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PATHS ON GRAPHS AND ASSOCIATED QUANTUM

GROUPOIDS

R. TRINCHERO

Abstract. Given any simple biorientable graph it is shown that there exists a
weak *-Hopf algebra constructed on the vector space of graded endomorphisms
of essential paths on the graph. This construction is based on a direct sum
decomposition of the space of paths into orthogonal subspaces one of which is
the space of essential paths. Two simple examples are worked out with certain
detail, the ADE graph A3 and the affine graph A[2]. For the first example the

weak *-Hopf algebra coincides with the so called double triangle algebra. No
use is made of Ocneanu’s cell calculus.

1. Introduction

One of the most interesting developments in mathematical physics of the last
decades has been the classification of SU(2)-type rational conformal field theories
by ADE graphs1[1]. In relation to the present work a possible way to look at this
classification is the following2. The tensor category of representations of a weak *-
Hopf algebra[5] constructed out of the corresponding ADE graph G is summarized
by another graph Oc(G), called the Ocneanu graph of quantum symmetries[6].
Knowledge of this last graph encodes information on the conformal field theory
when considered in various environments, the corresponding generalized partition
functions can be obtained from this graph[1, 7, 8]. In addition the weak *-Hopf
algebras mentioned above can be given a physical interpretation as the algebras of
quantum mechanical symmetries of certain quantum statistical models, known as
face models[9].

For the case of ADE graphs the weak *-Hopf algebra mentioned above is known
as the the double triangle algebra(DTA)[6, 10, 11]. The construction of this algebra
out of the corresponding ADE graph starts from something called quantum 6-j
symbols[12] that can be computed employing Ocneanu’s cell calculus. These objects
describe the representation theory of the DTA[13, 14, 15]. No direct derivation of

CONICET support is gratefully acknowledged.
1Analog classifications exist for SU(3)-type[2] and SU(4)-type[3] rational conformal field the-

ories, however the construction of the corresponding weak Hopf algebras out of the analog of the
ADE graphs is not known.

2Another way closer to the historical path is given in [4].
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148 R. TRINCHERO

this weak Hopf algebra out of paths on the corresponding graph is available in the
literature. One of the aims of this work is to fill this gap3.

The key ingredient in this derivation is a direct sum decomposition of the space
of paths of a given length into orthogonal subspaces, one of which is the space of
essential paths. The space of essential paths can be defined in terms of a represen-
tation of the Temperley-Lieb-Jones algebra in the space of paths over the graph.
The other terms in the above mentioned decomposition are obtained by means of
the application of Ocneanu creation operators to spaces of essential paths of a given
length. The product in the resulting weak Hopf algebra is defined using a projection
of the concatenation factor by factor of endomorphism of paths. This projection
sends graded endomorphism of paths into graded endomorphism of essential paths.

The derivation mentioned above can be done for any simple bioriented graph.
This provides a generalization of the construction to simple bioriented graphs that
are not ADE. In that cases the resulting weak *-Hopf algebra is infinite dimensional.
For illustrative purposes a pair of simple examples are considered in this work. One
of which is ADE and the other not.

Some interesting further research arise in relation to this work. The represen-
tation theory of these weak *-Hopf algebras has not been considered in this work.
The detailed study of all the affine graphs(β = 2) weak *-Hopf algebras remains
to be done. Also the case of non-affine non-ADE graphs(β > 2) is missing. Fur-
thermore the relation of these weak *-Hopf algebras with conformal field theory
deserves to be considered.

This paper is organized as follows. Sections 2, 3 and 4 set up the scenario and
give the basic definitions. Section 5 presents the decomposition and section 6 the
projection mentioned above. Sections 7, 8 and 9 deal with the weak Hopf algebra
structure.

2. Paths

Let G denote a simple biorientable graph. Just to remind the reader some basic
definitions to be employed in what follows are included4.

Definition 1. Adjacency matrix. Let the graph G have Nv vertices, its adjacency
matrix M is the Nv ×Nv matrix whose vivj entry is 1 if the vertex vi is connected
to the vertex vj by an edge belonging to G, 0 if it is not connected.

Definition 2. Elementary path, length. An elementary path is a succession of
consecutive vertices in G. The number of these vertices −1 is called the length of
the path.

Definition 3. Space of paths P . The inner product vector space of paths P is
defined by saying that elementary paths provide a orthonormal basis of this space.

3The question of whether such a derivation exists or not was posed by Oleg Ogievetsky in
relation to joint work with the author.

4Further definitions and basic results on graph theory can be found in any textbook on graph
theory; a short account of these matters related to this work are presented in appendix A of ref.
[9].
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Definition 4. Concatenation product in P . Given two elementary paths η =
(v0, v1, · · · , vn) and η′ = (v′0, v

′
1, · · · , v′n) their concatenation product η ⋆ η′ is given

by,

η ⋆ η′ = δvnv0′ (v0, v1, · · · , vn, v′1, · · · , v′n)

3. Creation and annihilation operators on P
Let η = (v0, v1, · · · , vn) denote a elementary path of length n.

Definition 5. Creation and annihilation operators c†i : Pn → Pn+2 and ci : Pn →
Pn−2

ci η = ci (v0, v1, · · · , vi, vi+1, vi+2, vi+3, · · · , vn)

= δvivi+2

√

µvi+1

µvi

(vo, v1, · · · , vi, vi+3, · · · , vn) if 0 ≤ i ≤ n− 2, 0 otherwise

c†iη = c†i (v0, v1, · · · , vi, vi+1, · · · , vn)

=
∑

v n.n.vi

√

µv

µvi

(v0, v1, · · · , vi, v, vi, vi+1, · · · , vn) if 0 ≤ i ≤ n, 0 otherwise

(3.1)

where Pn is the inner product vector space of paths of length n, µv denotes the com-
ponents of the Perron-Frobenius eigenvector5 and n.n. denotes nearest neighbours
in G.

Proposition 6. For i ≤ n,

cic
†
i = β1n

where β stands for the highest eigenvalue of the adjacency matrix of G and 1n
denotes the identity in the space Pn.

Proposition 7. The following operators ei : Pn → Pn , i = 0, · · · , n− 2 ,

ei =
1

β
c†ici

give a representation of the Temperley-Lieb-Jones algebra with n − 1 generators.
This algebra is defined by the following relations:

e2i = ei, e†i = ei, eiej = ejei , |i− j| > 1, eiei±1ei =
1

β2
ei.

5I.e., the eigenvector of the adjacency matrix M with greatest eigenvalue β and with its
smallest components taken to be 1.
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4. Essential paths

Definition 8. Essential Paths Subspace. For each n we denote by En the subspace
of Pn defined by the relations

ξ ∈ En ⇔ ciξ = 0, i = 0, · · · , n− 2,

the essential paths subspace E is defined by

E =
⊕

n

En.

This definition implies that

Proposition 9. For all the ADE graphs E is finite dimensional6.

In what follows we will denote by {ξa} an orthonormal basis of E (with respect
to the restriction to E of the scalar product in P), i.e. (ξa, ξb) = δab.

Example 10. Essentials paths for the graph A3. The graph A3, its adjacency
matrix, Perron-Frobenius eigenvalue and eigenvector are given below:

0 1 2
• • • , M =





0 1 0
1 0 1
0 1 0



 , β =
√
2, µ =





1√
2

1



 .

Figure 4.1. The graph A3

There are ten essential paths in A3, which are:

• Length zero: (0), (1), (2).
• Length one: (01), (12), (10), (21).
• Length two: (012), γ = 1√

2
[(121)− (101)], (210).

Therefore the maximum length of essential paths over A3 is L = 2.

Example 11. Essentials paths for the graph A[2]. The graph A[2], its adjacency
matrix, Perron-Frobenius eigenvalue and eigenvector are given below:

1
•

• •
0 2

, M





0 1 1
1 0 1
1 1 0



 , β = 2, µ =





1
1
1



 .

Figure 4.2. The graph A[2]

There are essential paths of any length in A[2]. Any cyclic sequence of consecutive
vertices defines an essential path, as for example (120120contiguous120120 · · ·).

6See for example ref.[16] for a proof of this result.
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5. Decomposition of the space of paths

Definition 12. Maximum length of essential paths. L is the maximum length of
essential paths in a graph G iff any path of length greater than L is necessarily
non-essential.

The following result will be used to write the above mentioned decomposition.

Proposition 13.

c†i c
†
j = c†j+2c

†
i ∀ j ≥ i (⇒ cjci = cicj+2 ∀ j ≥ i).

Proof.

c†ic
†
j(v0, v1, · · · , vi, · · · ,vj , · · · , vn) =

=
∑

v

√

µv

µvj

c†i (v0, v1, · · · , vi, · · · , vj , v, vj , · · · , vn)

=
∑

v,v′

√

µvµv′

µvjµvi

(v0, v1, · · · , vi, v′, vi, · · · , vj , v, vj , · · · , vn),

on the other hand,

c†j+2c
†
i (v0, v1, · · · , vi, · · · ,vj , · · · , vn) =

=
∑

v′

√

µv′

µvi

c†j+2(v0, v1, · · · , vi, v′, vi, · · · , vj , · · · , vn)

=
∑

v,v′

√

µvµv′

µvjµvi

(v0, v1, · · · , vi, v′, vi, · · · , vj , v, vj , · · · , vn).

�

Proposition 14. The operators cic
†
j : Pn → Pn satisfy

cic
†
j = c†j−2ci if i < j − 1 (5.1)

cic
†
j = c†jci−2 if i > j + 1 (5.2)

cic
†
i±1 = 1n , i± 1 ≤ n (5.3)

cic
†
i = β1n , i ≤ n, (5.4)

which imply

cic
†
j = (β δi,j + δi,j+1 + δi,j−1)1n + θ(j − (i+ 2))c†j−2ci + θ(−j + (i− 2))c†jci−2

= (β δi−j,0 + δi−j,1 + δi−j,−1)1n + θ(2 − (i− j))c†j−2ci + θ((i − j)− 2)c†jci−2,

(5.5)

where 1n is the identity operator in Pn and the function θ is defined by

θ(i) =

{

1 if i ≥ 0

0 otherwise.

Proof. It follows from definition 5. �
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The second equality in (5.5) has been written to emphasize the fact that the
coefficients of the different terms depend only on the difference i− j.

Theorem 15. The following decomposition holds7

Pn = En
⊕

i≤n−2

c†i (En−2)
⊕

i1<i2≤n−2

c†i2c
†
i1
(En−4)

⊕

· · ·

⊕

i1<i2···<i[n/2]≤n−2

c†i[n/2]
c†i[n/2]−1

· · · c†i1(E1|0), (5.6)

where [ ] denotes the integer part and in the last summand one should take 1 for

n odd and 0 for n even.

Proof. The following important lemma will be employed in this proof:

Lemma 16. For all η ∈ Pn such that ci(η) 6= 0 for some i and cj(η) = 0 ∀ j such
that i < j < n− 2 there exist coefficients αk , k = i, · · · , n such that

η =

n−2
∑

k=i

αk c
†
k(ci(η)) + ξ(i) (5.7)

with ξ(i) satisfying cj(ξ
(i)) = 0 ∀ j such that i− 1 < j < n− 2.

Proof. Consider the application of ci to eq.(5.7)

ci(η) =

n−2
∑

k=i

αk cic
†
k(ci(η)) + ci(ξ

(i))

=

n−2
∑

k=i

αk {(β δi,k + δi,k−1) + θ(k − (i+ 2))c†k−2ci](ci(η)) + ci(ξ
(i))

= (βαi + αi+1)ci(η) + ci(ξ
(i)),

where proposition 14 was employed in the second equality and proposition 13 in
the third. Therefore if we choose αi and αi+1 such that

βαi + αi+1 = 1,

then ci(ξ
(i)) = 0. In general the application of ci+l , l = 0, · · · , n−2− i to eq. (5.7)

is considered:

7Each term in this decomposition can be characterized by the number of non-essential back
and forth subpaths. It has certain similarities with what is called Fock’s space in quantum field
theory, however they are quite different in some interesting respects. The role of the vacuum
is played here by essential paths, so the analogy would be a theory with many non-equivalent
vaccums, the number of which could be infinite as for example in the case of A[2]. Excitations are

created out of the vacuum by means of the creation operators c
†
i
. The algebra of these creation and

annihilation operators being given by (5.5) which depends on the shape of the graph and which
differs significantly from the canonical one, which is given in terms of commutators, appearing in
the case of Fock’s space.
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ci+l(η) =

n−2
∑

k=i

αk ci+lc
†
k(ci(η)) + ci+l(ξ

(i))

=
n−2
∑

k=i

αk {(β δi+l,k + δi+l,k−1 + δi+l,k+1) + θ(2− (i + l− k))c†k−2ci+l

+θ(l − 2)θ((i + l − k)− 2))c†kci+l−2](ci(η)) + ci+l(ξ
(i))

= (βαi+l + αi+l+1 + αi+l−1)ci(η) + ci+l(ξ
(i)).

Therefore if the coefficients αk can be chosen such that















1
0
0
...
0















=















β 1 0 · · · 0
1 β 1 · · · 0

1 β 1
. . .

. . .
. . .

1 β





























αi

αi+1

αi+2

...
αn−2















,

then the result follows because ci+l(η) = 0 , l = 1, · · · , n−2− i by hypothesis. The
determinant of this (n− 1− i)× (n− 1− i) matrix can be calculated recursively8

leading to

Dn−1−i(β) = det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β 1 0 · · · 0
1 β 1 · · · 0

1 β 1
. . .

. . .
. . .

1 β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= βn−1−i λ
n−i
+ − λn−i

−
λ+ − λ−

, (5.8)

where

λ± =
1±

√

1− 4β−2

2
. (5.9)

For β = 2 the two eigenvalues coincide and taking the limit β → 2 in (5.8) gives

lim
β→2

Dn−1−i(β) = (n− i),

which does not vanish for any i(i ≤ n− 2). For β 6= 2, this determinant vanishes if

λn−i
+ − λn−i

− = 0 ⇒
(

λ+

λ−

)n−i

= 1 (β 6= 0), (5.10)

8The same determinant appears in the calculation of the harmonic oscillator transition prob-
ability using the path integral (see [17], p. 431).
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which has no solution for β > 2. For the case β < 2, the ADE case, the eigenvalues
are complex conjugate of each other, i.e. λ− = λ∗

+. From eq. (5.9) it is obtained

λ+

λ−
= eiφ , φ such that β = 2 cosφ,

but on the other hand for β < 2, β = 2 cos π
N where N is the Coxeter number of G.

However it is well known that the maximum length of essential paths L is related
to the Coxeter number by L = N − 2, thus φ = π

N = π
L+2 , therefore eq. (5.10) is

the same as

ei
π(n−i)
L+2 = 1,

which can never be satisfied. This is so because under the assumptions of this
lemma the following inequality should hold n − i − 1 ≤ L. If it were not so then
the path obtained by reversing η and including the first n− i − 1 steps would be
an essential path of length greater than L in the graph G which is impossible by
definition of L. �

Using this lemma the following algorithm can be employed to obtain a unique
decomposition of an arbitrary path η ∈ Pn as in the r.h.s. of (5.6). Decompose η
as in (5.7). Then decompose every ci(η) appearing in the first term of the r.h.s.
of (5.7) using (5.7) and do the same with ξ(i). At each step of this process the
resulting paths are annihilated by one more ci operator, since the number of these
operators that can act on an element of Pn is n − 2 then this process necessarily
converges to something belonging to the r.h.s. of (5.6). The ordering of the indices
of the c† operators in (5.6) follows using proposition 13. �

The following result is a simple consequence of the decomposition (5.6).

Proposition 17. The subspaces of Pn given by

P (l)
n =

⊕

i1<i2<···≤n−2

c†i1c
†
i2
· · · c†il(En−2l) , P (0)(n) = En, l = 0, · · · , [n/2],

are mutually orthogonal.

Proof. This proposition is proved if we show that

Mlm = (c†i1c
†
i2
· · · c†il(ξ

(n−2l)), c†j1c
†
j2
· · · c†jm(ξ(n−2m))) ∝ δlm,

∀ξ(n−2l) ∈ En−2l , ξ
(n−2m) ∈ En−2m,

this in turn follows9 from the relations in proposition 14. �

Thus there exist orthogonal projections on each of the subspaces P (l), l = 0,

· · · , [n/2] that we denote by Π
(l)
n and satisfy Π

(l)
n = Π

(l)
n

2 = Π
(l)
n

†. In particular

Π
(0)
n is a orthogonal projector over essential paths of length n.

9See the proof of proposition 20 for a similar argument.
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Example 18. Decomposition of non-essential paths in A3. Using the algorithm
of the previous theorem the following decompositions of non-essential paths of a
given length coming from the concatenation of essential paths are obtained:
Length two:

(01) ⋆ (10) = (010) =
1

21/4
c†0(0)

(21) ⋆ (12) = (212) =
1

21/4
c†0(2)

(10) ⋆ (01) = (101) =
1√
2
(

1

21/4
c†0(1)− γ)

(12) ⋆ (21) = (121) =
1√
2
(

1

21/4
c†0(1) + γ)

Length three10:

(01) ⋆ γ = (
1

21/4
c†1 − 21/4c†0)(01)

(21) ⋆ γ = −(
1

21/4
c†1 − 21/4c†0)(21)

γ ⋆ (10) = (
1

21/4
c†0 − 21/4c†1)(10)

γ ⋆ (12) = −(
1

21/4
c†0 − 21/4c†1)(12)

(10) ⋆ (012) = (21/4c†0 −
1

21/4
c†1)(12)

(012) ⋆ (21) = (21/4c†1 −
1

21/4
c†0)(01)

(12) ⋆ (210) = (21/4c†0 −
1

21/4
c†1)(10)

(210) ⋆ (01) = (21/4c†1 −
1

21/4
c†0)(21)

Length four:

(012) ⋆ (210) = (c†1 −
1√
2
c†2) c

†
0((0)) (5.11)

(210) ⋆ (012) = (c†1 −
1√
2
c†2) c

†
0((2)) (5.12)

γ ⋆ γ = (c†1 −
1√
2
c†2)c

†
0((1)) (5.13)

10It is recalled that γ = 1√
2
[(121) − (101)] as defined in example 10.
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Example 19. Decomposition of non-essential paths in A[2]. Using the algorithm
of the previous theorem the following decompositions of non-essential paths of a
given length coming from the concatenation of essential paths are obtained:
Length two:

(01) ⋆ (10) =
1

2
c†0((0)) +

1

2
ξ010, (02) ⋆ (20) = 1

2 c
†
0((0)) − 1

2 ξ020, ξ010 = ξ020 = (010) − (020) ∈ E,

(12) ⋆ (21) =
1

2
c
†
0((1)) +

1

2
ξ121, (10) ⋆ (01) = 1

2 c
†
0((1)) − 1

2 ξ101, ξ121 = ξ101 = (121) − (101) ∈ E,

(20) ⋆ (02) =
1

2
c
†
0((2)) +

1

2
ξ202, (21) ⋆ (12) = 1

2 c
†
0((2)) − 1

2 ξ212, ξ202 = ξ212 = (202) − (212) ∈ E.

It is worth noting that the last two lines above can be obtained from the first one
by making cyclic permutations of the vertices 0, 1 and 2 (not for the indices of the
c† operators), i.e. by applying the rotations contained in the symmetry group C3v

of the graph A[2].
Length three:

(10) ⋆ (012) = (1012) = (
2

3
c†0 −

1

3
c†1)(12) + ξ1012

(012) ⋆ (21) = (0121) = (
2

3
c†1 −

1

3
c†0)(01) + ξ0121

(10) ⋆ ξ010 = (1010)− (1020) = (
2

3
c†0 −

1

3
c†1)(10) + ξ(10)⋆ξ010

ξ010 ⋆ (01) = (0101)− (0201) = (
2

3
c†1 −

1

3
c†0)(01) + ξξ010⋆(01)

where

ξ1012 =
1

3
[(1012)− (1212) + (1202)] ∈ E

ξ0121 =
1

3
[(0121)− (0101) + (0201)] ∈ E

ξ(10)⋆ξ010 =
2

3
[(1010)− (1020)− (1210)] ∈ E

ξξ010⋆(01) =
2

3
[(0101)− (0201)− (0121)] ∈ E

From these four decompositions and applying the elements of the symmetry group
C3v of the graph A[2] the other twenty decompositions can be readily obtained.
Length four:

(01210) = (
2

3
c†1−

1

3
c†2) [

1

2
c†0((0))+ξ

(2)
01210]−(

1

2
c†0−

1

3
c†1+

1

6
c†2)ξ

(2)
01210+ξ

(0)
01210 (5.14)

where ξ(0), ξ(2) ∈ E are given by,

ξ
(0)
01210 =

1

6
[(01210) + (02120) + (01020)− (02020)− (01010) + (02010)]

ξ
(2)
01210 =

1

2
[(010)− (020)].
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Also

ξ010 ⋆ (012) = [c†1 −
1

2
(c†2 + c†0)](012) + ξξ010⋆(012)

(210) ⋆ ξ010 = [c†1 −
1

2
(c†2 + c†0)](210) + ξ(210)⋆ξ010 ,

where ξξ010⋆(012), ξ(210)⋆ξ010 ∈ E are given by

ξξ010⋆(012) =
1

2
[(01012)− (02012)− (01212) + (01202)]

ξ(210)⋆ξ010 =
1

2
[(21010)− (21020)− (21210) + (20210)].

Applying the elements of C3v to these decompositions the others can be readily
obtained. Finally,

ξ121 ⋆ ξ121 =
2

3
c†1c

†
1(1)−

1

3
c†2c

†
1(1) + ξξ121⋆ξ121 ,

where ξξ121⋆ξ121 ∈ E is given by

ξξ121⋆ξ121 =
2

3
[(12121) + (10101)− (10121)− (12101)− (12021)− (10201)].

6. The projection

A posteriori motivation for the definition of the projection P : Endgr(P) →
Endgr(E) appearing below is given by its properties with respect to the concate-
nation product of paths (see propositions 27, 29, 36, 37, 39, 43). However it was
proposed based on its relation with the representation theory of these weak *-Hopf
algebras, representation theory that is not considered in this paper. Before giving
this definition a useful result is given:

Proposition 20.

(ci1ci2 · · · cinc†jnc
†
jn−1

· · · c†j1ξa, ξb) = δabC(i1, · · · ; in; jn, · · · ; j1), (6.1)

where ξa, ξb are elements of an orthonormal basis of E such that #ξa = #ξb ≥ j1
and #ξa = #ξb ≥ i1.

Proof. The evaluation of the matrix element in the l.h.s. is considered. By means

of relation (5.5) the product of operators cinc
†
jn

is either replaced by a number β

or 1 (which we call a contraction), or they are interchanged with a change in the
index of one of them. In any case for the matrix element to be non-vanishing, all
the i indices should be contracted with j indices. If this is not the case the matrix
element vanishes because necessarily a c operator will be applied to ξa or ξb which
gives zero because they are essential.

�
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Let End(Pn) (End(En)) denote the vector space of endomorphism of length n
paths (essential paths)11. In what follows the vector space of length preserving
endomorphism of paths (essential paths) will be considered. They are defined by

Endgr(P) =
⊕

n

End(Pn) , Endgr(E) =
⊕

n

End(En).

Definition 21. A projector12 P : Endgr(P) → Endgr(E) is defined by its action
on the terms appearing in the decomposition (5.6)

P (c†jn · · · c†j1ξa ⊗ c†in · · · c†i1ξb) =
∑

ξc∈E
(ci1ci2 · · · cinc†jnc

†
jn−1

· · · c†j1ξa, ξc) ξc ⊗ ξb

= C(i1, · · · , in; jn, · · · , j1) ξa ⊗ ξb, (6.2)

where j1 < j2 < · · · < jn and i1 < i2 < · · · < in .

It is clear that P 2 = P but P † 6= P which implies that P is not an orthogonal
projection.

Remark 22. It should be noted that the projection of an arbitrary element η⊗ η′

of End(Pn) is obtained by applying definition 21 to each term appearing in the
decomposition of η ⊗ η′ as in eq. (5.6). Thus in general this projection consists in
a summation of elements belonging to

[n/2]
⊕

l=0

End(En−2l).

Therefore it will not in general respect the grading.

Remark 23. Note that because of eq. (6.1) and the orthonormality of the basis
{ξa}, the following equality holds

P (c†jnc
†
jn−1

· · · c†j1ξa ⊗ c†inc
†
in−1

· · · c†i1ξb) =

=
∑

ξc∈E
ξa ⊗ ξc (ξc, cj1cj2 · · · cjnc†inc

†
in−1

· · · c†i1ξb).

Example 24. As an example the projections of the element (01210) ⊗ (21012)
both for the graph A3 and A{2} are calculated. For A3:

P ((01210)⊗ (21012))A3 =
∑

v

((c†1 −
1√
2
c†2) c

†
0((0)), (c

†
1 −

1√
2
c†2) c

†
0((v))) v ⊗ (2)

=
∑

v

(c0(c1 −
1√
2
c2) (c

†
1 −

1√
2
c†2) c

†
0((0)), v) v ⊗ (2)

=
∑

v

√
2(
√
2− 1√

2
− 1√

2
+

√
2

2
) δv,0 v ⊗ (2) = 0⊗ 2,

11In what follows the following equalities End(Pn) = Pn ⊗ Pn and End(En) = En ⊗ En will
be employed. This is so because by means of the scalar product appearing in definition 3 and
section 8 it is possible to identify Pn and En with their duals.

12In ref. [18] another projector Q acting on the same vector space is considered. Defining a
product as in (7.3) but using Q does not lead to a weak Hopf algebra structure.
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where the decompositions (5.11) and (5.12) were employed for the first equality
and proposition 14 for the last. For A[2], the decomposition of eq. (5.14) and the
following are employed:

(21012) = (
2

3
c†1 −

1

3
c†2) [

1

2
c†0((2)) + ξ

(2)
21012]− (

1

2
c†0 −

1

3
c†1 +

1

6
c†2)ξ

(2)
21012 + ξ

(0)
21012,

where

ξ
(2)
21012 =

1

2
[(212)− (202)],

ξ
(1)
21012 = 1

6 [ (21012) + (20102) + (21202)− (20202)− (21212) + (20212)].

Recalling that the projection kills terms with unequal number of c† operators ap-
plied to essential paths in each factor of the tensor product leads to

P ((01210)⊗ (21012))A[2]
=

∑

ρ∈E
(ξ

(1)
01210, ρ) ρ⊗ ξ

(1)
21012

+
∑

ρ∈E
(([c†1 −

1

2
(c†0 + c†2)]ξ

(2)
01210, [c

†
1 −

1

2
(c†0 + c†2)]ρ) ρ⊗ ξ

(2)
21012

+
∑

v∈E0

((
2

3
c†1 −

1

3
c†2)

1

2
c†0(0), (

2

3
c†1 −

1

3
c†2)

1

2
c†0(v)) v ⊗ (2).

Evaluating the scalar products gives

P ((01210)⊗ (21012))A[2]
= ξ

(1)
01210 ⊗ ξ

(1)
21012 + ξ

(2)
01210 ⊗ ξ

(2)
21012 +

1

3
(0)⊗ (2).

7. Star algebra

In the vector space Endgr(P) the following involution is considered:

Definition 25. Star.

(ξ ⊗ ξ′)⋆ = ξ⋆ ⊗ ξ′⋆, (7.1)

where ξ⋆ denotes the path obtained from ξ by "time inversion" for elementary
paths and extending antilinearly to all P , i.e., by reversing the sense in which the
succession of contiguous vertices is followed for elementary paths, i.e.,

ξ = (vo, v1, · · · , vn−1, vn) ⇒ ξ⋆ = (vn, vn−1, · · · , v1, v0).
From this definition and the one of the scalar product in section 2, it is clear that

(η, χ) = (η⋆, χ⋆), (7.2)

where the bar indicates the complex conjugate. The underlying vector space of the
algebra to be considered is given by the length graded endomorphisms of essential
paths13 Endgr(E). The product is defined by:

13This choice of the underlying vector space structure doe not mean that the product to be
considered is the composition of endomorphisms in Endgr(E). It is emphasized that this is not

the product to be considered but another product that we call · and that will be defined below.
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Definition 26. Product.

(ξ ⊗ ξ′) · (ρ⊗ ρ′) = P (ξ ⋆ ρ⊗ ξ′ ⋆ ρ′) ; ξ, ρ, ξ′, ρ′ ∈ E . (7.3)

This product does not make this algebra a graded one. This is a filtered algebra
respect to the length of paths. The product of ξ ⊗ ξ′ ∈ End(En1) with ρ ⊗ ρ′ ∈
End(En2) in general belongs to

[(n1+n2)/2]
⊕

l=0

End(En1+n2−2l).

The identity is

1 =
∑

v,v′∈E0

v ⊗ v′.

The properties to be fulfilled by these definitions are fairly simple to be proved
except for the antihomomorphism property of the involution (7.1) and the associa-
tivity of the product (7.3). The following result will be employed in the proof of
the first of these properties:

Proposition 27.

P ((η ⊗ η′)⋆) = P (η ⊗ η′)⋆ ∀η, η′ ∈ P . (7.4)

Proof. Typical contributions to the decomposition (5.6) for η and η′ are consid-
ered. These contributions should have the same number of c† operators applied to
essential paths in order to have a non-vanishing image when applying the projector.
Therefore the following expression is considered

P (c†jnc
†
jn−1

· · · c†j1ξa ⊗ c†inc
†
in−1

· · · c†i1ξb) =
∑

ξc∈E
(ci1ci2 · · · cinc†jnc

†
jn−1

· · · c†j1ξa, ξc) ξc ⊗ ξb

=
∑

ξc∈E
(c†jnc

†
jn−1

· · · c†j1ξa, c
†
in
c†in−1

· · · c†i1ξc) ξc ⊗ ξb,

thus

P (c†jnc
†
jn−1

· · · c
†
j1
ξa⊗c

†
in
c
†
in−1

· · · c
†
i1
ξb)

⋆ =
∑

ξc∈E

(c†jnc
†
jn−1

· · · c
†
j1
ξa, c

†
in
c
†
in−1

· · · c
†
i1
ξc) ξ

⋆
c⊗ξ

⋆
b .

The time inversion of a path of the form c†inc
†
in−1

· · · c†i1ξb leads to (the counting

starts from the end of this path)

(c†in · · · c†i2c
†
i1
ξb)

⋆ = c†l+2(n−1)−in
c†l+2(n−2)−in−1

· · · c†l+2−i2
c†l−i1

(ξ⋆b ),
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where l = #ξb. Using this relation leads to

P ((c†jnc
†
jn−1

· · · c†j1ξa)⋆ ⊗ (c†inc
†
in−1

· · · c†i1ξb)⋆) =
=

∑

ξ⋆d∈E((c
†
jn
c†jn−1

· · · c†j1ξa)⋆, c
†
l+2(n−1)−in

· · · c†l+2−i2
c†l−i1

ξ⋆d) ξ
⋆
d ⊗ ξ⋆b

=
∑

ξ⋆d∈E((c
†
jn
c†jn−1

· · · c†j1ξa)⋆, (c
†
in
c†in−1

· · · c†i1ξd)⋆) ξ⋆d ⊗ ξ⋆b

=
∑

ξd∈E (c
†
jn
c†jn−1

· · · c†j1ξa, c
†
in
c†in−1

· · · c†i1ξd) ξ⋆d ⊗ ξ⋆b ,

where in the last equality eq. (7.2) was employed and the fact that when ξd runs
over all E then ξ⋆d also. �

Using (7.4) it follows that

Proposition 28.

((ξ ⊗ ξ′) · (ρ⊗ ρ′))⋆ = (ρ⊗ ρ′)⋆ · (ξ ⊗ ξ′)⋆ ∀ξ, ξ′, ρ, ρ′ ∈ E . (7.5)

Proof.

(ρ⊗ ρ′)⋆ · (ξ ⊗ ξ′)⋆ = P ((ρ⊗ ρ′)⋆ ⋆ (ξ ⊗ ξ′)⋆) = P (((ξ ⊗ ξ′) ⋆ (ρ⊗ ρ′))⋆)

= P ((ξ ⊗ ξ′) ⋆ (ρ⊗ ρ′))⋆ = ((ξ ⊗ ξ′) · (ρ⊗ ρ′))⋆.

�

In order to prove the associativity of the product (7.3) the following preliminary
result is considered

Proposition 29.

P ((ξ ⊗ ξ′) ⋆ P (η ⊗ η′)) = P ((ξ ⊗ ξ′) ⋆ (η ⊗ η′)) (7.6)

P (P (η ⊗ η′) ⋆ (ξ ⊗ ξ′)) = P ((η ⊗ η′) ⋆ (ξ ⊗ ξ′)) ∀ξ, ξ′ ∈ E , η, η′ ∈ P . (7.7)

Proof. As in proposition 27, typical contributions to the decomposition of η ⊗ η′

are considered. Thus the following expression is dealt with

P ((ξ ⊗ ξ′) ⋆ P (c†jnc
†
jn−1

· · · c†j1ξa ⊗ c†inc
†
in−1

· · · c†i1ξb)) =
= C(i1, · · · , in; jn, · · · , j1)P ((ξ ⊗ ξ′) ⋆ (ξa ⊗ ξb)),

where it was assumed that P (c†inc
†
in−1

· · · c†i1ξa ⊗ c†jnc
†
jn−1

· · · c†j1ξb) does not vanish

(if it vanishes it can be easily seen that the r.h.s. of eq.(7.6) also vanishes). Next
the r.h.s. of eq.(7.6) is considered

P ((ξ ⊗ ξ′) ⋆ (c†jnc
†
jn−1

· · · c†j1ξa ⊗ c†inc
†
in−1

· · · c†i1ξb)) =
= P (ξ ⋆ c†jnc

†
jn−1

· · · c†j1ξa ⊗ ξ′ ⋆ c†inc
†
in−1

· · · c†i1ξb)
= P (c†l+jn

· · · c†l+j1
(ξ ⋆ ξa)⊗ c†l+in

· · · c†l+i1
(ξ′ ⋆ ξb))

= C(l + i1 · · · , l + in; l + jn, · · · , l + j1)P ((ξ ⊗ ξ′) ⋆ (ξa ⊗ ξb)),

where l denotes the length of the path ξ. From its definition (6.1) it follows that

C(i1, · · · , in; jn, · · · , j1) = C(l + i1 · · · , l+ in; l + jn, · · · , l + j1)
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which completes the proof of the first equality. Eq.(7.7) follows along identical
lines.

�

Using this result associativity follows

Proposition 30.

((ξ1⊗ξ′1) ·(ξ2⊗ξ′2)) ·(ξ3⊗ξ′3) = (ξ1⊗ξ′1) ·((ξ2⊗ξ′2) ·(ξ3⊗ξ′3)) ∀ξi, ξ′i ∈ E , i = 1, 2, 3.

Proof.

((ξ1 ⊗ ξ′1) · (ξ2 ⊗ ξ′2)) · (ξ3 ⊗ ξ′3) = P (P ((ξ1 ⊗ ξ′1) ⋆ (ξ2 ⊗ ξ′2)) ⋆ (ξ3 ⊗ ξ′3))

= P ((ξ1 ⊗ ξ′1) ⋆ (ξ2 ⊗ ξ′2) ⋆ (ξ3 ⊗ ξ′3))

= P ((ξ1 ⊗ ξ′1) ⋆ P ((ξ2 ⊗ ξ′2) ⋆ (ξ3 ⊗ ξ′3)))

= (ξ1 ⊗ ξ′1) · ((ξ2 ⊗ ξ′2) · (ξ3 ⊗ ξ′3)).

�

Example 31. Product for the case of A3. It can be explicitly verified that in this
case the product coincides with the one of the double triangle algebra14 described
in ref.[11]. For illustrative purposes the calculation of some of these products is
given below:

(21⊗ 12) · (12⊗ 21) = P (212⊗ 101) =
1√
2
P

(

1

21/4
c†0(2)⊗ (

1

21/4
c†0(1) + γ)

)

=
1√
2
(2)⊗ (1)

(10⊗ 12) · (01⊗ 21) =
1

2
P

(

(
1

21/4
c†0(1)− γ)⊗ (

1

21/4
c†0(1) + γ)

)

=
1

2
(1⊗ 1− γ ⊗ γ)

(12⊗ 12) · (21⊗ 21) =
1

2
P

(

(
1

21/4
c†0(1) + γ)⊗ (

1

21/4
c†0(1) + γ)

)

=
1

2
(1⊗ 1 + γ ⊗ γ)

(γ ⊗ 012) · (10⊗ 21) = P (γ ⋆ 10⊗ 0121)

= P

(

(
1

21/4
c†0 − 21/4c†1)(10)⊗ (21/4c†1 −

1

21/4
c†0)(01)

)

= −(10)⊗ (01)

(γ ⊗ γ) · (γ ⊗ γ) = P

(

(c†1 −
1√
2
c†2)c

†
0(1)⊗ (c†1 −

1√
2
c†2)c

†
0(1)

)

= (1)⊗ (1).

14In that reference product is calculated using the pairing with the dual algebra, i.e. the
6j-symbols using the dual product (that is the composition of endomorphisms) and coming back
with the 6j-symbols. The same construction for the case of A[2] is not known. The extension

of 6j-symbols (Ocneanu cells) for this last case is not obvious since for example A[2] is not a

bicolorable graph.
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Example 32. Product for the case of A[2]. With the notation of example 19 the
following illustrative products can be computed:

(21⊗ 12) · (12⊗ 21) = P (212⊗ 121)

= P

(

1

2
c†0(2)−

1

2
ξ212 ⊗

1

2
c†0(1) +

1

2
ξ121

)

=
1

2
(2)⊗ (1)− 1

4
ξ212 ⊗ ξ121

(10⊗ 12) · (01⊗ 21) = P (101⊗ 121)

= P

(

(
1

2
c†0(1)−

1

2
ξ101)⊗ (

1

2
c†0(1) +

1

2
ξ121)

)

=
1

2
(1)⊗ (1)− 1

4
ξ121 ⊗ ξ121)

(12⊗ 12) · (21⊗ 21) = P (121⊗ 121)

= P

(

(
1

2
c†0(1) +

1

2
ξ121)⊗ (

1

2
c†0(1) +

1

2
ξ121)

)

=
1

2
(1)⊗ (1) +

1

4
ξ121 ⊗ ξ121)

(ξ121 ⊗ 012) · (10⊗ 21) = P (ξ121 ⋆ 10⊗ 0121)

= P

(

(
2

3
c†1 −

1

3
c†0)(10) + ξξ121⋆10 ⊗ (

2

3
c†1 −

1

3
c†0)(01) + ξ0121

)

=
2

3
(10)⊗ (01) + ξξ121⋆10 ⊗ ξ0121

(ξ121 ⊗ ξ121) · (ξ121 ⊗ ξ121) =

= P

(

(
2

3
c†1c

†
1 −

1

3
c†2c

†
1)(1) + ξξ121⋆ξ121 ⊗ (

2

3
c†1c

†
1 −

1

3
c†2c

†
1)(1) + ξξ121⋆ξ121

)

=
4

3
(1)⊗ (1) + ξξ121⋆ξ121 ⊗ ξξ121⋆ξ121 .

8. Weak bialgebra

The definition of a weak ⋆-bialgebra is recalled

Definition 33. A weak ⋆-bialgebra is a ⋆-algebra A together with two linear maps
∆ : A → A⊗A, the coproduct, and ǫ : A→ C, the counit, satisfying the following
axioms

∆(ab) = ∆(a)∆(b)

∆(a⋆) = ∆(a)⋆

(∆⊗ Id)∆ = (Id⊗∆)∆,

Rev. Un. Mat. Argentina, Vol 51-2



164 R. TRINCHERO

and

ǫ(ab) = ǫ(a11)ǫ(12b)

(ǫ⊗ Id)∆ = Id = (Id⊗ ǫ)∆

ǫ(aa⋆) ≥ 0,

where in the first equation Sweedler convention is employed and also in the following
equation that defines 11 and 12

∆(1) = 11 ⊗ 12,

with 1 being the identity in A.

The definition of coproduct and counit considered for the star algebra of the
previous section are

Definition 34. Coproduct15,

∆(ξ ⊗ ξ′) =
∑

ξa∈E

#ξa=#ξ

ξ ⊗ ξa ⊠ ξa ⊗ ξ′, (8.1)

where the summation runs over a complete orthonormal basis for E .

Definition 35. Counit,

ǫ(ξ ⊗ ξ′) = (ξ, ξ′).

The axioms appearing in the definition of a weak bialgebra are fairly simple to
prove for the above definitions except for the morphism property for the coproduct
and the one involving the counit of a product. For the first property the following
preliminary results are useful:

Proposition 36.

∆P = P⊗2∆P , (8.2)

where ∆P(χ ⊗ χ′) =
∑

η∈P χ ⊗ η ⊠ η ⊗ χ′ with summation over a complete or-
thonormal basis of P .

Proof. Eq. (8.1) is applied to a generic element η ⊗ η′of End(P), typical terms in
the decomposition (5.6) with non-vanishing image by the projector are considered

∆P (c†jnc
†
jn−1

· · · c
†
j1
ξa⊗c

†
in
c
†
in−1

· · · c
†
i1
ξb) =

∑

ξc∈E.

C(i1, · · · , in; jn, · · · , j1) ξa⊗ξc⊠ξc⊗ξb,

15In the dual weak Hopf algebra to the one considered here, this coproduct maps to the
product. Eq. (8.1) implies that this product corresponds to the composition of endomorphisms
in the dual weak Hopf algebra.
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where it was assumed that P (c†jnc
†
jn−1

· · · c†j1ξ ⊗ c†inc
†
in−1

· · · c†i1ξ′) does not vanish.

On the other hand

P⊗2∆P(c
†
jn
c†jn−1

· · · c†j1ξa ⊗ c†inc
†
in−1

· · · c†i1ξb) =
= P⊗2(

∑

η∈P c†jnc
†
jn−1

· · · c†j1ξa ⊗ η ⊠ η ⊗ c†inc
†
in−1

· · · c†i1ξb)
=

∑

ξc,ξd∈E
∑

η∈P(ξc, cj1 · · · cjnη)(ci1 · · · cinη, ξd) ξa ⊗ ξc ⊠ ξd ⊗ ξb

=
∑

ξc,ξd∈E
∑

η∈P(c
†
jn

· · · c†j1ξc, η)(η, c
†
in
· · · c†i1ξd) ξa ⊗ ξc ⊠ ξd ⊗ ξb

=
∑

ξc,ξd∈E (c
†
jn

· · · c†j1ξc, c
†
in
· · · c†i1ξd) ξa ⊗ ξc ⊠ ξd ⊗ ξb

=
∑

ξc,ξd∈E (ξc, cj1 · · · cjnc
†
in
· · · c†i1ξd) ξa ⊗ ξc ⊠ ξd ⊗ ξb

=
∑

ξc∈E C(i1, · · · , in; jn, · · · , j1) ξa ⊗ ξc ⊠ ξc ⊗ ξb.

�

Proposition 37.

P⊗2(∆P (ξa ⊗ ξb) ⋆∆P (ξc ⊗ ξd)) = P⊗2[P⊗2∆P(ξa ⊗ ξb) ⋆ P
⊗2∆P(ξc ⊗ ξd)].

Proof.

P⊗2(∆P(ξa ⊗ ξb) ⋆∆P(ξc ⊗ ξd)) =

= P⊗2(
∑

η,χ∈P
(ξa ⊗ η ⊠ η ⊗ ξb) ⋆ (ξc ⊗ χ⊠ χ⊗ ξd))

= P⊗2(
∑

η,χ∈P
P (ξa ⋆ ξc ⊗ η ⋆ χ)⊠ P (η ⋆ χ⊗ ξb ⋆ ξd)).

On the other hand,

P⊗2[P⊗2∆P (ξ ⊗ ξ′) ⋆ P⊗2∆P(ρ⊗ ρ′)] =

= P⊗2[P⊗2
∑

η,χ∈P
(ξa ⊗ η ⊠ η ⊗ ξb) ⋆ P

⊗2∆P(ξc ⊗ χ⊠ χ⊗ ξd)]

= P⊗2
∑

η,χ∈P
P (P (ξa ⊗ η) ⋆ P (ξc ⊗ χ))⊠ P (P (η ⊗ ξb) ⋆ P (χ⊗ ξd)).

(8.3)

Next it is noted that

P (ξa ⊗ η) ⋆ P (ξc ⊗ χ) =
∑

ω,σ∈E
(ω, η)(σ, χ)(ξa ⊗ ω) ⋆ (ξc ⊗ σ)

=
∑

ω,σ∈E
(ξa ⋆ ξc)⊗ (ω ⋆ σ) δωηδσχ

= (ξa ⋆ ξc)⊗ (η ⋆ χ).

Replacing in (8.3) leads to

P⊗2[P⊗2∆P(ξa⊗ξb)⋆P
⊗2∆P(ξc⊗ξd)] = P⊗2(

∑

η,χ∈P
P (ξa⋆ξc⊗η⋆χ)⊠P (η⋆χ⊗ξb⋆ξd)).

�
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Using the above results leads to

Proposition 38.

∆((ξ ⊗ ξ′) · (ρ⊗ ρ′)) = ∆(ξ ⊗ ξ′) ·∆(ρ⊗ ρ′).

Proof.

∆((ξ ⊗ ξ′) · (ρ⊗ ρ′)) = ∆(P ((ξ ⊗ ξ′) ⋆ (ρ⊗ ρ′)))

= P⊗2∆P ((ξ ⊗ ξ′) ⋆ (ρ⊗ ρ′))

= P⊗2(∆P (ξ ⊗ ξ′) ⋆∆P(ρ⊗ ρ′))

= P⊗2[P⊗2∆P (ξ ⊗ ξ′) ⋆ P⊗2∆P(ρ⊗ ρ′)]

= P⊗2[∆(P (ξ ⊗ ξ′)) ⋆∆(P (ρ⊗ ρ′))]

= ∆(ξ ⊗ ξ′) ·∆(ρ⊗ ρ′).

�

Regarding the counit of a product the following result will be employed:

Proposition 39.

ǫ(P (η ⊗ η′)) = ǫ(η ⊗ η′) ∀ η, η′ ∈ P .

Proof. A generic element η ⊗ η′of End(P) is considered, typical terms in the de-
composition (5.6) with non-vanishing image by the projector are considered:

ǫ(P (c†jnc
†
jn−1

· · · c†j1ξa ⊗ c†inc
†
in−1

· · · c†i1ξb)) =

= ǫ(
∑

ξc∈E
(ci1ci2 · · · cinc†jnc

†
jn−1

· · · c†j1ξa, ξc) ξc ⊗ ξb)

= (ci1ci2 · · · cinc†jnc
†
jn−1

· · · c†j1ξa, ξb)
= ǫ(c†jnc

†
jn−1

· · · c†j1ξa ⊗ c†inc
†
in−1

· · · c†i1ξb).
�

Thus,

Proposition 40.

ǫ((ξa ⊗ ξb) · (ξc ⊗ ξd)) = ǫ((ξa ⊗ ξb) · 11)ǫ(12 · (ξc ⊗ ξd)).

Proof.

ǫ((ξa ⊗ ξb) · (ξc ⊗ ξd)) = ǫ(P (ξa ⋆ ξc⊗ ξb ⋆ ξd)) = ǫ(ξa ⋆ ξc⊗ ξb ⋆ ξd) = (ξa ⋆ ξc, ξb ⋆ ξd).

On the other hand,

ǫ((ξa ⊗ ξb) · 11)ǫ(12 · (ξc ⊗ ξd)) =
∑

v,u,v′

ǫ((ξa ⊗ ξb) · (v ⊗ u))ǫ((u⊗ v′) · (ξc ⊗ ξd))

=
∑

v,u,v′

δr(ξa)vδr(ξb)uδus(ξc)δv′s(ξd)(ξa, ξb)(ξc, ξd)

= (ξa ⋆ ξc, ξb ⋆ ξd) = ǫ((ξa ⊗ ξb) · (ξc ⊗ ξd)).

�
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9. The antipode

In general the axioms to be satisfied by the antipode are

S(ab) = S(b)S(a)

S((S(a⋆)⋆) = a

∆(S(a)) = S ⊗ S (∆op(a))

S(a1) · a2 ⊗ a3 = 11 ⊗ a12, (9.1)

where in the last equation Sweedler convention has been employed.
The following ansatz for the antipode is considered:

S(ξ ⊗ ω) = F (ξ, ω) ω⋆ ⊗ ξ⋆, (9.2)

where F (ξ, ω) is a numerical factor to be determined. It is fairly simple to show
that the first three axioms in (9.1) are satisfied by this definition. The proof of the
last axiom is more involved. The following preliminary results are considered:

Proposition 41. The following holds,

c†n−1c
†
n−2 · · · c†0(v0) =

∑

η∈Pn/s(η)=v0

√

µr(η)

µs(η)
η ⋆ η⋆, (9.3)

where the summation is over the orthonormal basis of elementary paths with start-
ing vertex v0 and,

(Π(0)
n ⋆Π(0)

n )c†n−1c
†
n−2 · · · c†0(v0) =

∑

ξ∈En/s(η)=v0

√

µr(ξ)

µs(ξ)
ξ ⋆ ξ⋆, (9.4)

where Π
(0)
n is the orthogonal projector over essential paths of length n mentioned

after proposition 17. The notation (Π
(0)
n ⋆ Π

(0)
n ) indicates that when applied to a

path of length 2n this operator projects over paths that are essential in its first n
steps and also essential in its last n steps.

Proof. It follows from definition (3.1).
�

Proposition 42. Let ξ, ρ ∈ En, then,

ci1 · · · cinξ⋆ ⋆ ρ = δinn−1 · · · δi10 δρξ

√

µ
vξ⋆
n

µ
vξ⋆

0

s(ξ⋆).

Proof. Since ξ⋆, ρ ∈ E then the only c operator that could give a non-zero result
when applied the path ξ⋆ ⋆ ρ is cn−1(thus im = n − 1), indeed it gives a non-
zero result only if given a certain elementary path ξ⋆I appearing in the expression
of ξ⋆there is a corresponding elementary path ρI appearing in the expression of ρ
such that the first step in ξI (i.e. the inverse of the last step of ξ⋆I ) coincides with the

Rev. Un. Mat. Argentina, Vol 51-2



168 R. TRINCHERO

first step of ρI . More precisely, if ξ⋆I = (vξ
⋆

0 , vξ
⋆

1 , · · · , vξ⋆n ) and ρI = (vρ0 , v
ρ
1 , · · · , vρn),

then

cn−1(ξ
⋆
I ⋆ ρI) = δ

vξ⋆
n vρ

0
δ
vξ⋆

n−1v
ρ
1

√

µ
vξ⋆
n

µ
vξ⋆

n−1

(vξ
⋆

0 , vξ
⋆

1 , · · · , vξ
⋆

n−1, v
ρ
1 , · · · , vρn)

= δ
vξ⋆
n vρ

0
δ
vξ⋆

n−1v
ρ
1

√

µ
vξ⋆
n

µ
vξ⋆

n−1

ξ⋆I,n−1 ⋆ ρI,n−1.

The first delta function appears because the concatenation ξ⋆ ⋆ρ should not vanish,
the second from the definition of the c operator and the last equality is just a
definition of the path ξ⋆I,n−1 ⋆ ρI,n−1. Next consider the application of a c-operator

to ξ⋆I,n−1 ⋆ ρI,n−1, in a similar fashion, only cn−2 (thus im−1 = n − 2) gives a
non-zero result, which is

cn−2(ξ
⋆
I,n−1 ⋆ ρI,n−1) = δ

vξ⋆

n−2v
ρ
2

√

√

√

√

µ
vξ⋆

n−1

µ
vξ⋆

n−2

(vξ
⋆

0 , vξ
⋆

1 , · · · , vξ
⋆

n−2, v
ρ
2 , · · · , vρn)

= δ
vξ⋆

n−2v
ρ
2

√

√

√

√

µ
vξ⋆

n−1

µ
vξ⋆

n−2

ξ⋆I,n−2 ⋆ ρI,n−2.

Proceeding in this way and collecting the contribution of each elementary term
finally leads to

ci1 · · · cimξ⋆ ⋆ ρ = δimn−1 · · · δi10 δρξ

√

µ
vξ⋆
n

µ
vξ⋆

0

s(ξ⋆).

�

Using the above result leads to

Proposition 43. Definition (9.2) satisfies (9.1) with

F (ξ, ω) =

√

µs(ω)µr(ξ)

µr(ω)µs(ξ)
.

Proof. Replacing the ansatz (9.2) in the last axiom in (9.1) leads to
∑

ξc,ξd∈E
F (ξ, ξc)(ξ

⋆
c ⊗ξ⋆) ·(ξc⊗ξd)⊠ξd⊗ω =

∑

v,u,v′∈E0

v⊗u⊠(ξ⊗ω) ·(u⊗v′). (9.5)

Employing the definition of the product and the fact that (ξ ⊗ ω) · (u ⊗ v′) =
δr(ξ)uδr(ω)v′(ξ ⊗ ω) shows that (9.5) is equivalent to

∑

ξc∈E
F (ξ, ξc)P (ξ⋆c ⋆ ξc ⊗ ξ⋆ ⋆ ξd) = δξdξ

∑

v∈E0

v ⊗ r(ξ). (9.6)

Choosing the factor F (ξ, ξc) to be of the form

F (ξ, ξc) = α(ξ)

√

µvξc
0

µvξc
n

,
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the l.h.s. of this last equation is given by
∑

ξc∈E
F (ξ, ξc)P (ξ⋆c ⋆ ξc ⊗ ξ⋆ ⋆ ξd) =

= α(ξ)
∑

v(=r(ξc))

P ((Π(0)
n ⋆Π(0)

n )c†n−1c
†
n−2 · · · c†0(v)⊗ ξ⋆ ⋆ ξd)

= α(ξ)
∑

v∈E0,ρ∈E
v ⊗ ρ((Π(0)

n ⋆Π(0)
n )c†n−1c

†
n−2 · · · c†0ρ, ξ⋆ ⋆ ξd)

= α(ξ)
∑

v∈E0,ρ∈E
v ⊗ ρ(ρ, c0 · · · cn−2cn−1(Π

(0)
n ⋆Π(0)

n )ξ⋆ ⋆ ξd)

= α(ξ)
∑

v∈E0,ρ∈E
v ⊗ ρ(ρ, r(ξ))δξξd

√

µs(ξ)

µr(ξ)

= α(ξ)

√

µs(ξ)

µr(ξ)
δξξd

∑

v∈E0

v ⊗ r(ξ),

where in the first equality we have employed (9.4) of proposition 41, the second
equality involves the definition of the projector P , the hermiticity of the projector

(Π
(0)
n ⋆Π

(0)
n ) was employed in writing the third equality, the fact that ξ⋆ and ξd are

already essential and proposition 42 were employed in the fourth equality. Thus
choosing

α(ξ) =

√

µr(ξ)

µs(ξ)
⇒ F (ξ, ξc) =

√

µr(ξ)µs(ξc)

µs(ξ)µr(ξc)

leads to the result.
�
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