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Abstract

The dynamic behavior of a two-dimensional model of a small floating structure anchored by chains is analyzed. The structure
is first modeled as a two-degrees-of-freedom oscillator with a strongly non-linear stiffness and subjected to a harmonic wave
force. This type of structure is sometimes named Catenary Anchor Leg Mooring (CALM) system. The prescription of the
vertical displacement leads to a simplified SDOF equation. An algebraic recurrence algorithm is employed to obtain a non-
truncated differential equation that may be solved with the desired accuracy. Other authors have solved similar problems
with approximate formulations of the geometric non-linearities. A numerical example is presented as an illustration. The
time integration is carried out with a standard integration scheme and a power series approach. It is found that the response
obtained after considering the strong non-linearity without previous truncations is qualitative different from the one found
with a few terms of the expansions.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Mooring structures are important to the oil and gas
industry and to the river and sea navigation. In the
first case, rather large systems are set as loading and
off-loading terminals. Smaller-size buoy with cate-
nary chains are employed as navigation aids (flashing
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lantern, radar reflector, foghorn, etc). They are some-
times referred to as Catenary Anchor Leg Mooring
(CALM) system. Frequently, a number of four to eight
anchor chains are moored to the seabed. As is known
cable structures are load adaptive. These structures
undergo a change in the geometry with the application
of loads rather than a change in stress. This feature
introduces strong nonlinearities in the system regard-
less of the elastic and linear properties of the material
and the linearity of the load. The analysis should be
able to handle this complexity and sometimes strong
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simplifications in the non-linear terms are made in or-
der for the solution to converge. As the system is ex-
cited by sea waves the response may undergo qual-
itative changes in its behavior (bifurcations) under
changes in the involved parameters.

A recent study by Esmailzadeh and Goodarzi [1] ad-
dresses a CALM system in a two-dimensional model
of a buoy with mass m moored with two catenary
chains. A differential equation of motion is derived
where the nonlinearity was approximated yielding a
cubic term. A similar rigid mass-slack mooring lines
was studied in a two-dimensional domain by San-
nasiraj et al. [2] to model pontoon-type floating break-
waters. Other effects were dealt with among others,
by Sarkar and Taylor [3]. On the other hand, the stat-
ics of a three-component mooring line was analyzed
by Smith and MacFarlane [4].

In this paper a CALM system is studied in the
two-dimensional domain. The buoy is represented
by a rigid mass m moored to the seabed with two
catenary chains. The system is thus reduced to a
mass–spring–damper oscillator with two degrees of
freedom: heave and surge. The sea waves action is
simulated with a horizontal harmonic force. Although
this is a simplified model, special attention is focused
on the nonlinearity that arises from the change of ge-
ometry of the chain. A power series approach allows
to fully model such a nonlinearity without truncation.
The non-linear differential equation is then solved
with a systematic algebraic series technique stated
before by the authors [5,6]. The resulting algorithm
is illustrated with a numerical example. The authors
believe that despite the simplicity of the model re-
garding the mathematical dimension, the hydrody-
namics and other effects, the methodology introduced
in the present work to address the mooring nonlin-
earity, may serve as a basis to be extended to other
cases.

2. Statement of the problem

The two-dimensional model is described in Fig. 1,
referring to a fixed coordinate system X, Y . Its
main parts are the platform and the chains (or
cables).

The chosen two D.O.F. are the horizontal and ver-
tical displacement of the mass center of the rigid

Fig. 1. Geometrical configuration of the two-dimensional CALM
system.

platform, q = q(t) and h = h(t), respectively. Let us
assume that the fluctuations of the sea water level h

are governed by a harmonic function, i.e.

h(t) = h0 cos �t . (1)

Thus, the equation that governs the horizontal dis-
placement of the S.D.O.F. system is

mq̈ + Cdq̇ + (Sl
Ax − Sr

Bx) = F(t), (2)

where m is the platform mass, Cd is the damping, Sl
Ax

and Sr
Bx are the horizontal components of the tension

at the chains at points A (l: left) and B (r: right), re-
spectively and F(t) is a dynamic force (e.g. the wave’s
horizontal excitation). The dot denotes derivative w.r.t.
time. Although Eq. (2) is an ordinary-looking ordinary
differential equation, the terms between parentheses in
the left-hand side are strongly non-linear. Furthermore,
their explicit expressions in terms of the variables h

and q are not easy to state. For instance, Esmailzadeh
and Goodarzi [1] propose several truncations of Tay-
lor expansions in order to be able to have an explicit
but approximated Duffing-type equation. Instead, in
this paper, a procedure to obtain a non-truncated equa-
tion will be proposed. Power series will be the main
tool to handle the algebra. Finally, the differential
equation will be written in a recurrence form. Next,
the necessary algebra to handle the chain geometry is
stated.
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2.1. Catenary chains

Initially, the geometry of the chain is governed by
the following non-linear relationship:

Y = �0

[
cosh

(
X

�0

)
− 1

]
, (3)

where �0 = S0/�, S0 is the tension at the point of null
slope (O or O ′) of the chain and � is the weight per
unit length of the chain. It is assumed, for the sake
of simplicity, that the chain remains with a horizontal
tangent at the anchor point. In particular, at point A

H = �0

[
cosh

(
L

�0

)
− 1

]
(4)

at the initial time t = t0. After some time t , the point
A|t0 (resp. B|t0 ) will move to a new position given by

H + h(t) = �l,r

[
cosh

(
L ± q(t)

�l,r

)
− 1

]
, (5)

where �=St/� and St is the horizontal component of
the chain tension at time t ; the plus sign corresponds
to the left chain and the minus sign to the right one.
Also let us introduce the notation

�l,r = L ± q(t)

�l,r
. (6)

In order to calculate the horizontal component of the
tension at time t , let us state its expression by means
of Newton’s law:

Sl
Ax = Sl

0 + mcẍ
l
c, (7a)

Sr
Ax = Sr

0 − mcẍ
r
c , (7b)

in which mc is the chain mass and ẍ
l,r
c are the accel-

erations of the mass located at the center of gravity of
each chain. It may be shown (see Appendix A for de-
tails) that the accelerations at the centroid of each of
the chains are given by

ẍl,r
c = q̈ ∓ �̈

l,r
(

H + h

l∗

)
∓ 2�̇

l,r ḣ

l∗
∓ �l,r

(
ḧ

l∗

)
,

(8)

where l∗ is the chain length.

2.2. Non-dimensionalization

Let us introduce the non-dimensional time variable

� = t/T (9)

with T being an interval of interest (to be chosen at
will). Now we denote the derivatives w.r.t. � with bar,
i.e. d(•)/d�= (•). Now the differential equation (2) is
written as

m ¯̄q + CdT q̄ + T 2(Sl
Ax − Sr

Bx) = F(�T )T 2. (10)

The term related to the chain tension now yields

(Sl
Ax − Sr

Bx) = mc

T 2 ( ¯̄xl

c + ¯̄xr

c). (11)

3. Non-truncated expression for the chain tension

Our aim is to obtain a full and explicit expression
of the type �=�(q, h). In other words, this goal might
be attained by means of several truncations of Taylor
expansion. Here an alternative is chosen so as not to
truncate the expressions in the derivation of the gov-
erning equations. At the stage of finding the numerical
results and after the desired precision is set, naturally
a practical truncation will be done. As will be seen,
all the involved variables will be expanded in power
series of q and h. From Eqs. (5) and (6) one may write

H + h = �l,r [cosh �l,r − 1] (12)

in which �l,r is implicit in �l,r and in turn the latter
is the argument of a hyperbolic cosine. Furthermore,

H

L

(
1 + h/H

1 ± q/L

)
= H + h

L ± q
= cosh � − 1

�
≡ f̂ (�).

(13)

In what follows the superscripts l and r in � will
be suppressed and used only when necessary. As is
known from the Taylor expansion of the hyperbolic
cosine

f̂ (�) = cosh � − 1

�
=
∑

k

�k�
k; with

�k = 1

(k + 1)! (k = 1, 3, 5, . . .). (14)
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Let us expand the leftmost term of Eq. (13) in a
power series (see Appendix B) as follows:

H

L

(
1 + h/H

1 ± q/L

)
=
∑

i

∑
j

A
l,r
ij qihj . (15)

The values of coefficients A
l,r
ij are known

Al
ij=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Al
i0=

H

L

(−1

L

)i

,

Al
i1=Al

i0/H,
Ar

ij=
⎧⎨
⎩Ar

i0=
H

L

(
1

L

)i

,

Ar
i1=Ar

i0/H,

the rest are null. (16)

As is observed from Eq. (14) the following series
of powers of the function � are required:

�k=
∑

i

∑
j

Rkij q
ihj . (17)

Now if we combine Eqs. (14) and (17)

f̂ (�) = f̂ [�(q, h)] = f (q, h)

=
∑

k=1,3,...

�k

∑
i

∑
j

Rkij q
ihj (18)

the following next result is obtained:

f (q, h) =
∑
i0

∑
j0

Fij q
ihj ⇒ Fij =

∑
k=1,3,5,...

�kRkij ,

(19)

where ( )0 indicates that the series start from ( ) =
0. From (13) and (15) one infers that the following
equality should hold:

Fij = Aij . (20)

Evidently,

�k+1 = �k�. (21)

This obvious statement allows finding a converging
solution by means of a recurrence algorithm. Now,
from the product of series definition

R(k+1)ij =
i∑
n0

j∑
p0

RknpR1(i−n)(j−p),

k = 1, 2, 3, . . . R0ij = �0i�0j . (22)

The �ij are the Kronecker’s delta. After the expan-
sion of (19), from (20)

�1R1ij +
∑

k=3,5,...

�kRkij = Aij . (23)

Then the R1ij ’s may be obtained from an iteration
procedure that uses the following recurrent relation-
ship:

R1ij = Aij −∑
k=3,5,...�kRkij

�1
, �1 = 1

2
, (24)

and expression (22). Thus � is fully determined for
each value of q and h (see expansion (17)). Addition-
ally, let us expand the function

�l,r =
∑

i

∑
j

B
l,r
ij qihj , (25)

where the B
l,r
ij coefficients are unknowns at this stage

and the aim of this section. Now, Eq. (6) may be writ-
ten as

�l,r�l,r = L ± q, (26)

which in terms of Eqs. (17) and (25) reads

⎛
⎝∑

i

∑
j

R
l,r
1ij q

ihj

⎞
⎠
⎛
⎝∑

i

∑
j

B
l,r
ij qihj

⎞
⎠

=
∑

i

∑
j

C
l,r
ij qihj , (27)

where from Eq. (26) C
l,r
ij = �0i�0jL ± �1i�0j . (28)

The expansion of Eq. (27) is the way to find a recur-
rence relationship for the coefficients B

l,r
ij . The prod-

uct of series yields

C
l,r
ij =

∑
k0

∑
n0

R1knB
l,r
(i−k)(j−n). (29)
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After rearranging the terms the following recurrence
equation yields:

B
l,r
ij = C

l,r
ij − (Z1ij + Z2ij + Z3ij )

R100
,

Z1ij =
i∑
k1

R1k0B
l,r
(i−k)j , Z2ij =

j∑
s1

R10sB
l,r
i(j−s),

Z3ij =
i∑
k1

j∑
n1

R1knB
l,r
(i−k)(j−n), (30)

where k1 indicates k =1, etc. Finally, by means of Eq.
(25), the function �=�(q, h) (directly proportional to
the chain tension St ) is fully defined. Given the data
of the problem its value is completely determined for
any value of q and h. The algorithm steps to find the
B

l,r
ij may be summarized as follows:

• Step 1: Coefficients A
l,r
ij are obtained from ex-

pressions (16).
• Step 2: Eqs. (24) and (22) allow for the calcula-

tion of the Rkij ’s.
• Step 3: Coefficients C

l,r
ij are found with Eq. (28).

• Step 4: Once the sums Z1ij , Z2ij and Z3ij are
calculated, the B

l,r
ij ’s yield from expression (30).

• Step 5: The tension for each q and h may be
found after obtaining � with (25). In this way
we are able to obtain an explicit expression of �
(proportional to the chain tension) which retains
the nonlinearity under study (that generated by
the change of geometry of the chain).

The convergence behavior of � is shown below in a
table included in Section 5: Numerical Applications.
The results exhibit an excellent rate of convergence.

4. Solution by means of time algebraic series

In this section the power series are used as a time
integration tool. This tool has been used successfully
by the authors previously to solve strongly non-linear
differential equations. For more details of the funda-
mentals of the technique the interested reader may
refer to Appendix B and Ref. [5,6]. Above its ap-
plication allowed the statement of a non-truncated
differential equation and at this stage finding its

numerical solution with arbitrary precision. Numeri-
cal results will be found with this technique and also
contrasted with a solution found using a Runge–Kutta
integration scheme applied to the non-truncated non-
linear differential equation stated with the above-
introduced procedure.

Let us introduce the algebraic series in � (re. � =
t/T , T is an arbitrary time interval of interest) for the
following time functions:

[qk] =
M∑
i0

Qki�
i , [�l,r ] =

M∑
i0

V
l,r
i �i ,

[hk] =
M∑
i0

hki�
i , [F ] =

M∑
i0

Gi�
i ,

[(H + h)�l,r ] =
M∑
i0

U
l,r
i �i . (31)

Note that in this case the unknowns are the Qki’s
and the coefficients h1i may be found from (1) by
means of the expansion of the cosine function with
a Taylor series in �. Also the coefficients Gi will be
known once the excitation force is introduced. The
fulfillment of the consistence condition (Appendix B)
yields

Qki =
i∑

p0

Q(k−1)pQ1(i−p),

hki =
i∑

p0

h(k−1)ph1(i−p). (32)

Eq. (25) combined with Eq. (31) and (32) yields

[�l,r ] =
∑
i0

∑
j0

B
l,r
ij

∑
k0

Qik�
k
∑
n0

hjn�
n

=
∑
i0

∑
j0

∑
k0

∑
n0

B
l,r
ij Qikhjn�

k+n

=
∑
p0

V l,r
p �p, k + n = p (33)

and

V
l,r
i =

∑
I0

∑
J0

B
l,r
IJ

i∑
p0

QIphJ(I−p),

U
l,r
i =

i∑
p0

V l,r
p [�0(i−p)H + h1(i−p)]. (34)
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Finally, the differential equation (10) may be re-
written as a function of the algebraic series coeffi-
cients, i.e.,

meq�2iQ1(i+2) + CdT �1iQ1(i+1)

+ mc

l∗
�2i[Ur

i+2 − Ul
i+2] = T 2Gi (35)

in which �1i = i+1; �2i =�1i (i+2). The recurrence
equation to find the coefficients Q1(i+2) yields

Q1(i+2) = 1

meq

{
T 2Gi

�2i

−
[
CdT Q1(i+1)

(i + 2)

+ mc

l∗
[Ur

i+2 − Ul
i+2]

]}
. (36)

Once these coefficients are found, the other Qki’s
may be obtained from (32). Thus the values of q are
determined for each t . The results are of arbitrary pre-
cision. That is, the number of exact digits is fixed and
then the number of terms in the series is increased un-
til these digits remain unchanged.

5. Numerical applications

The performance of the recurrence algorithm is
illustrated by a numerical example. A rigid two-
dimensional platform is modeled elastically supported
with catenary mooring as two chains or cables. Re-
ferring to Fig. 1 the assumed values are L = 40 m,
H = 20 m, h0 = 1.5 m, Cd = 100 N/m, m = 1000 kg,
� = 0.25 rad/s, F0 = 0.0005 Hmeq�2, � = 50 N/m.
Here meq = m + 2mc and mc is the chain mass.

In Section 3 an algorithm with power series was
constructed to find the values of � (proportional to the
cable tension) for each position of the rigid platform
(i.e. given h and q). Table 1 shows the convergence
behavior of that algorithm with q = 0.1 m and h =
0.1 m. It may be observed that it exhibits an excellent
convergence behavior.

On the other hand, a characteristic parameter for the
system can be found after a linearization of the pre-
vious algorithm. In effect, if one assumes h = 0 and
q=1, the values of �i =42.025 and �i =38.025 are ob-
tained (linear approximation). The difference between
these values multiplied by the unit weight yields the
approximated stiffness k=200 N/m and furthermore a
representative magnitude is �0 =√

k/m=0.369 rad/s

Table 1
Convergence study of values of � found with the algorithm of
Section 3

M � M �

5 42.9852849824673 13 42.9864402630189
6 42.9852849824680 14 42.9864402631089
7 42.9864291286825 15 42.9864402630202
8 42.9864291286825 16 42.9864402630202
9 42.9864401897501 17 42.9864402630202

10 42.9864401897501 18 42.9864402630202
11 42.9864402626703 19 42.9864402630202
12 42.9864402626703 20 42.9864402630202

q = 0.1 m, h = 0.1 m. M is the number of terms of the series
and � is proportional to the chain tension (Eq. (25)).

and f0 = 0.059 Hz. This is the fundamental (linear)
natural frequency.

The exciting horizontal force is assumed as F(t) =
F0 sin �f t and �f is the parameter chosen for this
study. A wide range was studied and some distinctive
results are shown. Previously it was found that 20
terms in the summations suffice to attain convergent
values. For the sake of simplicity the same number
of terms were taken to solve both the first algorithm
(finding the coefficients of the series that are involved
in the function �) and the time integration algorithm.
In all the examples, the arbitrary interval of interest
(equivalent to a time step) was taken to be T = 5 s.
The motion was investigated in the first 5000 s (time
of the experiment).

The system was released from rest. For the exciting
frequency �f =0.2 rad/s the motion of the horizontal
variable q(t) is depicted in several plots, say trajectory
(Fig. 2a), phase diagram (Fig. 2b) and the Fourier
spectrum in Fig. 2c. Additionally, the q − h trajectory
is shown in Fig. 2d. Fig. 2b also shows the Poincaré
map which reduces to a point denoting the period-1
behavior.

In Fig. 3 the variation of the trajectories as the forced
frequency varies is shown. Although not reported, the
other characteristic studies indicate the existence of a
periodic attractor. From the reported results and others
not shown here, a more tangled trajectory is observed
when the frequency is a multiple of the natural one.

Finally the results found with forcing frequency
�f =1.344 (a fractional value of the natural frequency)
are shown in Fig. 4.
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Fig. 2. Dynamic behavior of the platform with exciting frequency �f = 0.2 rad/s. (a) q(t) trajectory; (b) phase diagram with Poincaré
point; (c) Power spectrum; and (d) spatial trajectory q − h − t . q and h are in meters, and time in seconds.
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Fig. 2. (continued).

Also, the same ordinary equation was integrated
using a standard Runge–Kutta (R–K) integration
scheme. The respective phase diagram is shown in
Fig. 5. That is, Figs. 4b and 5 represent solutions of

the same ODE with the non-linear term stated with
the algorithm proposed in this work (in this particular
numerical example, the function � was expanded in
20 terms). The second stage, i.e. the time integration
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Fig. 3. Trajectories q − h found with different forcing frequencies. (natural frequency �0 = 0.396 rad/s). q and h are in meters, and time
is in seconds. (a) �f = 0.936 rad/s; (b) �f = 0.6 rad/s; (c) �f = 1 rad/s; (d) �f = 3 × 0.396 rad/s; and (e) �f = 2 rad/s.

scheme, is carried out with the power series algorithm
in the case of Fig. 4 and with an R–K routine in
Fig. 5. The graphs are identical which would allow to
infer the excellence of the proposed time integration
technique.

Finally, it should be noted that, as mentioned be-
fore, the system was reduced to a simple oscillation
with a non-linear spring and a mass. In this sense
the motions are theoretically unlimited. However, the
physical existence of the chain imposes a geometrical
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Fig. 3. (continued).
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Fig. 3. (continued).
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Fig. 3. (continued).
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Fig. 3. (continued).



14 M.B. Rosales, C.P. Filipich / International Journal of Non-Linear Mechanics 41 (2006) 1–17

Fig. 4. Dynamic behavior of the platform with exciting frequency �f = 1.344 rad/s: (a) q(t) trajectory; (b) phase diagram; (c) Power
spectrum; (d) spatial trajectory q − h − t . q and h are in meters, and time is in seconds.
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Fig. 4. (continued).

restriction that must not be surpassed in order for the
present model to be valid. Consequently, a limit value
of q exists, for each value of H and L, considering
that the vertical motion h fluctuates between −1.5 and
1.5 m. If this value is exceeded other effects should be
included, say the tight behavior of the chain. In this
example H = 20 and L = 40 m the limit value for q

is approximately 0.7 m and in all the numerical ex-
amples presented here this requirement was fulfilled.

In other cases a piecewise non-linear stiffness should
be considered (see Raghothama and Narayanan [7]).
This limitation was not taken into account in Ref. [1].

6. Final comments

The analysis of a two-dimensional model of a small
floating structure with chain mooring was carried out
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Fig. 5. Phase diagram found with non-linear ODE solved with a
standard Runge–Kutta scheme �f = 1.344 rad/s. Displacement q

is in meters, and velocity q̇ is in m/s.

with the systematic use of algebraic series. The struc-
ture was modeled as a rigid mass with a strongly non-
linear spring and a damper and the vertical displace-
ment was assumed to be coupled with an assumed
harmonic motion of the sea surface. Also a harmonic
forcing load was applied horizontally. The nonlinear-
ity, which arises from the chain response, is resolved
with an algebraic recurrence algorithm. This tool al-
lows obtaining a non-truncated formulation unlike the
usual approach of handling a Duffing-type nonlinear-
ity. The present approach leads to qualitatively differ-
ent responses due to the algorithm developed. Then a
comparison would lack significance. At a second stage
the algebraic series are also employed as a time inte-
gration technique, which had proved successful in pre-
vious studies. Numerical simulations were carried out
taking the forcing frequency �f as a varying param-
eter. The solutions found with the parameter ranging
between 0.2 and 1.5 rad/s are periodic unlike the ones
reported in [1] where truncation is used to derive the
non-linear equation. Future studies can take into ac-
count a three-dimensional model, rotational degrees of
freedom, modeling of fluid forces, etc. together with
the full modeling of the mooring nonlinearity shown
above.

Appendix A.

The accelerations of the mass center of the chains
(Eq. (8) in Section 2) may be found as follows: the
horizontal coordinate of the mass center of the left
(superscript l) and right (superscript r) chains may be
written, respectively, as

xl
c = (L + q) − �l

(
H + h

l∗

)
, (A.1)

Xr
c = (L − q) − �r

(
H + h

l∗

)
, (A.2)

where xl
c is measured from the left (point O in

Fig. 1) and XR
c is taken from point O ′. If the mass

center of the right chain is measured from the left
(i.e. from point O) its position is

xr
c = (L + q) + �r

(
H + h

l∗

)
+ 2z (A.3)

in which z is the width of the rigid platform. Applying
the derivation twice to expressions (A.1) and (A.2)
the acceleration of the mass center of the chains is
obtained

ẍl,r
c = q̈ ∓ �̈

l,r
(

H + h

l∗

)
∓ 2�̇

l,r ḣ

l∗
∓ �l,r

(
ḧ

l∗

)
,

which is reported as Eq. (8) in Section 2.

Appendix B.

In this section, well-known aspects of the power
series approach are stated. Let us consider a continu-
ous function x = x(�) with 0���1. We will denote
the expansion in algebraic series as

[x] ≡
N∑

k=0

a1k�
k (B.1)

and for powers m

[xm] ≡
N∑

k=0

amk�
k(m = 1, 2, . . .). (B.2)

In order to fulfill an consistence condition the follow-
ing relationships have to be satisfied:

[xm] = [xm−1][x]. (B.3)
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After replacing the series expressions in each factor
of this equation, one obtains the following recurrence
expressions (Cauchy products):

amk =
k∑

p=0

a(m−1)pa1(k−p) or

amk =
k∑

p=0

a(m−1)(k−p)a1p. (B.4)

Now let us expand an analytical function f = f̂ (x) =
f̂ (x(�)) = f (�) in Taylor series

f̂ (x) =
M∑

m=0

	mxm, (B.5)

where 	m are known and, in particular, we denote

[1] =
N∑

k=0

�0k�
k , (B.6)

where a0k = �0k and �0k are the Kronecker delta’s. If
we substitute Eq. (B.2) into Eq. (B.5) we may write

[f (�)] =
N∑

k=0

�k�
k, �k =

M∑
m=0

	mamk . (B.7)

This expression will be used for any analytical func-
tion. Now if we have to deal with a rational function
F̂ (x):

F̂ (x) = ĝ(x)

f̂ (x)
= g(�)

f (�)
= F(�), (B.8)

ĝ(x) and f̂ (x) being analytical functions and f̂ (0) �=
0 and ĝ(x) =∑M

m=0�mxm and �m are known. Then it
is possible to write

[g(�)] =
N∑

k=0


k�
k(a) ⇒ 
k =

M∑
m=0

�mamk (b). (B.9)

If we denote

[F(�)] =
N∑

k=0

�k�
k . (B.10)

Now the consistence condition must be applied:

[F(�)][f (�)] = [g(�)], (B.11)(
N∑

k=0

�k�
k

)(
N∑

k=0

�k�
k

)
=

N∑
k=0


k�
k, where


k =
k∑

p=0

�p�(k−p). (B.12)

The �k’s are unknowns and the sets �k and 
k are
known. It is apparent that �0 = 
0/�0. Now the recur-
rence relationship for �k is

�k = 
k −∑k
p=1�p�(k−p)

�0
, (B.13)

where �0 �= 0 and k =1, 2, . . . , N . It should be noted
that �0 �= 0 in order for F(0) to exist. Also all the
expansions can be made around �0. Here �0 = 0.
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