagram of Fig. 7: (1) H ∈ [1200:1450], where
0.2 < PR < 0.95. In this zone, the cables are slack
and the system works as a fixed-free beam. Within this
range of H , the cables offer no support to the mast and
just add nonlinear noise to the dynamic response. (2)
H ∈ [1450:2726], where 0 < PR < 0.2. The non-
linear influence of the cables becomes apparent and
the dynamic behavior of the structural system is com-
plex and frequently aperiodic. (3)H ∈ [2726:3330],
where 0.2 < PR < 0.95. This zone is a transition zone:
the system response moves to more periodic solutions
through the increase of H , while the nonlinearity tends
to decrease (4)H ∈ [3330:5000], where 0.8 < PR < 1.
In this zone, the dynamic response has a clear periodic
attractor (as can be seen in Fig. 6): the nonlinear effect
of the cables is rapidly lost due to the high initial ten-
sion.

Next, the bifurcation diagram is discussed in detail.
In Fig. 8, the zoneswithin lines a to b and b to d of Fig. 6
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Fig. 7 Periodicity ratio of
top displacements evolution
with the cable initial tension

Fig. 8 Top: details of the
bifurcation diagram (Fig 6),
zones within lines a to b and
b to d, respectively. Small
bottom figures: partial space
state plots (force vs
displacement and force vs
velocity) depicting the
attractors observed within
the zones limited by the
lines
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are enlarged and space state plotswhich depict the char-
acteristic attractor within each zone are included. For
the loosest cases (H < b) the system tends (approxi-
mately) to a plane ellipse in the space state, but the PR
indicates that just a handful of cases could be cataloged

as periodic, since 0.2 < PR < 0.95. The observation
of Fig. 8 (top left) suggests a periodic attractor, but a
longest time span would be necessary to soundly sup-
port this statement. For the loosest cases, it seems that
the main vibration behavior is due to the interaction
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Fig. 9 Top: details of the
bifurcation diagram (Fig 6),
zones within lines d to f.
Small bottom figures:
partial space state plots
(force vs displacement and
force vs velocity) depicting
the attractors observed
within the zones limited by
the lines
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of the column load and the presence of the cables just
adds a nonlinear noise to the displacements. In the zone
where b < H < c, the nonlinear behavior of the cables
becomes more apparent. This is observed in the space
state as an increasingly more complex (and deformed)
attractor, no longer contained in a plane (H = 2242N),
together with values of PR < 0.2. When H reaches the
value of 2288N (line c), there is an abrupt bifurcation of
period 2 of the previous—mostly aperiodic—attractor.
This affirmation is supported by the observation of the
FFT (Fig. 5), where the peak of the of 3Hz superhar-
monic equals the energy of the 1.5Hz peak (frequency
of the load) in the zone c < H < d. Also, the rich
frequency content together with the low PR values con-
firm the aperiodic characteristics of the dynamics. This
attractor (for c < H < d) comes up frequently with
slight variations, as it can be seen in the following anal-
ysis, and will be named A0. For d < H < e, the attrac-
tor of the zone b < H < c is recovered.

In Fig. 9, the zones within lines e to f of Fig. 6 are
enlarged and space state plots which depicts the charac-
teristic attractor within each zone are included. When

H attains the line “e” (2427N), a bifurcation similar to
the one observed in the line “c”, is observed. The cor-
responding attractor in the zone e < H < e.1 (i.e., for
H = 2445N) is also analogous to A0. In general, when
discontinuities are observedwithin a given behavior (or
zone) in the bifurcation diagram, they correspond with
the emergence of an akin variant of A0. When H is
close to e.1, the periodicity ratio starts to show higher
values, and when H reaches e.1 (e.1 < H < e.2)
PR > 0.8, which indicates a periodic behavior. The
space state plots show a complex period-5 attractor
(H = 2607N), that shares various features in the space
statewith the previous aperiodic one. The periodicwin-
dow extends up to H = e.2, where a variant of A0 is
obtained (see H = 2648N) for e.2 < H < e.3. For
e.3 < H < f , the attractor is similar to the one in the
zone b < H < c (see H = 2673N), and presents some
small windows where it is flatter and thinner and much
more periodic (see H = 2674N) in terms of the PR
value.

In Fig. 10, the zones within lines f to h and h to
i of Fig. 6 are zoomed and space state plots which

123



J. S. Ballaben, M. B. Rosales

Fig. 10 Top: details of the
bifurcation diagram (Fig 6),
zones within lines f to h and
h to i, respectively. Small
bottom figures: partial space
state plots (force vs
displacement and force vs
velocity) depicting the
attractors observed within
the zones limited by the
lines
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depict the characteristic attractors within each zone are
included, as before. The whole zone starting from H =
f to 5000N shows a periodic behavior (PR > 0.85 in
most cases). Thewindows ofmostly aperiodic behavior
(PR < 0.2) that can be found, correspond to the vari-
ant of attractor A0 depicted for H = 2806N in Fig. 10.
The dynamic observed within the zone f < H < g
is depicted for H = 2768N: it is a period-2 attractor
with a flat profile in the space state. When H attains the
value corresponding to line g, another abrupt bifurca-
tion occurs, again augmenting the displacements and
velocities, but the attractor is periodic, with period-
1, and it is active for g < H < h. This attractor
changes without transition for H = h, to the period-
2 attractor depicted for H = 3207N. Within the zone
h < H < i , there is a bifurcation from period-2 to
period-1, a mostly periodic window with a period-1
variant of the attractor and another period-2 bifurcation.
When H hits the value of 3330N, a period-1 attrac-
tor (see H = 3480N) with higher displacements is
obtained without transition. This last attractor is main-
tained, reducing its size when H is increased, for all
H > i .

4 Conclusions

The dynamic properties (natural frequencies and
modes) and the dynamic response (in terms of top dis-
placements) of a 3D guyed mast, for a wide range of
values of initial pretension of the guys, were studied.
To achieve this goal, a nonlinear 3D finite element for-
mulation was stated, implemented and optimized.

Regarding the eigenvalues studies, the veering phe-
nomenon is observed and the regions of veering cor-
respond to transition zones (which exhibit hybrid—
column and cable—modes) between local—column
or cable—modes. The so-called localization factor is
employed to distinct local from hybrid modes. Also,
due to the influence of the second-order effect, a reduc-
tion in the natural frequency occurs (for increasing val-
ues of H ) for local column modal shapes.

When the displacement of the column response to a
dynamic load is studied, the main frequency of vibra-
tion equals the frequency of the load. Also, the FFT
study shows the presence of other frequencies, includ-
ing superharmonics of the main frequency. A variety
of different dynamic behaviors are observed depend-
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ing on the value of H , from single period oscillations
to strange chaotic attractors. Figures of the bifurcation
diagram, space state plots and the periodicity ratio are
used to performa detailed description and classification
of the different types of the found dynamic behaviors.
An important remark is that the rich dynamic panorama
is obtained from a 3D nonlinear finite element model of
the complete system (with 80 degrees of freedom),with
parameter values within the range of engineering use
and recommendations. Studies of this depth, on com-
plete systems and with real-life parameter values, are
not frequent in the literature. Also, the combined use
of modern tools like the periodicity ratio, the localiza-
tion factor or the time color gradient in the bifurcation
diagram constitute a novel approach.

The results here presented allow to a better under-
standing of the complexity and behavior of real-life
guyed masts. Future works on this model could include
the variation of amplitude, frequency and direction of
the load, consideration of stochastic wind load, guys
with different tension and/or stochastic tension or the
study of the dynamics during the breakage of a guy.
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