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a b s t r a c t

Maps representing the distribution of chemical residues over anthropogenic floors are the main diag-
nostic tools used by archaeologists for addressing the identification of geochemical signatures of past
actions. Geostatistics allows producing these maps from a sample of locations by modelling the spatial
autocorrelation structure of these kind of phenomena. However, the homogeneity of the prediction
regions is a strong assumption in the model. The presence of barriers, such as the inner walls of domestic
units, introduces discontinuities in prediction areas. In this paper, we investigate how to incorporate
information of a geographical nature into the process of geostatistical prediction. We propose the use of
cost-based distances to quantify the correlation between locations, a solution which has proved to be a
practical alternative approach for archaeological intrasite analysis. The cost-based approach produces
more reliable results avoiding the unrealistic assumption of the homogeneity of the study area. As a
working example, a case study of the distribution of two specific chemical signatures in domestic floors is
presented within a controlled ethnographical context in Northern Gujarat (India). On a broad disciplinary
scale, the benefits of using our approach include improved estimates in regions with complex geometry
and lower uncertainty in the kriging predictions.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of chemical soil composition in archaeological do-
mestic floors is becoming increasingly considered as an important
topic for historical research. Mapping the distribution of certain
combinations of chemical elements allows us to understand the
activities that were developed in the areas under study. This is
based on the idea that different social actions of production, con-
sumption or distribution are the cause of the variations observed in
the material consequences detected through fieldwork. In this case,
the variability of chemical soil composition is considered to be a
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reliable marker in order to detect, identify and analyse different
activities in domestic contexts (Rondelli et al., 2014; Salisbury,
2013; Middleton et al., 2010). The model connecting the concen-
tration of particular residues (proxies) with the specific activities
inferred from different information sources (archaeological exper-
imentation, ethnoarchaeological reasoning, etc.) is defined as an
anthropic activity marker. Nonetheless, the reading of chemical
differential concentrations in archaeological floors is not exempt of
critical reflections about its limitations (Lancelotti and Madella,
2012; Vyncke et al., 2011; Dore and L�opez Varela, 2010; Wells,
2010; Terry et al., 2004).

Geostatistical methods are increasingly used to model the re-
sults of geochemical analyses, hence facilitating the interpretation.
These techniques provide a set of statistical tools specifically
designed for spatial problems, in which predictions of missing
values are required over a region of interest where some observa-
tions have been taken. Predictions are based on an underlying
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statistical model that can take additional information into account
as explanatory variables. In addition, the prediction error can be
estimated based on propagation of uncertainty. One of the main
limits of the use of geostatistical methods for this purpose is the
assumption of a homogeneous, unrestricted space of analysis
(L�opez-Quílez and Mu~noz, 2009). This premise fails when we
consider the spatial demarcations and topography that affect the
distribution of our phenomena over the study region. The analysis
of chemical residues in a domestic unit floor is a classic example of
this kind of situation, where the walls of the house affect the dis-
tribution of the chemical elements.

In this work, we propose to overcome this problem by using
cost-based distances to quantify the correlation between sampling
locations (L�opez-Quílez and Mu~noz, 2009). Thus, we present a case
study on the distribution of chemical elements in domestic floors
within a controlled ethnographical context in North Gujarat (India)
(Rondelli et al., 2014). This paper explores the relative spatial
variability of residues, taking into consideration spatial de-
marcations, to provide a method for the detection and interpreta-
tion of specific areas of activity. Our technique, therefore, can
substantially improve the identification of both clustering patterns
and different processes of floor maintenance and postdepositional
dynamics considered as background noise (Rondelli et al., 2014;
Pecci et al., 2013; Barba, 2007; Lloyd and Atkinson, 2004).

2. On the use of non-euclidean distances in geostatistics

Geostatistics is a branch of statistics that encompasses the
techniques that apply to geographical analysis. We owe its origins
to the works of Krige (1951) and Matheron (1963) in the central
decades of the twentieth century. There are several applications of
geostatistical methods in a wide range of disciplines that share the
problem of modelling a stochastic process over a continuous spatial
region from a partial group of observations. This process of inter-
polation is commonly assumed to be Gaussian, isotropic and
intrinsically stationary (Cressie, 1993). Geostatistical modelling is
based on the principle of spatial dependence, which states that
near events are more related than distant ones. Nevertheless, what
does near mean and how do we calculate it?

Interpolation techniques assume that the correlation between
the elements of a group of observations is a function of the
Euclidean distance between them. In other words, stationarity is
often accepted to mean that the spatial point process has constant
intensity and uniform correlation depending only on the lag vector
between pairs of points (Møller and Toftaker, 2012). Considering
the inherent irregularity of geographical terrain, either the pres-
ence of barriers or the difficulty to cross a region are presented as a
major problem for this technical requirement. Imagine two loca-
tions at a given (Euclidean) distance such that they are signi-
ficatively correlated, because of underlying relevant factors
affecting both of them. Now put a barrier between them that blocks
or absorbs the effect of the underlying factors. This obviously pulls
the correlation down. Therefore, when some kind of barriers exist,
the correlation depends on something other than the simple
euclidean distance between two points, which therefore cannot
account for the correlation by itself.

There are more general situations where barriers are not abso-
lute, but regions that are either harder or easier to cross depending
on a series of relevant factors. For example, microtopography of the
study region, soil texture and composition or the relationship of
different anthropic activities between them are important partial
restrictions that should be taken into consideration. All kind of
heterogeneities in the surface in which chemical elements spread
might be modelled with a cost surface, representing how hard it is
to cross a given portion of area. And accordingly, the correlation
between two locations should be associated with the minimum-
cost path connecting them. A cost surface presenting every rele-
vant factor affecting correlation is, therefore, an efficient tool to
deal with the distribution of chemical signatures in all kind of
surfaces. In this framework, the standard geostatistical assump-
tions of a homogeneous region is a particular case where the Cost
surface is a constant 1-valued surface. Therefore, the minimum-
cost path between two given locations is the straight line con-
necting them; hence, the Cost-Based distance equals the Euclidean
distance. Also, the more general situation with barriers in the
working region is another particular case where the Cost surface
takes the value 1 over non-barrier areas and the value ∞ over
barrier areas, therefore the Cost-Based distance equals the mini-
mum distance needing to be traveled without crossing any barriers,
as was required (L�opez-Quílez and Mu~noz, 2009).

Methodologically, the first step in classical geostatistical pro-
cessing is to fit the data and its empirical semivariogram function to
a known parametric model. There is a variety of methods for esti-
mating this correlation (Cressie, 1993). Our approach here is to use
maximum likelihood methods that fit the mean value and the pa-
rameters of the semivariogram function. Once fitted, the main
analytical interest lies in obtaining spatial prediction. Kriging as-
sumes that the distance or direction between sample points reflects
a spatial correlation that can be used to explain variation in the
surface. This technique is one of the most used approaches to this
problem, in which a weighted average of the sample values is
applied to generate the prediction. That is, sample points near the
prediction's location are given larger weights than those far away.
The general formula for the interpolator is formed as a weighted
sum of the data:

bZðs0Þ ¼ XN
i¼1

liZðsiÞ

where Z(si) is the measured value at the i th location, li an unknown
weight for the measured value at the i th location, s0 the prediction
location and N the number of measured values.

Kriging determines these weights calculating them according to
the value of the semivariogram, which is a function of the Euclidean
distance (L�opez-Quílez and Mu~noz, 2009). That seems to incur into
the above mentioned error of assuming the validity of the spatial
homogeneity premise. Thus, in certain cases, alternative measure-
ments to Euclidean metrics, such as cost-based or pseudo-
Euclidean ones, represent the distance argument r of the semi-
variogram function more naturally.
2.1. Cost-based distances

Alternative measures to Euclidean distances have been largely
tested in several disciplines. A multidimensional-scaled reconfi-
guration of the spatial distribution has proved to be very useful in
some cases, allowing to create a pseudo-Euclidean framework on
which the analysis can be performed (Løland and Høst, 2003;
Negre, 2015). A fast Fourier Transform has also been explored for
integrating moving-average functions that may be used to generate
a large class of valid, flexible variogram models. This transform
allows to both compute the cross-variogram on a set of discrete lags
and to interpolate it for any continuous lag (Ver Hoef et al., 2004). In
this same direction, recent works also propose the use of Rie-
mannian metrics associated to cost-based distances and Banach
algebra using Kuratowski immersion (Mu~noz, 2012: 118). For its
relative simple implementation, the use of cost-based distances
directly into the covariancematrix of the kriging, has proved to be a
practical and competitive option for our research topic.
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From a methodological perspective, the main goal of cost-based
distances is to define the least cost path to reach a known point
from each cell location in the original raster dataset. The calculation
algorithms present the length of the irregular vectors formed by a
spatial distribution using the shortest weighted distance; that is,
the path with least accumulated cost. In order to perform these
calculations, first we need to create a cost surface, the purpose of
which is to assign an impedance value to each cell of a raster layer,
in other words, the facility with which it can be crossed. Many
different approaches have been proposed in order to fulfil the
modelling of this kind of surfaces (van Leusen, 1999; Waller and
Gotway, 2004; Awaida and Westervelt, 2006). Formally, the
resulting cost-weighted model can be defined as a function f, which
describes for each cell of our model a real, positive value repre-
senting the difficulty to go through them, that is, its cost-weighted
density. Therefore, the cost of a displacement dx at the point x is f(x)
dx. From this function, the cost of any path in A can be calculated as
the integration of every cell in the model, which has been gone
through (Mu~noz, 2012: 55). Thus, the cost of a path a between
points s1; s22A will be

Z1
0

f ðaðtÞÞa0ðtÞdt

These distances also maintain the same general properties as
their metric counterparts (Waller and Gotway, 2004: 321):

� non-negativity (d(x, y) � 0)
� symmetry (d(x,y) ¼ d(y,x))
� triangle inequality (d(x,z) � d(x,y) þ d(y,z))

This implies that these measurements could be used into geo-
statistical functions. Nevertheless, the results might not be, in some
cases, statistically significant. Themore homogeneous is the surface
under study, the less significant are the changes with respect to the
use of Euclidean measures. To obtain mathematical validity, the
resulting covariance matrix of the observations must be positive
definite. This condition requires that for any n number, set of lo-
cations s1,…,sn and complex set of coefficients f1,…,fn, the R
function verify the next relationship:

Xn
i;1¼1

aiaj R
�
d
�
si; sj

��

where d represents the cost-weighted distance between their ar-
guments (Mu~noz, 2012: 201). Ultimately, and provided verification
of the above validation, a functional model can be described sup-
plying the best linear unbiased prediction.

The adaptation of geostatistical computation to these metrics is
present in three major stages: empirical variogram computation,
variogram model parameter fitting and the actual kriging predic-
tion. Apart from observation data and prediction locations needed
for standard kriging, we also need two Cost-Based distance
matrices previously computed. One holding the distances between
observation points, a symmetric square matrix. The second one
containing the distances between the observation points and the
prediction location(s), thus a n (observations) �m (locations) sized
matrix.

The empirical variogram is computed from the observation data
only. It classifies pairs of observations into groups according to their
distance, and then computes an estimator of the theoretical var-
iogramvalue for that distance based on the differences between the
observed values. In order to make a cost-based empirical variogram
it is enough to rest on the cost-based distance values given in the
corresponding matrix in order to make the initial classification,
rather than calculating Euclidean distances. Note that this modifi-
cation produces a different grouping of observation pairs. There-
fore, variogram estimates will be different. The variogram model
parameter fitting is also based on observation data only. It is typi-
cally accomplished through testing several possible combinations
iteratively and keeping the one that maximises the likelihood
function. This implies computation of the covariance matrix for
each combination being tested. All that is needed is to ensure that
the covariance matrix is computed based on the cost-based dis-
tances provided by the previously calculated matrix. The final step
is the kriging prediction. At this point, the covariance model is
assumed to be known. Here again, we need to make sure that the
covariance matrix of the observations is computed with the cost-
based distances. In addition, the covariance between observation
points and prediction locations are to be computed in order to
make predictions. Therefore, this is when the second cost-based
distance matrix is to be used.

2.2. Methodological overview

2.2.1. Computing the cost-surface
The first operation is to encode the spatial heterogeneity of the

working area into one cost-surface. This implies some modelling
decisions and assumptions, which are not technical but scientific in
nature. In our case, we assume that the soil is homogeneous except
for the areas with solid sunken structures. These structures will
completely interrupt the continuity of the area, limiting the
dispersion of substances.

This conceptual model yields a cost-surface with a constant
value of 1 everywhere, except over the structures where it takes an
infinite value. In practice, any value larger than the diameter of the
region will suffice. Alternatively, it can be more practical to work in
the inverted scale of a conductivity surface. In this case, the values
would be 1 for regular conductivity and 0 for no conductivity, or
infinite cost. Any of these alternative surfaces can be easily pro-
duced from a digital representation of the region with a GIS soft-
ware, or with other spatially capable software like R (R Core Team,
2015).

In our case, we imported the ESRI shapefiles describing the
geometry of the structures into spatial classes defined in the R
package sp (Pebesma and Bivand, 2005). Thenwe used the function
rasterize() from the raster package (Hijmans, 2015) to produce a
discretized surfacewith constant value 1 over the region of interest,
and 0 over the solid structures. We used a resolution of 20 pixels/m.

2.2.2. Computing the cost-based distances
The cost/conductivity surface is the object representing our

model of the region, and from where the distances between loca-
tions can be computed. Specifically, two matrices of cost-based
distances are required: one n � n matrix with distances among
the n observations, and one n � m matrix with the distances be-
tween each observation to each one of the m prediction locations.

We used the centroids of the conductivity raster cells as pre-
diction locations to simplify mapping, although any set of predic-
tion locations can be used. The computation of the distance
matrices can be also be performed using a GIS software or directly
within R. L�opez-Quílez and Mu~noz (2009) use the first approach
with the help of a specific script v.costdist.mat (Mu~noz, 2015b) for
GRASS GIS (GRASS Development Team, 2010). For this study, we
used the R package geoRcb (Mu~noz, 2015b) instead.

This package provides the function distmatGen(), which auto-
matically computes the two cost-based matrices given the co-
ordinates of the observations and the conductivity surface.
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Internally, it leverages the package gdistance (van Etten, 2015) for
efficient computation of least-cost paths, while attending to all the
technical details. Ultimately, the cost-based distance is computed
using the well-known Dijkstra's algorithm for finding shortest
paths between nodes in a network.
2.2.3. Using cost-based geostatistical algorithms
The R package geoRcb (Mu~noz, 2015a) extends some functions

from the geoR package (Ribeiro and Diggle, 2015), in order to make
them capable of working with cost-based distances. Specifically,
the functions variog and likfit feature an additional argument dis-
ts.mat which takes a symmetric matrix of distances between
observation locations. These functions are respectively used to
compute empirical variograms and to fit variogrammodels. Finally,
the alternative function krige.conv performs the cost-based spatial
prediction through conventional kriging by taking the required
distance matrices as the additional arguments dd.dists.mat and
dl.dists.mat.
2.2.4. Presentation of results
We use the viridis colour palette (Garnier, 2015) for all the maps

in the present paper. This palette is perceptually uniform and is also
designed to be perceived by readers with the most common forms
of colour blindness.
Fig. 1. Locati
3. Chemical residues analysis on archaeological floors in the
presence of barriers

3.1. Context and data description

The data used in this methodological presentation were ob-
tained from a fieldwork campaign that took place in a domestic
compound in Jandhala, a village in the Patan district of North
Gujarat, India (Rondelli et al., 2014). The region of North Gujarat is a
natural corridor that connects the Indus delta with the Indian
subcontinent. The alluvial plains of North Gujarat extend NE-SW
from the foot of the Aravalli Hills to the coast of the Little Rann of
Kachchh, which is a marsh area between the lowlands of North
Gujarat and the Kachchh peninsula. To the west, the alluvial plains
reach the boundary of the Thar Desert. To the east, the limits are the
Sabarmati river catchment and the Nal Sarovar depression (Fig. 1).
Fossilized sand dunes and interdune areas that can become sea-
sonal lakes during the monsoon and post-monsoon seasons char-
acterise this landscape. As in other parts of South Asia, many of
these interdune depressions were converted into village ponds or
irrigation water tanks (Conesa et al., 2014). North Gujarat is a
sensitive, monsoonal-dependent, semi-arid region in which Indian
summer monsoon patterns cause significant variations in seasonal
precipitation at the regional and local level. Extreme climatic shifts
can generate severe droughts or floods affecting resource avail-
ability (Conesa et al., 2013). Current paleoclimatic models suggest
monsoonal stability throughout the mid-Holocene (Balbo et al.,
2014). Consequently, the cycles of activities, at both a domestic
on map.
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and public level, is still largely dependent and affected by the var-
iations in the monsoon patterns and intensity.

The Patan compound is a non-mechanised farmer's residence
built using local materials (locally sourced clay, sand and animal
dung) and traditional techniques (wattle-and-daub, plastering and
wooden structures). A topographical and architectural survey of the
whole complex was carried out in form of vectorial files, geore-
ferenced in order to be taken as study area. A complete ethno-
archaeological study was developed in order to define the types
and cycles of activities performed in the compound, as well as their
spatial distribution within the courtyard, veranda and inner house.
One of the two houses that composed the compound (located
within a common open area) was systematically sampled on a
regular lattice grid (50 cm), using a hollow metal pipe with a
diameter of 5 cm. Micromorphological floor samples were collected
and thin section produced in order to understand the construction
techniques and the formation processes of the house floors. The
results show that the loose samples collected correspond to several
years of floor use, thus representing the accumulation of repeated
activities (something akin to what can bemost probably sampled in
an archaeological context). These analyses were followed through
with Inductively Coupled Plasma e Atomic Emission Spectrometry
(ICP-AES), providing quantitative data on chemical elements.
Finally, a complete study of the use of space based on floor chemical
analysis was published (Rondelli et al., 2014).

The ethnological observation of the daily activities in the house,
as well as the study of micromorphological floor samples, allowed
the original researchers to frame the main activity areas in the
house and veranda and their floor formation processes. Under-
standing the cycles of floor maintenance through interviews and
archaeological approaches was paramount to evaluate the signifi-
cance of the results obtained from the geochemical analysis
(Rondelli et al., 2014: 486). The ethnoarchaeological approach led
to identifying two cooking areas, one in the inner house and one in
the veranda, with a total of three fireplaces (2 inside and one in the
veranda). In addition, a sleeping area, a food production-
consumption area, and a storage area composed the inner space
(Fig. 2). The main goal of the work was, therefore, to test the hy-
pothesis about the correlation of certain chemical signatures with
the specific domestic activities previously framed.

It is important to clarify that in the present work, we are not
trying to analyse in depth the specific use of space in this case
study, but to confront the previous geostatistical results with the
ones provided using our technique. In order to expound these
differences two different examples were chosen: the distribution of
Calcium residues (main chemical proxy for enclosed spaces) and a
combination of several chemical elements (Calcium, Phosphorus,
Potassium, Magnesium and Strontium) which can account for the
signature of deposited food remains areas (according to Milek,
2007 and Middleton and Price, 1996). Seventy measurements
were taken in various points distributed homogeneously over the
house and its veranda to sample the chemical composition of these
soils.

All the measurements have a weak Gaussian behaviour, due
mainly to outliers values in all the data collections, which introduce
background noise in the models. Normality of input data is one of
kriging premises in order to offer reliable predictions so the values
have been depurated, taking out the outliers which introduced
errors in fitting the variograms and the cross-validation. In the case
of the Calcium, values go from a minimum of 0.66% to a maximum
of 5.70%, being its mean value 3.11% and its median 2.95%. In the
case of deposited food remains, all the chemical elements presents
in the anthropic marker were normalised on a scale 0 to 1 before
being combined. Values go from a minimum of 1.05 to a maximum
of 3.94 in this relative scale, being its mean value 2 and its median
2.01. The walls of the house are considered non-transparent bar-
riers for the diffusion of chemical residues on the archaeological
floors. For this reason, cost-based distances from each sampling
point to everywhere else have been calculated. Fig. 3 displays the
cost-based distance maps to four selected points, showing how
these distances honour the geometry of the region:

3.2. Variogram and fitted model

Variogram features (i.e., the estimated statistical parameters)
include the nugget (the modelled discontinuity of the variogram at
a distance of zero, which can represent measurement error or
variation at distances too small to be captured with the current
spatial design), the sill (the value at which the variogram stops
increasing, an estimate of variance), and the range (the distance
where the sill is reached, meaning the distance at which samples
are no longer spatially correlated).

In both case studies, we fitted an exponential variogram model
using both Euclidean and cost-based distances. For Calcium, the
main difference was that the cost-based approach yielded a larger
range (Fig. 4; Table 1). This is usually the case, as incorporating the
geometry into the analysis helps making sense of what was before
interpreted as unstructured noise. In addition, the nugget was
higher in the estimated cost-based variogram, which resulted in
increased smoothing. On the other hand, the estimated variogram
for deposited food remains showed similar values for both ap-
proaches, with a slightly higher practical range for the Euclidean
model.

A natural question that arises is how different the prediction
values from the two types of distances are. Fig. 5 plots a pointwise
comparison of predictions, showing remarkable differences be-
tween both methods.

3.3. Comparison of kriging estimates and predicted errors

3.3.1. Calcium distribution
Fig. 6 shows the prediction in Calcium distribution for each

location using Euclidean and Cost-based distances, and their dif-
ference. There are three remarkable aspects to be noted. First, the
highest differences in prediction happen in the outer unsampled
area, especially just across the wall from the most extreme obser-
vation. The Euclidean prediction in that area is strongly influenced
by the observed values inside, in contrast to the average value
predicted by the cost-based approach. Second, the cost-based
prediction is clearly smoother, as expected given the parameter
estimates of the variogram model. This produces significant dif-
ferences in the neighbourhoods of the most extreme observations.
Finally, the walls of the house modify the prediction even in the
sampled area. For example, in the corner near the central inner wall
and across from the highest measurement, the Euclidean method
predicts higher values, undoubtedly under the influence of that
specific observation. On the contrary, the Euclidean predictions are
lower in the veranda, influenced by the observations in the interior.
In the proximities of all observations, the cost-based approach has a
larger prediction error due to its increased estimation of the nugget
(i.e. short-range variance). In the main area, the prediction errors
are practically the same with both approaches. Behind the walls,
the Euclidean prediction error is unrealistically low. Leave-one-out
Cross Validation (LOOCV) yielded similar error values for both
approaches.

3.3.2. Combined chemical signature distribution
Fig. 7 shows the prediction in the combined chemical signature

of Calcium, Phosphorus, Potassium, Magnesium and Strontium for
each location using Euclidean and Cost-based calculations, and



Fig. 2. House activity areas.
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their difference. As in the previous case study, the differences be-
tween both approaches are highest in the outer unsampled area. A
similar situation is repeated also in the north-west corner of the
house, where the very low values of the sampling points in the
veranda are trespassing their influence into the inner house pre-
dictions. The drop of about �5% prediction variance for the
Euclidean prediction in this sector (as well as circa �2% droppings
all along this separation wall) are a consequence of incorrectly
assuming that observations at the other side of the wall are close. In
the main area, the prediction errors are practically the same with
both approaches. In most of the area, the Cost-based approach is
slightly more accurate (median 1%) achieving up to 1.4% of
improvement in accuracy in the rightmost corners. Leave-one-out
Cross Validation (LOOCV) present similar error values for both
approaches.
By taking into account the heterogeneities of theworking region

using cost-based distances, our geostatistical analysis presented
differences in predictions that were remarkable in some locations.
The discrepancies reached values near 1% (Ca) and 5%
(Ca þ P þ K þ Mg þ Sr). We believe that the cost-based approach
produces more reliable results, avoiding the assumption of certain
unrealistic premises about the homogeneity of the study area. If
these remarkable differences are being detected by our cost-based
kriging in a domestic unit with very simple inner divisions (a partial
wall in the inner area and the separation between this and the
veranda), critical variability of predictions is expected to happen in
buildings that are more complex.



Fig. 3. Example cost-based surfaces for four sampling points.

Fig. 4. Euclidean and cost-based empirical (points) and fitted (lines) variograms for the Calcium (left) and the deposited food remains (right) data.
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3.3.3. Ethnoarchaeological interpretation
Archaeological reading of chemical signatures in domestic floors

is highly related to the combination of diverse element residues,
such as different combinations of Potassium, Calcium, Phosphorus,
Magnesium and Strontium for identifying deposited food remains,
living room sediments, enclosed spaces or burning areas (Rondelli
et al., 2014: 488). Calcium has long been regarded as a good indi-
cator of human activity, usually correlated with Strontium,
suggesting similar chemical pathways. This element are normally
interpreted as a good indicator of the integrity of anthropogenic
deposits (Cook and Heizer, 1965).

The previous identification of the activity areas through eth-
noarchaeological methods had allowed the proposition of a work-
ing hypothesis regarding the concentration of this marker
specifically around the storage area, located in the southeast sector
of the house. From this point of view, and taking into account only



Table 1
Estimated parameters of the euclidean and cost-based variograms for the calcium
data and deposited food remains.

Calcium Deposited food remains

Euclidean Cost-based Euclidean Cost-based

Intercept 3.12 3.17 1.95 1.94
Nugget 0.32 0.60 0.07 0.07
Partial sill 0.75 0.85 0.04 0.04
Phi 1.25 6.53 3.04 2.94
Pract. range 3.75 19.56 9.12 8.81
Log-likelihood �89.25 �89.82 �12.84 �12.77

J. Negre et al. / Journal of Archaeological Science 70 (2016) 91e10198
the house and the veranda areas, cost-based approach presents a
good-fit model of the chemical distribution of Calcium, which
literature propose relate with covered, enclosed spaces (Middleton
and Price, 1996: 679). Therefore, our preliminary working example,
taking into consideration this proxy, is as suited to test the
robustness of the method as to provide inferences about human
behaviour. This way, it is clear that the cost-based approach pro-
vides a much-refined definition of the activity areas inside the
house. In this case, it restricts the concentration of Ca in the
southeast area close to the inner wall. Not only the area of
Fig. 5. Pointwise comparison of euclidean and cost-based prediction

Fig. 6. Euclidean and cost-based predictions (left) and
concentration is better defined but also the false positive areas,
such as the external perimeter of the house or the veranda are
excluded from themap. This is of much assistance in archaeological
contexts where the physical definition of the space might not al-
ways be conserved, e.g. when the structures are built in perishable
material, such as the present ethnographic case.

In the presence of several geochemical indicators related at the
same time, a perfect delimitation of their distribution areas is
crucial for a valid inference. In our work, the combination of
different elements has allowed to identify a food production and
consumption area, where chemical traces of deposited food re-
mains and ashes from the hearth were detected (Middleton and
Price, 1996: 678, Milek, 2007: 342). This signature, in combina-
tion with other proxies, such as concentrations of highly frag-
mented charcoal or the absence of macro-remains (lithic and
zooarchaeological record), configure a specific anthropic marker in
order to frame areas of food processing, handling and consumption.
In this case, nevertheless, we confronted spatial distribution of the
geochemical signature against ethnoarchaeological observations
and interpretation of the use of social space.

The working hypothesis regarding food processing and con-
sumption areas proposed its location in the central place of the
s for the calcium data (left) and deposited food remains (right).

comparison of the results (right) for the calcium.



Fig. 7. Euclidean and cost-based predictions (left) and comparison of the results (right) for the food remains.
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inner area, in particular in the west half of it. Both predictors hit the
target in framing this activity near the central part of the house,
being the cost-based approach slightly more precise in defining the
preference for the use of thewest half of the house against the right
half. That might be clearly observed in the inner wall propinquity,
where only cost-based interpolation could discern between the
observed food consumption and handling area (west side of the
wall) and the storage area (east side of thewall). Another important
difference between both methods must be highlighted in the
north-west corner of the house. While Euclidean prediction allow
the negative values of the Veranda's north side (where food-related
activities were not performed) to influence the inner house pre-
dictions, only cost-based ones are capable to frame correctly the
extension of cooking activities in all the extension of the north wall.
Finally, both approaches identify correctly an external area of food-
related activities, but only cost-based one is capable of detecting a
slightly rupture in the continuity of the values near the external
west wall of the house, just where the external fireplace was
located. Again, Euclidean interpolation failed tomodel correctly the
spatial distribution of chemical signatures in the presence of
barriers.
4. Discussion

Despite the specific results of our case study, the proposed
method is widely applicable to any interpolations in any archaeo-
logical intrasite example. As previously indicated, the more het-
erogeneous the surface under study (especially regarding the
presence of barriers) the more useful this approach will be. The
most important aspect of this work, therefore, lies in the general
methodology for overcoming the geostatistical restriction on the
homogeneity of the prediction region. In the study of geochemical
signatures on archaeological floors, that limitation is a major
problem for obtaining significant interpretation of the sampling
data, especially in the presence of areas where different activities
are performed. Thus, spatial distribution maps of chemical residues
benefits from this methodology, since walls in domestic contexts
are relevant restrictions in their distribution. Furthermore, the
possibility of applying geostatistical techniques enables us to
obtain results based on statistical models, providing reliable pre-
dictions together with estimations of uncertainty, which commonly
used deterministic methods cannot provide. Altogether, all this
information allows the correct interpretation of the archaeological
data, both the distribution of the chemicals and the post-
depositional effects over them, linked among other factors to the
intensity of the uncertainty measure.

This kind of studies have also several fieldwork aspects to be
remarked. As a predictive model, the interpolation surfaces created
by the means of kriging approaches allow to identify possible in-
terest areas to be tested through excavation methods. Moreover, in
archaeological sites, these models can lead to the assessment of
future campaigns, informing the decision of new areas to be
excavated. It is also noted that this approach could be very bene-
ficial in order to design the best-fitted sampling strategy. The
analysis of kriging variance, for example, is a function of the form of
the variogram, the sample configuration and the sample support.
The coefficients of the model fitted to the variogram might be used
to ascertain the maximum punctual kriging variance for different
sample spacing, enabling the researcher to choose the maximum
one possible to achieve a particular precision (Lloyd and Atkinson,
2004: 160; Ebert, 2002).

Finally, ethnoarchaeological analysis of chemical soil composi-
tion has also potential applications in the field of reading behav-
ioural tendencies in the formation processes of floors. Interviews
and direct observation were conducted in order to identify the
types and cycles of activities carried out in the compound, with
specific attention to the construction andmaintenance of the floors.
Re-plastering episodes of the entire floor take place on average four
times a year together with ad-hoc re-plastering whenever the floor
is damaged. Through micrompohology analysis, this entire strati-
graphic sequence of floor construction was evaluated in order to
assess the temporal representativeness of the samples, allowing
detecting micro-shapes of activity remains accumulations between
the re-plastering episodes. The study of the use of space based on
floor chemical analysis relied, therefore, on the concept that iden-
tified residues in these interstices were the sum of different activ-
ities carried out in a specific part of the space. Hence, the samples in
the original study represented the sum of cycles of use, being the
chemical signatures average indicators of the accumulation of re-
petitive activities (Rondelli et al., 2014: 487). The identification in
this ethnoarchaeological case study of this whole process of soils
formation processes and chemical markers accumulation have
important ramifications in future archaeological analyses, allowing
to define certain aspects of floor maintenance imperceptible at first
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sight.
On the general objective of accurate readings on the spatial

trends of chemical signatures, this proposal fit into the recent
tendency on the application of quantitative methods to our disci-
pline. Since the already classic work of Lloyd and Atkinson (2004)
on the specific field of Geostatistics in Archaeology, a series of
methodological milestones have taken place. Our work aims at
joining this effort in developing by overcoming a recurrent limi-
tation of these methods: the non-Euclidean characterisation of
almost any geographical surface in the real world. As for macro-
scale archaeological cases, this is not a minor aspect to take into
consideration (Negre, 2015). The treatment of heterogeneity and
uncertainty, both in spatial and temporal spheres, has become the
focus of most of the methodological step forwards to our discipline
in the last years (Bevan et al., 2012; Buck and Sahu, 2000;
Deravignone et al., 2015; Fern�andez-L�opez de Pablo and Barton,
2015). The use of Anisotropic Geostatistics deals with both ele-
ments at the same time. The development of complex spatio-
temporal reasoning in Archaeology is highly desirable when sta-
tistical, physical and chemical groundbreaking methodological
advances are allowing a better understanding of our reality. Inter-
disciplinary work teams dealing with transversal problems are
currently the most important path into new forms to understand
and process archaeological information.

5. Conclusions

To sum up, this case study allows us to understand the main
differences on the use of either non-Euclidean distances or their
traditional metric counterpart. In this example, we tried to focus on
two specific chemical signatures that we believe that are repre-
sentative of a spatial pattern of repetitive activities. We are not
trying to frame the storage area and food-related activities areas for
good, since that would involve a series of other proxies, but in
presenting the different geochemical information obtained
depending on the methodology that we used. The sum of small
errors or imprecisions in the process of modelling the distribution
surfaces of each element is erroneously accumulated when those
are combined in a more complex chemical proxy. This is an
important question in order to explain the distribution of chemical
signatures and also for using that information in combination with
other proxies. Regression kriging using the combined trends that
can be deduced from the statistical analysis of several chemical
concentrations in each sampling point is also tied to this important
limitation. When this kind of models is used to represent the
general tendencies of geochemical residues, it is necessary to
confront the interpolation of the resultant factor with the signa-
tures of each individual sample for interpretation purposes. Even
so, spatial-temporal descriptions, such as interpolation maps, are
not explanations but are themselves something to be explained
(Barcel�o et al., 2015: 35). When dealing with the modelling of
regularities in the distribution of material consequences of past
actions, every bit of precision is required in order to understand
their causal structure. That plus of accuracy is what we look for-
ward to providing with our approach.
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