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Abstract
In this paper we analyze an eigenvalue problem related to the nonlocal 𝑝-Laplace oper-

ator plus a potential. After reviewing some elementary properties of the first eigen-

value of these operators (existence, positivity of associated eigenfunctions, simplicity

and isolation) we investigate the dependence of the first eigenvalue on the potential

function and establish the existence of some optimal potentials in some admissible

classes.
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1 INTRODUCTION

In this paper we study the following non-linear non-local eigenvalue problem{
(−Δ𝑝)𝑠𝑢 + 𝑉 (𝑥)|𝑢|𝑝−2𝑢 = 𝜆|𝑢|𝑝−2𝑢 in Ω,
𝑢 = 0 in ℝ𝑛 ⧵Ω, (1.1)

where Ω ⊂ ℝ𝑛, 𝑛 ≥ 1, is a smooth bounded domain, 0 < 𝑠 < 1 < 𝑝 < ∞, and 𝜆 ∈ ℝ. The potential 𝑉 is in𝐿𝑞(Ω), max
{
1, 𝑛

𝑠𝑝

}
<

𝑞 <∞, and (−Δ𝑝)𝑠 is the fractional 𝑝-Laplacian operator, which, in a suitable regularity class (see [14,15]), is given by

(−Δ𝑝)𝑠𝑢(𝑥) ∶= p.v.∫ℝ𝑛

|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑦. (1.2)

Observe that, in the case 𝑝 = 2, (−Δ2)𝑠 = (−Δ)𝑠 is the usual fractional Laplace operator.

First, we devoted the paper to the study of the problem (1.1). For this eigenvalue problem we prove the existence of a first

eigenvalue and then analyze properties of the associated eigenfunction.

Once the existence of this first eigenvalue is established we arrive at the main point of this article, that is the optimization of

this first eigenvalue with respect to the potential function 𝑉 .

This type of problems appears naturally in the study of the fractional Shrödinger equation. The eigenvalues and eigenfunctions

of (1.1) are the associated fundamental states of the system. This is of particular interest in the case 𝑝 = 2. See [16]. We want

to stress that all the results in this paper are new even in the linear case that corresponds to 𝑝 = 2.
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The problem that we want to address is the following. Suppose that we know that the potential 𝑉 possesses some bound (say‖𝑉 ‖𝑞 ≤𝑀), then what can be said about the fundamental state of the system? That is, if we only know the information ‖𝑉 ‖𝑞
for some 𝑞 > 1, then what bounds can we have for the first eigenvalue of (1.1) and what information can we deduce for the

associated eigenfunction.

In the classical linear setting, that is when 𝑝 = 2 and when the fractional Laplacian is replaced by the standard Laplacian

operator, this problem was first studied in [3] and then extended to the 𝑝-Laplacian operator in [11].

As far as we know, no investigation was done so far in the fractional setting.

Organization of the paper. After this short introduction, we include a section (Section 2) where some preliminaries on fractional

Sobolev spaces that are used throughout the paper are collected.

In Section 3 we analyze the problem (1.1) and show the existence of a first eigenvalue, together with a nonnegative associated

eigenfunction. Moreover, we show the simplicity and isolation of this eigenvalue.

In Section 4, we study some properties about the dependence of the principal eigenvalue on the potential function 𝑉 .

Finally, in Section 5, we prove the main results of the paper that is the study of the optimization problem for (1.1) where 𝑉

is restricted to belong to some ball in 𝐿𝑞 .

2 PRELIMINARIES

2.1 Fractional spaces
Let us recall some well known facts about fractional spaces. Among the many references in this subject, let us mention [1,8,13],

which are enough for our purposes. Also, the excellent review article [10] will cover anything that is needed here. Throughout

this section we consider 0 < 𝑠 < 1 and 1 < 𝑝 <∞ to be fixed. Given an open set Ω ⊂ ℝ𝑛, the fractional Sobolev space 𝑊 𝑠,𝑝(Ω)
is defined by

𝑊 𝑠,𝑝(Ω) =

{
𝑢 ∈ 𝐿𝑝(Ω) ∶ 𝑢(𝑥) − 𝑢(𝑦)|𝑥 − 𝑦| 𝑛𝑝+𝑠 ∈ 𝐿𝑝(Ω × Ω)

}
.

This space is endowed with the norm

‖𝑢‖𝑠,𝑝;Ω ∶= ‖𝑢‖𝑊 𝑠,𝑝(Ω) =
(‖𝑢‖𝑝

𝑝;Ω + [𝑢]𝑝
𝑠,𝑝,Ω

) 1
𝑝 ,

where

‖𝑢‖𝑝;Ω ∶= ‖𝑢‖𝐿𝑝(Ω) = (
∫Ω |𝑢|𝑝 d𝑥) 1

𝑝

and

[𝑢]𝑠,𝑝;Ω ∶=
(
∬Ω×Ω

|𝑢(𝑥) − 𝑢(𝑦)|𝑝|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑥d𝑦
) 1
𝑝

is called the Gagliardo seminorm. If Ω = ℝ𝑛, we shall omit the set in the notation:

‖𝑢‖𝑠,𝑝 ∶= ‖𝑢‖𝑠,𝑝;ℝ𝑛 , ‖𝑢‖𝑝 ∶= ‖𝑢‖𝑝;ℝ𝑛 and [𝑢]𝑠,𝑝 ∶= [𝑢]𝑠,𝑝;ℝ𝑛 .

With the above norm, 𝑊 𝑠,𝑝(Ω) is a reflexive Banach space, see [1,8].

The previous fractional space is a good candidate to find “weak solutions” to the problem (1.1). However, to deal with the

boundary condition, we preliminarily restrict ourselves to two special subspaces:

1. 𝑊
𝑠,𝑝

0 (Ω): the closure in 𝑊 𝑠,𝑝(Ω) of the space 𝐶∞
𝑐 (Ω);
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2. 𝑊 𝑠,𝑝(Ω): the space of all 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) such that 𝑢̃ ∈ 𝑊 𝑠,𝑝(ℝ𝑛), where 𝑢̃ is the extension by zero of 𝑢, outside of Ω. This

space is endowed with the norm

‖𝑢‖
𝑊 𝑠,𝑝(Ω) ∶= ‖𝑢̃‖𝑠,𝑝 = ‖𝑢̃‖𝑊 𝑠,𝑝(ℝ𝑛).

Remark 2.1. From now on, given 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) we implicitly suppose that it is defined in the whole space ℝ𝑛 extending by zero
outside of Ω; moreover, we denote this extension by the same letter 𝑢. See, for instance, Section 5 in [10] for a treatment of this
extension problem and the recent article [20] for sharp assumptions on the domains in certain cases.

The next result relates the spaces in (i) and (ii). For the proof we refer the reader to [13, Corollary 1.4.4.5].

Theorem 2.2. Let Ω ⊂ ℝ𝑛 be bounded open set with Lipschitz boundary. If 𝑠 ≠ 1
𝑝
, then

𝑊
𝑠,𝑝

0 (Ω) = 𝑊 𝑠,𝑝(Ω).

Furthermore, when 0 < 𝑠 <
1
𝑝

we have

𝑊
𝑠,𝑝

0 (Ω) = 𝑊 𝑠,𝑝(Ω) = 𝑊 𝑠,𝑝(Ω).

The following results are fractional versions of the classical embedding theorems, they can be found in [8, Corollary 4.53 and

Theorem 4.54], see also [1]. We first need the concept of extension domain.

Definition 2.1 (Extension domain). We say that an open set Ω ⊂ ℝ𝑛 is an extension domain for 𝑊 𝑠,𝑝 if there exists a positive
constant 𝐶 = 𝐶(𝑛, 𝑠, 𝑝,Ω) such that: for every function 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) there exists 𝑢̃ ∈ 𝑊 𝑠,𝑝(ℝ𝑛) with 𝑢̃(𝑥) = 𝑢(𝑥) for all 𝑥 ∈ Ω
and ‖𝑢̃‖𝑠,𝑝 ≤ 𝐶‖𝑢‖𝑠,𝑝;Ω. Some important examples of extension domains are the bounded domains with Lipschitz boundary, see
[13, Section 1.2].

Let us recall also the definition of the fractional Sobolev conjugate of 𝑝:

𝑝∗𝑠 =

{ 𝑛𝑝

𝑛 − 𝑠𝑝
if 𝑠𝑝 < 𝑛,

∞ if 𝑠𝑝 ≥ 𝑛.

Theorem 2.3. Let Ω ⊂ ℝ𝑛 be an extension domain for 𝑊 𝑠,𝑝. Then we have:

• if 𝑠𝑝 < 𝑛, 𝑊 𝑠,𝑝(Ω) is continuously embedded in 𝐿𝑞(Ω) for any 𝑞 ∈ [𝑝, 𝑝∗𝑠 ];
• if 𝑠𝑝 = 𝑛, 𝑊 𝑠,𝑝(Ω) is continuously embedded in 𝐿𝑞(Ω) for any 𝑞 ∈ [𝑝,∞);
• If 𝑠𝑝 > 𝑛, 𝑊 𝑠,𝑝(Ω) is continuously embedded in 𝐶0,𝛼(Ω) for any 𝛼 ∈

(
0, 𝑠 − 𝑛

𝑝

]
.

Theorem 2.4. Let Ω ⊂ ℝ𝑛 be a bounded extension domain for 𝑊 𝑠,𝑝. Then we have:

• if 𝑠𝑝 ≤ 𝑛, the embedding of 𝑊 𝑠,𝑝(Ω) into 𝐿𝑞(Ω) is compact for every 𝑞 ∈ [1, 𝑝∗𝑠 );

• if 𝑠𝑝 > 𝑛, the embedding of 𝑊 𝑠,𝑝(Ω) into 𝐶0,𝛼(Ω) is compact for 𝛼 ∈
(
0, 𝑠 − 𝑛

𝑝

)
.

Remark 2.5. let Ω ⊂ ℝ𝑛 be a bounded extension domain. Observe that the embedding 𝑊 𝑠,𝑝(Ω) into 𝐿𝑝(Ω) is compact for all
𝑝 ∈ (1,∞). Additionally, if max

{
1, 𝑛

𝑠𝑝

}
< 𝑞 < ∞ then{

𝑝𝑞′ < 𝑝∗𝑠 if 𝑠𝑝 ≤ 𝑛,

𝑝𝑞′ ≤ ∞ if 𝑠𝑝 > 𝑛,

where 𝑝′ is the conjugate exponent of 𝑝, 1
𝑝′
+ 1

𝑝
= 1. Thus, by Theorem 2.4, we have that the embedding of 𝑊 𝑠,𝑝(Ω) into𝐿𝑝𝑞′ (Ω)

is compact.

In order to work with weak solutions to (1.1) we need to find the weak formulation of the operator (−Δ𝑝)𝑠 defined in (1.2).

So first we need to extend the definition of (−Δ𝑝)𝑠 to the space 𝑊 𝑠,𝑝(ℝ𝑛) with values in the dual (𝑊 𝑠,𝑝(ℝ𝑛))′ = 𝑊 −𝑠,𝑝′ (ℝ𝑛).
This computation is rather direct and we include the details for the sake of completeness.

We begin with a preliminary lemma.
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Lemma 2.6. Given 𝜀 > 0 we define the approximating operators (−Δ𝑝)𝑠𝜀 as

(−Δ𝑝)𝑠𝜀𝑢(𝑥) ∶= ∫ℝ𝑛⧵𝐵𝜀(𝑥)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑦.

Then, this operator is well defined between 𝑊 𝑠,𝑝(ℝ𝑛) and 𝐿𝑝′ (ℝ𝑛). Moreover, the following estimate,

‖(−Δ𝑝)𝑠𝜀𝑢‖𝑝′ ≤ 𝐶[𝑢]
𝑝

𝑝′
𝑠,𝑝,

holds, where 𝐶 > 0 depends on 𝜀, 𝑝, 𝑛 and 𝑠.

Proof. Take 𝑢 ∈ 𝑊 𝑠,𝑝(ℝ𝑛) and 𝜀 > 0. We have

|(−Δ𝑝)𝑠𝜀𝑢(𝑥)| ≤ ∫|𝑥−𝑦|>𝜀
|𝑢(𝑥) − 𝑢(𝑦)|𝑝−1|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑦 ≤

(
∫|𝑥−𝑦|>𝜀

|𝑢(𝑥) − 𝑢(𝑦)|𝑝|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑦
) 1

𝑝′
(
∫|𝑥−𝑦|>𝜀

1|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑦
) 1

𝑝

,

and so

‖(−Δ𝑝)𝑠𝜀𝑢‖𝑝′ ≤ 𝐶𝜀,𝑝,𝑛,𝑠[𝑢]
𝑝

𝑝′
𝑠,𝑝,

where

𝐶𝜀,𝑝,𝑛,𝑠 =
(
𝑛𝜔𝑛

𝑠𝑝

) 1
𝑝

𝜀−𝑠,

as we wanted to show. □

In order to properly define the operator (−Δ𝑝)𝑠, we use the canonical inclusion of 𝐿𝑝
′ (ℝ𝑛) into 𝑊 −𝑠,𝑝′ (ℝ𝑛) given by

⟨𝑓, 𝑣⟩ ∶= ∫ℝ𝑛

𝑓𝑣 𝑑𝑥

for every 𝑣 ∈ 𝑊 𝑠,𝑝(ℝ𝑛) and therefore, we may define

(−Δ𝑝)𝑠𝑢 = lim
𝜀→0

(−Δ𝑝)𝑠𝜀𝑢

in 𝑊 −𝑠,𝑝′ (ℝ𝑛).

Proposition 2.7. For every 𝑢 ∈ 𝑊 𝑠,𝑝(ℝ𝑛), there exists the limit lim𝜀→0(−Δ𝑝)𝑠𝜀𝑢 in 𝑊 −𝑠,𝑝′ (ℝ𝑛). Moreover, it holds

⟨(−Δ𝑝)𝑠𝑢, 𝑣⟩ = lim
𝜀→0

⟨(−Δ𝑝)𝑠𝜀𝑢, 𝑣⟩ = 1
2 ∬ℝ𝑛×ℝ𝑛

|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))(𝑣(𝑥) − 𝑣(𝑦))|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑥 d𝑦.

Proof. Let 𝑣 ∈ 𝑊 𝑠,𝑝(ℝ𝑛). Hence,

⟨(−Δ𝑝)𝑠𝜀𝑢, 𝑣⟩ = ∫ℝ𝑛

(−Δ𝑝)𝑠𝜀𝑢(𝑥)𝑣(𝑥) d𝑥 = ∫ℝ𝑛 ∫|𝑥−𝑦|>𝜀
|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))𝑣(𝑥)|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑥 d𝑦.

Analogously,

⟨(−Δ𝑝)𝑠𝜀𝑢, 𝑣⟩ = −∫ℝ𝑛 ∫|𝑥−𝑦|>𝜀
|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))𝑣(𝑦)|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑥 d𝑦.

Therefore

⟨(−Δ𝑝)𝑠𝜀𝑢, 𝑣⟩ = 1
2 ∫ℝ𝑛 ∫|𝑥−𝑦|>𝜀

|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))(𝑣(𝑥) − 𝑣(𝑦))|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑥 d𝑦.

From this last equality, the result follows passing to the limit 𝜀 ↓ 0. □
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2.2 A minimum principle
Let Ω be bounded extension domain for 𝑊 𝑠,𝑝, and let 𝑉 ∈ 𝐿𝑞(Ω) with 𝑞 ∈ (1,∞) ∩

( 𝑛

𝑠𝑝
,∞

)
. We say that 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) is a

weak super-solution to {
(−Δ𝑝)𝑠𝑢 + 𝑉 (𝑥)|𝑢|𝑝−2𝑢 = 0 in Ω,

𝑢 = 0 in ℝ𝑛 ⧵Ω,
(2.1)

if

(𝑢, 𝑣) + ∫Ω 𝑉 (𝑥)|𝑢|𝑝−2𝑢𝑣 d𝑥 ≥ 0 for all 𝑣 ∈ 𝑊 𝑠,𝑝(Ω), 𝑣 ≥ 0, (2.2)

where  ∶ 𝑊 𝑠,𝑝(ℝ𝑛) ×𝑊 𝑠,𝑝(ℝ𝑛) → ℝ is defined as

(𝑢, 𝑣) = 1
2 ∬ℝ𝑛×ℝ𝑛

|𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))(𝑣(𝑥) − 𝑣(𝑦))|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑥 d𝑦.

Observe that by virtue of Proposition 2.7 this is equivalent to say that 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) is a distributional super-solution to (2.1).

Notice that 𝑢, 𝑣 ∈ 𝑊 𝑠,𝑝(Ω) are defined in the whole space, since we consider them to be extended by zero outside of Ω, see

Remark 2.1. With this convention in mind, observe that

(𝑢, 𝑢) = 1
2
[𝑢]𝑝𝑠,𝑝 for all 𝑢 ∈ 𝑊 𝑠,𝑝(Ω).

Let us now prove a minimum principle for weak super-solutions of (2.1). To this end, we follow the ideas in [4] and prove

first the next logarithmic lemma (see [9, Lemma 1.3]). Although this is not the more general version of the logarithmic lemma

(c.f. with [9, Lemma 1.3]) it will suffice our purposes and simplifies the presentation.

Lemma 2.8. Let Ω be bounded extension domain for 𝑊 𝑠,𝑝, and let 𝑉 ∈ 𝐿𝑞(Ω) with 𝑞 ∈ (1,∞) ∩
( 𝑛

𝑠𝑝
,∞

)
. Suppose that 𝑢 is a

nonnegative weak super-solution of (2.1). Then for any 𝐵𝑟 = 𝐵𝑟(𝑥0) such that 𝐵2𝑟 ⊂ Ω and 0 < 𝛿 < 1

∬𝐵𝑟×𝐵𝑟

1|𝑥 − 𝑦|𝑛+𝑠𝑝 |||||log
(
𝑢(𝑥) + 𝛿

𝑢(𝑦) + 𝛿

)|||||
𝑝

d𝑥 d𝑦 ≤ 𝐶𝑟𝑛−𝑠𝑝 + ‖𝑉 ‖1;𝐵2𝑟
,

where 𝐶 depends only on 𝑛, 𝑠, and 𝑝.

Proof. Let 𝛿 > 0 and let 𝜙 ∈ 𝐶∞
0

(
𝐵 3𝑟

2

)
be such that

0 ≤ 𝜙 ≤ 1, 𝜙 ≡ 1 in 𝐵𝑟 and |𝐷𝜙| < 𝐶𝑟−1 in 𝐵 3𝑟
2
⊂ 𝐵2𝑟.

Taking 𝑣 = (𝑢 + 𝛿)1−𝑝𝜙𝑝 as test function in (2.2) we have

−∫𝐵 3𝑟
2

𝑉 (𝑥) 𝑢𝑝−1

(𝑢 + 𝛿)𝑝−1
𝜙𝑝 d𝑥 ≤  (

𝑢, (𝑢 + 𝛿)1−𝑝𝜙𝑝
)
.

(2.3)

In the proof of Lemma 1.3 in [9], it is showed that

 (
𝑢, (𝑢 + 𝛿)1−𝑝𝜙𝑝

) ≤ 𝐶𝑟𝑛−𝑠𝑝 −∬𝐵𝑟×𝐵𝑟

1|𝑥 − 𝑦|𝑛+𝑠𝑝 |||||log
(
𝑢(𝑥) + 𝛿

𝑢(𝑦) + 𝛿

)|||||
𝑝

d𝑥 d𝑦,

where 𝐶 depends only on 𝑛, 𝑠, and 𝑝.
Then, by (2.3) and using that 0 ≤ 𝑢𝑝−1(𝑢 + 𝛿)1−𝑝𝜙𝑝 ≤ 1 in 𝐵 3𝑟

2
, the lemma holds. □

Proceeding as in the proof of Theorem A.1 in [4] and using the previous lemma, we get the following minimum principle.
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Theorem 2.9. Under the hypotheses of the previous lemma, if 𝑢 is a nonnegative weak super-solution of (2.1) and 𝑢 ≢ 0 in Ω,
then 𝑢 > 0 a.e in Ω.

Proof. Assume first that 𝑢 ≢ 0 in all connected components of Ω.
We argue by contradiction and we assume that 𝑍 = {𝑥 ∈ Ω ∶ 𝑢(𝑥) = 0} has positive measure. Since 𝑢 ≢ 0 in all connected

components of Ω, there are a ball 𝐵𝑅 = 𝐵𝑅(𝑥0) ⊂ Ω and 𝑟 ∈ (0, 𝑅∕2) such that |𝐵𝑟 ∩𝑍| > 0 and 𝑢 ≢ 0 in 𝐵𝑟.
For any 𝛿 > 0 and 𝑥 ∈ ℝ𝑛, we define

𝐹𝛿(𝑥) ∶= log
(
1 + 𝑢(𝑥)

𝛿

)
.

Observe that, if 𝑦 ∈ 𝐵𝑟 ∩𝑍 then

|𝐹𝛿(𝑥)|𝑝 = |𝐹𝛿(𝑥) − 𝐹𝛿(𝑦)|𝑝 ≤ (2𝑟)𝑛+𝑠𝑝|𝑥 − 𝑦|𝑛+𝑠𝑝 |||||log
(
𝑢(𝑥) + 𝛿

𝑢(𝑦) + 𝛿

)|||||
𝑝

for all 𝑥 ∈ 𝐵𝑟.

Then

|𝐹𝛿(𝑥)|𝑝 ≤ (2𝑟)𝑛+𝑠𝑝|𝑍 ∩ 𝐵𝑟| ∫𝐵𝑟 1|𝑥 − 𝑦|𝑛+𝑠𝑝 |||||log
(
𝑢(𝑥) + 𝛿

𝑢(𝑦) + 𝛿

)|||||
𝑝

d𝑦 for all 𝑥 ∈ 𝐵𝑟.

Therefore

∫𝐵𝑟 |𝐹𝛿(𝑥)|𝑝𝑑𝑥 ≤ (2𝑟)𝑛+𝑠𝑝|𝑍 ∩ 𝐵𝑟| ∬𝐵𝑟×𝐵𝑟

1|𝑥 − 𝑦|𝑛+𝑠𝑝 |||||log
(
𝑢(𝑥) + 𝛿

𝑢(𝑦) + 𝛿

)|||||
𝑝

d𝑥 d𝑦.

By Lemma 2.8, there is a constant 𝐶 independent of 𝛿 such that

∫𝐵𝑟 |𝐹𝛿(𝑥)|𝑝𝑑𝑥 ≤ 𝐶
𝑟𝑛

(
𝑟𝑛 + 𝑟𝑠𝑝‖𝑉 ‖1;𝐵2𝑟

)
|𝑍 ∩ 𝐵𝑟| .

Taking 𝛿 → 0 in the above inequality, we obtain

𝑢 ≡ 0 in 𝐵𝑟

which is a contradiction since 𝑢 ≢ 0 in 𝐵𝑟. Thus 𝑢 > 0 in Ω.
Now, suppose that there is𝑍 a connected components of Ω such that 𝑢 ≡ 0 in𝑍. Taking 𝜙 ∈ 𝐶∞

𝑐 (𝑍), 𝜙 > 0, as a test function
we get

(𝑢, 𝜙) ≥ 0.

Now, observe that in this case,

(𝑢, 𝜙) = −2∫Ω⧵𝑍 (𝑢(𝑥))
𝑝−1

(
∫𝑍

𝜙(𝑦)|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑦
)
d𝑥.

Therefore

∫Ω⧵𝑍 (𝑢(𝑥))
𝑝−1 ∫𝑍

𝜙(𝑦)|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑦 d𝑥 ≤ 0 for all 𝜙 ∈ 𝐶∞
𝑐 (𝑍), 𝜙 > 0.

Then 𝑢 = 0 in Ω, which is a contradiction. □
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3 THE FIRST EIGENVALUE

Throughout this section, Ω ⊂ ℝ𝑛 shall be a bounded extension domain boundary and 𝑉 ∈ 𝐿𝑞(Ω), 𝑞 ∈ (1,∞) ∩
(
𝑛

𝑠𝑝
,∞

)
. We

say that a function 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) is a weak solution of (1.1) if

(𝑢, 𝑣) + ∫Ω 𝑉 (𝑥)|𝑢|𝑝−2𝑢𝑣 d𝑥 = 𝜆∫ℝ𝑛

|𝑢|𝑝−2𝑢𝑣 d𝑥 (3.1)

for all 𝑣 ∈ 𝑊 𝑠,𝑝(Ω). In this context, we say that 𝜆 ∈ ℝ is an eigenvalue provided there exists a nontrivial weak solution

𝑢 ∈ 𝑊 𝑠,𝑝(Ω) of (1.1). The function 𝑢 is a corresponding eigenfunction.

For a study of this first eigenvalue and its associated eigenfunction in the case 𝑉 = 0 we refer to [5].

Now, by Theorem 2.9, we have:

Lemma 3.1. If 𝑢 is a nonnegative eigenfunction associated with 𝜆 then 𝑢 > 0 a.e. in Ω.

Now, our goal is to prove that the lowest (first) eigenvalue of (1.1) is

𝜆(𝑉 ) = inf
{

1
2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥 ∶ 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) and ‖𝑢‖𝑝 = 1

}
. (3.2)

The next lemma implies that 𝜆(𝑉 ) is well defined.

Lemma 3.2. Let Ω ⊂ ℝ𝑛 be a bounded extension domain. Then, given 𝜀 > 0, there is a constant 𝐶𝜀 > 0 such that||||∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥|||| ≤ 𝜀[𝑢]𝑝𝑠,𝑝 + 𝐶𝜀‖𝑉 ‖𝑞;Ω‖𝑢‖𝑝𝑝
for all 𝑢 ∈ 𝑊 𝑠,𝑝(Ω).

Proof. The lemma is trivial for 𝑉 ≡ 0, so let us suppose that 𝑉 ≢ 0. Assume by contradiction that there exist 𝜀0 > 0 and a
sequence {𝑢𝑘}𝑘∈ℕ ⊂ 𝑊 𝑠,𝑝(Ω) such ‖𝑢𝑘‖𝑝𝑞′ = 1 and

𝜀0[𝑢𝑘]𝑝𝑠,𝑝 + 𝑘‖𝑉 ‖𝑞;Ω‖𝑢𝑘‖𝑝𝑝 ≤ ||||∫Ω 𝑉 (𝑥)|𝑢𝑘|𝑝 𝑑𝑥|||| for all 𝑘 ∈ ℕ.

Then, by the Hölder inequality,

𝜀0[𝑢𝑘]𝑝𝑠,𝑝 + 𝑘‖𝑉 ‖𝑞;Ω‖𝑢𝑘‖𝑝𝑝 ≤ ‖𝑉 ‖𝑞;Ω‖𝑢𝑘‖𝑝𝑝𝑞′ for all 𝑘 ∈ ℕ. (3.3)

Therefore {𝑢𝑘}𝑘∈ℕ is bounded in 𝑊 𝑠,𝑝(Ω) and

𝑢𝑘 → 0 in 𝐿𝑝(ℝ𝑛). (3.4)

Now, as 𝑊 𝑠,𝑝(Ω) is continuously embedded in 𝑊 𝑠,𝑝(Ω), and this compactly in 𝐿𝑝𝑞′ (Ω) (by Theorem 2.4 and Remark 2.5),
there exist a subsequence (still denoted by {𝑢𝑘}𝑘∈ℕ), and some 𝑢 ∈ 𝐿𝑝𝑞

′ (Ω) such that 𝑢𝑘 → 𝑢 in𝐿𝑝𝑞′ (Ω). Then ‖𝑢‖𝑝𝑞′ = 1, which
contradicts (3.4) and completes the proofs. □

Using the previous lemma and standard compactness argument, see [11, Theorem 2.7], it follows that there is an eigenfunction

associated with 𝜆(𝑉 ), as the next theorem states.

Theorem 3.3. Let Ω ⊂ ℝ𝑛 be a bounded extension domain. Then there exists 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) such that ‖𝑢‖𝑝 = 1 and

𝜆(𝑉 ) = 1
2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥.

Moreover, 𝑢 is an eigenfunction associated with 𝜆(𝑉 ).

Remark 3.4. Any eigenfunction 𝑢 constructed in the previous theorem can be chosen to be positive. Indeed, as ||𝑢(𝑥)| − |𝑢(𝑦)|| ≤|𝑢(𝑥) − 𝑢(𝑦)| for all 𝑥, 𝑦 ∈ ℝ𝑛, then

1
2
[|𝑢|]𝑝𝑠,𝑝 + ∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥 ≤ 1

2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥 = 𝜆(𝑉 ).
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This implies that |𝑢| is an eigenfunction associated with 𝜆(𝑉 ). And by Lemma 3.1, |𝑢| > 0. Actually, Theorem 3.6 below shows
that all the eigenfunctions associated with 𝜆(𝑉 ) have constant sign.

A key ingredient in the next sections is the simplicity of the first eigenvalue 𝜆(𝑉 ). In order to prove this result we need the

following Picone-type identity (see Lemma 6.2 in [2]).

Lemma 3.5. Let 𝑝 ∈ (1,∞). For 𝑢, 𝑣 ∶ Ω → ℝ such that 𝑢 ≥ 0 and 𝑣 > 0, we have

𝐿(𝑢, 𝑣) ≥ 0 in Ω × Ω,

where

𝐿(𝑢, 𝑣)(𝑥, 𝑦) = |𝑢(𝑥) − 𝑢(𝑦)|𝑝 − |𝑣(𝑥) − 𝑣(𝑦)|𝑝−2(𝑣(𝑥) − 𝑣(𝑦))
(

𝑢𝑝(𝑥)
𝑣𝑝−1(𝑥)

− 𝑢𝑝(𝑦)
𝑣𝑝−1(𝑦)

)
.

The equality holds if and only if 𝑢 = 𝑘𝑣 in Ω for some constant 𝑘.

Theorem 3.6. Let Ω ⊂ ℝ𝑛 be a bounded extension domain. Assume that 𝑢 is a positive eigenfunction corresponding to 𝜆(𝑉 )
(see Remark 3.4). Then if 𝜆 > 0 is such that there is a nonnegative eigenfunction 𝑣 of (1.1) with eigenvalue 𝜆, then 𝜆 = 𝜆(𝑉 )
and there is 𝑘 ∈ ℝ such that 𝑣 = 𝑘𝑢 a.e. in Ω.

Proof. From the definition of 𝜆(𝑉 ), immediately it follows that 𝜆(𝑉 ) ≤ 𝜆. On the other hand, by Lemma 3.1, 𝑣 > 0 in Ω.
Let 𝑚 ∈ ℕ and 𝑣𝑚 ∶= 𝑣 + 1

𝑚
. We begin by proving that𝑤𝑚 ∶= 𝑢𝑝∕𝑣𝑝−1𝑚 ∈ 𝑊 𝑠,𝑝(Ω). First observe that𝑤𝑚 = 0 in ℝ𝑛 ⧵Ω and

𝑤𝑚 ∈ 𝐿𝑝(Ω), due to 𝑢 ∈ 𝐿∞(Ω), see Lemma A.1. Now, for all (𝑥, 𝑦) ∈ ℝ𝑛 ×ℝ𝑛 we have

|𝑤𝑚(𝑥) −𝑤𝑚(𝑦)| = |||||||
𝑢𝑝(𝑥) − 𝑢𝑝(𝑦)
𝑣
𝑝−1
𝑚 (𝑥)

−
𝑢𝑝(𝑦)

(
𝑣
𝑝−1
𝑚 (𝑥) − 𝑣

𝑝−1
𝑚 (𝑦)

)
𝑣
𝑝−1
𝑚 (𝑥)𝑣𝑝−1𝑚 (𝑦)

|||||||
≤ 𝑚𝑝−1 |𝑢𝑝(𝑥) − 𝑢𝑝(𝑦)| + ‖𝑢‖𝑝∞ |||𝑣𝑝−1𝑚 (𝑥) − 𝑣

𝑝−1
𝑚 (𝑦)|||

𝑣
𝑝−1
𝑚 (𝑥)𝑣𝑝−1𝑚 (𝑦)

≤ 𝑝𝑚𝑝−1(𝑢𝑝−1(𝑥) + 𝑢𝑝−1(𝑦))|𝑢(𝑥) − 𝑢(𝑦)| + (𝑝 − 1)‖𝑢‖𝑝∞ 𝑣𝑝−2𝑚 (𝑥) + 𝑣
𝑝−2
𝑚 (𝑦)

𝑣
𝑝−1
𝑚 (𝑥)𝑣𝑝−1𝑚 (𝑦)

|𝑣𝑚(𝑥) − 𝑣𝑚(𝑦)|
≤ 2𝑝𝑚𝑝−1‖𝑢‖𝑝−1∞ |𝑢(𝑥) − 𝑢(𝑦)| + (𝑝 − 1)‖𝑢‖𝑝∞

(
1

𝑣𝑚(𝑥)𝑣
𝑝−1
𝑚 (𝑦)

+ 1
𝑣
𝑝−1
𝑚 (𝑥)𝑣𝑚(𝑦)

)|𝑣(𝑥) − 𝑣(𝑦)|
≤ 𝐶(𝑚, 𝑝, ‖𝑢‖∞) (|𝑢(𝑥) − 𝑢(𝑦)| + |𝑣(𝑥) − 𝑣(𝑦)|) .

As 𝑢, 𝑣 ∈ 𝑊 𝑠,𝑝(Ω), we deduce that 𝑤𝑚 ∈ 𝑊 𝑠,𝑝(Ω) for all 𝑚 ∈ ℕ.
Recall that 𝑢, 𝑣 ∈ 𝑊 𝑠,𝑝(Ω) are two eigenfunctions of the problem (1.1) with eigenvalue 𝜆(𝑉 ) and 𝜆 respectively. Then, by

using the previous lemma, we deduce that

0 ≤ 1
2 ∬Ω×Ω

𝐿(𝑢, 𝑣𝑚)(𝑥, 𝑦)|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑥 d𝑦

≤ 1
2 ∬ℝ𝑛×ℝ𝑛

|𝑢(𝑥) − 𝑢(𝑦)|𝑝|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑥 d𝑦 − 1
2 ∬ℝ𝑛×ℝ𝑛

|𝑣(𝑥) − 𝑣(𝑦)|𝑝−2(𝑣(𝑥) − 𝑣(𝑦))|𝑥 − 𝑦|𝑛+𝑠𝑝
(

𝑢𝑝(𝑥)
𝑣
𝑝−1
𝑚 (𝑥)

− 𝑢𝑝(𝑦)
𝑣
𝑝−1
𝑚 (𝑦)

)
d𝑥 d𝑦

≤ 𝜆(𝑉 )∫Ω 𝑢
𝑝 d𝑥 − ∫Ω 𝑉 (𝑥)𝑢𝑝 d𝑥 − 𝜆∫Ω 𝑣

𝑝−1 𝑢𝑝

𝑣
𝑝−1
𝑚

d𝑥 + ∫Ω 𝑉 (𝑥)𝑣𝑝−1 𝑢𝑝

𝑣
𝑝−1
𝑚

d𝑥.

Taking 𝑚→ ∞ and using Fatou's lemma and the dominated convergence theorem, we infer that

∬ℝ𝑛×ℝ𝑛

𝐿(𝑢, 𝑣)(𝑥, 𝑦)|𝑥 − 𝑦|𝑛+𝑠𝑝 d𝑥 d𝑦 = 0

(recall that 𝜆(𝑉 ) ≤ 𝜆).
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Therefore, by the previous lemma, 𝐿(𝑢, 𝑣)(𝑥, 𝑦) = 0 a.e. and 𝑢 = 𝑘𝑣 for some constant 𝑘 > 0. □

Remark 3.7. As a consequence of the previous theorem, 𝜆(𝑉 ) is simple and there is a unique associated positive eigenfunction
𝑢 ∈ 𝑊 𝑠,𝑝(Ω) such that ‖𝑢‖𝑝 = 1.

To conclude this section, we prove that 𝜆(𝑉 ) is isolated. To this end, we follow the ideas in [17] and first provide a lower

bound for the measure of the nodal sets.

Lemma 3.8. Let Ω ⊂ ℝ𝑛 be a bounded extension domain. If 𝑢 is an eigenfunction associated with 𝜆 > 𝜆(𝑉 ), then

min
⎧⎪⎨⎪⎩𝐴(𝜆)

1
(1− 𝑝

𝑟
)
, 𝐴(𝜆)

1

( 1
𝑞′
− 𝑝
𝑟
)
⎫⎪⎬⎪⎭ ≤ |Ω±|,

where 𝑟 ∈ (𝑝𝑞′, 𝑝∗𝑠 ), 𝐴(𝜆) ∶=
(
𝐶
(|𝜆| + 1 + ‖𝑉 ‖𝑞;Ω))−1, 𝐶 is a constant independent of 𝑉 , 𝜆 and 𝑢, and |Ω±| is the Lebesgue

measure of Ω± = {𝑥 ∈ ℝ𝑛 ∶ 𝑢±(𝑥) ≠ 0}.

Proof. According to Theorem 3.6, 𝑢+ and 𝑢− are not trivial. We shall prove the inequality for |Ω+|, the proof of the other
inequality is similar.

Observe that 𝑢+ ∈ 𝑊 𝑠,𝑝(Ω) and

|𝑢+(𝑥) − 𝑢+(𝑦)|𝑝 ≤ |𝑢(𝑥) − 𝑢(𝑦)|𝑝−2(𝑢(𝑥) − 𝑢(𝑦))(𝑢+(𝑥) − 𝑢+(𝑦))

for all (𝑥, 𝑦) ∈ ℝ𝑛 ×ℝ𝑛. Let us recall Remark 2.1 to keep in mind that 𝑢 = 0 in ℝ𝑛 ⧵Ω. Then, using Hölder's inequality, we have

1
2
[𝑢+]𝑝𝑠,𝑝 ≤ (𝑢, 𝑢+)

= 𝜆∫Ω 𝑢
𝑝
+ d𝑥 − ∫Ω 𝑉 (𝑥)𝑢𝑝+d𝑥

≤ 𝜆∫Ω 𝑢
𝑝
+ d𝑥 + ∫Ω 𝑉−(𝑥)𝑢

𝑝
+d𝑥

≤ |𝜆|‖𝑢+‖𝑝𝑝 + ‖𝑉 ‖𝑞;Ω‖𝑢+‖𝑝𝑝𝑞′
≤

(|𝜆||Ω+|1− 𝑝𝑟 + ‖𝑉 ‖𝑞;Ω|Ω+| 1
𝑞′
− 𝑝
𝑟

)‖𝑢+‖𝑝𝑟 .

(3.5)

On the other hand, by Theorem 2.3, there is a constant 𝐶 independent of 𝑢 such that

‖𝑢+‖𝑟 ≤ 𝐶[𝑢+]𝑠,𝑝.

This and (3.5) implies that

‖𝑢+‖𝑝𝑟 ≤ 2𝐶

(
(|𝜆| + 1)|Ω+|1− 𝑝𝑟 + ‖𝑉 ‖𝑞;Ω|Ω+| 1

𝑞′
− 𝑝
𝑟

)‖𝑢+‖𝑝𝑟 ,
that is

1 ≤ 2𝐶

(
(|𝜆| + 1)|Ω+|1− 𝑝𝑟 + ‖𝑉 ‖𝐿𝑞(Ω)|Ω+| 1

𝑞′
− 𝑝
𝑟

)
.

Therefore

min
⎧⎪⎨⎪⎩𝐴(𝜆)

1
(1− 𝑝

𝑟
)
, 𝐴(𝜆)

1

( 1
𝑞′
− 𝑝
𝑟
)
⎫⎪⎬⎪⎭ ≤ |Ω+|.

□

Theorem 3.9. Let Ω ⊂ ℝ𝑛 be a connected bounded extension domain. Then the first eigenvalue 𝜆(𝑉 ) is isolated.
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Proof. By definition 𝜆(𝑉 ) is left-isolated. To prove that 𝜆(𝑉 ) is right-isolated, we argue by contradiction. We assume that there
exists a sequence of eigenvalues {𝜆𝑘}𝑘∈ℕ such that 𝜆𝑘 ↘ 𝜆(𝑉 ) as 𝑘 → ∞. Let 𝑢𝑘 be an eigenfunction associated with 𝜆𝑘 with‖𝑢𝑘‖𝑝 = 1. Then, thanks to Lemma 3.2, {𝑢𝑘}𝑘∈ℕ is bounded in 𝑊 𝑠,𝑝(Ω) and therefore we can extract a subsequence (that we
still denoted by {𝑢𝑘}𝑘∈ℕ) such that

𝑢𝑘 ⇀ 𝑢 weakly in 𝑊 𝑠,𝑝(Ω), 𝑢𝑘 → 𝑢 in 𝐿𝑝𝑞′ (ℝ𝑛), 𝑢𝑘 → 𝑢 in 𝐿𝑝(ℝ𝑛).

Observe that 𝑢𝑝
𝑘
→ 𝑢𝑝 in 𝐿𝑞′ (ℝ𝑛) since 𝑢𝑘 → 𝑢 in 𝐿𝑝𝑞′ (ℝ𝑛). Then ‖𝑢‖𝑝 = 1, and

1
2
[𝑢]𝑝𝑠,𝑝 ≤ lim inf

𝑘→∞
1
2
[𝑢𝑘]𝑝𝑠,𝑝 = lim

𝑘→∞
𝜆𝑘 ∫ℝ𝑛

|𝑢𝑘(𝑥)|𝑝 d𝑥 − ∫Ω 𝑉 (𝑥)|𝑢𝑘|𝑝 d𝑥 = 𝜆(𝑉 )∫ℝ𝑛

|𝑢(𝑥)|𝑝 d𝑥 − ∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥.
Hence, 𝑢 is an eigenfunction associated with 𝜆(𝑉 ). By Theorem 3.6, we can assume that 𝑢 > 0.

On the other hand, by Egorov's theorem, for any 𝜀 > 0 there exists a subset 𝑈𝜀 of Ω such that |𝑈𝜀| < 𝜀 and 𝑢𝑘 → 𝑢 > 0
uniformly in Ω ⧵ 𝑈𝜀. This contradicts the previous lemma. Indeed,

0 < lim
𝑘→∞

min
⎧⎪⎨⎪⎩𝐴(𝜆𝑘)

1
(1− 𝑝

𝑟
)
, 𝐴(𝜆𝑘)

1

( 1
𝑞′
− 𝑝
𝑟
)
⎫⎪⎬⎪⎭ ≤ lim

𝑘→∞
|{𝑥 ∈ ℝ𝑛 ∶ 𝑢𝑘 < 0}|,

where 𝑟 ∈
(
𝑝𝑞′, 𝑝∗𝑠

)
. □

4 THE FUNCTIONAL 𝝀(𝑽 )

In this section we shall provide some useful properties of the functional

𝜆 ∶ 𝐿𝑞(Ω) → ℝ, max
{
1, 𝑛

𝑠𝑝

}
< 𝑞 < ∞,

that associate with every 𝑉 ∈ 𝐿𝑞(Ω) the number 𝜆(𝑉 ) given by (3.2).

From now on, Ω ⊂ ℝ𝑛 denotes a bounded extension domain and 𝑉 is a function in 𝐿𝑞(Ω), with max
{
1, 𝑛

𝑠𝑝

}
< 𝑞 < ∞.

Lemma 4.1. The functional 𝜆 is concave in 𝐿𝑞(Ω). Moreover, for any 𝑀 > 0 there exists a constant 𝐶 = 𝐶(𝑠, 𝑝, 𝑞,𝑀) such
that

𝜆(𝑉 ) ≤ 𝐶

for all 𝑉 ∈ 𝐿𝑞(Ω) such that ‖𝑉 ‖𝑞;Ω ≤𝑀 .

Proof. Given 𝑉 ,𝑊 ∈ 𝐿𝑞(Ω), we have by definition that

𝜆(𝑉 ) ≤ 1
2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥,

𝜆(𝑊 ) ≤ 1
2
[𝑢]𝑝𝑠,𝑝 + ∫Ω𝑊 (𝑥)|𝑢|𝑝 d𝑥,

for all 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) with ‖𝑢‖𝑝 = 1. Then, for any 𝑡 ∈ (0, 1) and 𝑉 ,𝑊 ∈ 𝐿𝑞(Ω),

𝑡𝜆(𝑉 ) + (1 − 𝑡)𝜆(𝑊 ) ≤ 1
2
[𝑢]𝑝𝑠,𝑝 + ∫Ω(𝑡𝑉 (𝑥) + (1 − 𝑡)𝑊 (𝑥))|𝑢|𝑝 d𝑥

for all 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) such that ‖𝑢‖𝑝 = 1. After recalling the definition of the functional 𝜆, we deduce then that

𝑡𝜆(𝑉 ) + (1 − 𝑡)𝜆(𝑊 ) ≤ 𝜆(𝑡𝑉 + (1 − 𝑡)𝑊 ),

that is, 𝜆 is concave.
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Let us now prove that 𝜆 is locally bounded in 𝐿𝑞(Ω). Indeed, given 𝑀 > 0 and 𝑉 ∈ 𝐿𝑞(Ω) with ‖𝑉 ‖𝑞;Ω ≤𝑀 , fix a function
𝜙 ∈ 𝐶∞

𝑐 (Ω) ⊂ 𝑊 𝑠,𝑝(Ω) such that ‖𝜙‖𝑝 = 1. Thus,

𝜆(𝑉 ) ≤ 1
2
[𝜙]𝑝𝑠,𝑝 + ∫Ω 𝑉 (𝑥)|𝜙|𝑝 d𝑥 ≤ 1

2
[𝜙]𝑝𝑠,𝑝 + ‖𝑉 ‖𝑞;Ω‖𝜙‖𝑝

𝑝𝑞′
≤ 1

2
[𝜙]𝑝𝑠,𝑝 +𝑀‖𝜙‖𝑝

𝑝𝑞′
.

□

Our next aim is to show that 𝜆 is continuous. We'll need the following estimate, related to that in Lemma 3.2. The only

difference with Lemma 3.2 is the fact that here we need the constants to be uniform with respect to the potential function 𝑉 .

Lemma 4.2. Given 𝑀 > 0, for any 𝜀 > 0 there is a constant 𝐶𝜀 > 0 such that||||∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥|||| ≤ 𝜀[𝑢]𝑝𝑠,𝑝 + 𝐶𝜀‖𝑉 ‖𝑞;Ω‖𝑢‖𝑝𝑝 (4.1)

for all 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) and 𝑉 ∈ 𝐿𝑞(Ω) such that ‖𝑉 ‖𝐿𝑞(Ω) ≤𝑀 .

Proof. Suppose by contradiction that for all 𝑘 ∈ ℕ there exist 𝜀0 > 0 and a sequence {(𝑢𝑘, 𝑉𝑘)}𝑘∈ℕ ⊂ 𝑊 𝑠,𝑝(Ω) × 𝐿𝑞(Ω) such
that ‖𝑢𝑘‖𝑝𝑞′ = 1, ‖𝑉𝑘‖𝑞;Ω ≤𝑀 and

||||∫Ω 𝑉𝑘(𝑥)|𝑢𝑘|𝑝 d𝑥|||| ≥ 𝜀0[𝑢𝑘]𝑝𝑠,𝑝 + 𝑘‖𝑉𝑘‖𝑞;Ω‖𝑢𝑘‖𝑝𝑝 for all 𝑘 ∈ ℕ. (4.2)

Then, by Hölder's inequality, we have

𝜀0[𝑢𝑘]𝑝𝑠,𝑝 + 𝑘‖𝑉𝑘‖𝑞;Ω‖𝑢𝑘‖𝑝𝑝 ≤ ‖𝑉𝑘‖𝑞;Ω‖𝑢𝑘‖𝑝𝑝𝑞′ ≤𝑀, (4.3)

‖𝑢𝑘‖𝑝;Ω ≤ ‖𝑢𝑘‖𝑝𝑞′;Ω|Ω| 1
𝑝𝑞 , (4.4)

for all 𝑘 ∈ ℕ. Therefore {(𝑢𝑘, 𝑉𝑘)}𝑘∈ℕ is bounded in 𝑊 𝑠,𝑝(Ω) × 𝐿𝑞(Ω) and

lim
𝑘→∞

‖𝑉𝑘‖𝑞;Ω‖𝑢𝑘‖𝑝𝑝 = 0. (4.5)

Thus, there exist a subsequence (still denoted by {(𝑢𝑘, 𝑉𝑘)}𝑘∈ℕ) and some (𝑢, 𝑉 ) ∈ 𝑊 𝑠,𝑝(Ω) × 𝐿𝑞(Ω), such that

𝑉𝑘 ⇀ 𝑉 weakly in 𝐿𝑞(Ω), 𝑢𝑘 ⇀ 𝑢 weakly in 𝑊 𝑠,𝑝(Ω), 𝑢𝑘 → 𝑢 in 𝐿𝑝𝑞′ (ℝ𝑛). (4.6)

This implies that ‖𝑢‖𝑝𝑞′ = 1, ‖𝑉 ‖𝑞;Ω ≤𝑀 and

|𝑢𝑘|𝑝 → |𝑢|𝑝 in 𝐿𝑞′ (ℝ𝑛), 𝑢𝑘 → 𝑢 in 𝐿𝑝(ℝ𝑛).

Using (4.5), we deduce that ‖𝑉 ‖𝑞;Ω‖𝑢‖𝑝 = 0. As ‖𝑢‖𝑝𝑞′ = 1, then 𝑉 ≡ 0.
Therefore 𝑉𝑘 → 0 in 𝐿𝑞(Ω). Using this and (4.6) in (4.2), we deduce that

[𝑢]𝑝𝑠,𝑝 ≤ lim inf
𝑘→∞

[𝑢𝑘]𝑝𝑠,𝑝 ≤ 0,

which implies that 𝑢 ≡ 0. This contradiction completes the proof. □

Lemma 4.3. The functional 𝜆 is continuous.

Proof. A proof of this result follows directly from the fact that any convex and locally bounded function in a Banach space is
locally Hölder continuous (see [18]). Nevertheless, we include here a direct proof of this fact since some of the arguments will
be needed in the sequel.

Let 𝑉 ∈ 𝐿𝑞(Ω) and {𝑉𝑘}𝑘∈ℕ be a sequence in 𝐿𝑞(Ω) such that

𝑉𝑘 → 𝑉 in 𝐿𝑞(Ω). (4.7)

Let us prove that 𝜆(𝑉𝑘) → 𝜆(𝑉 ) as 𝑘→ ∞.
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Let {𝑢𝑘}𝑘∈ℕ be a sequence in 𝑊 𝑠,𝑝(Ω) such that ‖𝑢𝑘‖𝑝 = 1 and

𝜆(𝑉𝑘) =
1
2
[𝑢𝑘]𝑝𝑠,𝑝 + ∫Ω 𝑉𝑘(𝑥)|𝑢𝑘|𝑝 d𝑥 for all 𝑘 ∈ ℕ.

Then, for any 𝑘 ∈ ℕ and 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) such that ‖𝑢‖𝐿𝑝(Ω) = 1,

𝜆(𝑉𝑘) ≤ 1
2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉𝑘(𝑥)|𝑢|𝑝 d𝑥.

Thus, using (4.7), we deduce that

lim sup
𝑘→∞

𝜆(𝑉𝑘) ≤ 1
2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥

for all 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) with ‖𝑢‖𝑝 = 1. Hence

lim sup
𝑘→∞

𝜆(𝑉𝑘) ≤ 𝜆(𝑉 ). (4.8)

Now, let us take a subsequence {𝑉𝑘𝑗}𝑗∈ℕ of {𝑉𝑘}𝑘∈ℕ so that

lim
𝑗→∞

𝜆
(
𝑉𝑘𝑗

)
= lim inf

𝑘→∞
𝜆(𝑉𝑘). (4.9)

By (4.7), we can assume that for any 𝑗 ∈ ℕ we have that ‖‖‖𝑉𝑘𝑗‖‖‖𝐿𝑞(Ω) ≤𝑀 for some suitable constant 𝑀 . Then, by Lemmas 4.1
and 4.2, there exist positive constants 𝐶 and 𝐷 independent of 𝑗 such that

𝐶 ≥ 𝜆(𝑉𝑘𝑗 ) =
1
2
[
𝑢𝑘𝑗

]𝑝
𝑠,𝑝

+ ∫Ω 𝑉𝑘𝑗 (𝑥)|𝑢𝑘𝑗 |𝑝 d𝑥 ≥ 1
2
[
𝑢𝑘𝑗

]𝑝
𝑠,𝑝

− 1
4
[
𝑢𝑘𝑗

]𝑝
𝑠,𝑝

−𝐷‖𝑉𝑘𝑗‖𝑞;Ω‖𝑢𝑘𝑗‖𝑝𝑝.
Therefore [

𝑢𝑘𝑗

]𝑝
𝑠,𝑝

≤ 4(𝐶 +𝐷𝑀)

for all 𝑗 ∈ ℕ. Then,
{
𝑢𝑘𝑗

}
𝑗∈ℕ

is bounded in 𝑊 𝑠,𝑝(Ω) and there exist a subsequence (still denoted by
{
𝑢𝑘𝑗

}
𝑗∈ℕ

) and some

𝑢 ∈ 𝑊 𝑠,𝑝(Ω) such that

𝑢𝑘𝑗 ⇀ 𝑢 weakly in 𝑊 𝑠,𝑝(Ω), 𝑢𝑘𝑗 → 𝑢 strongly in 𝐿𝑝(ℝ𝑛), 𝑢𝑘𝑗 → 𝑢 strongly in 𝐿𝑝𝑞′ (ℝ𝑛).

Thus ‖𝑢‖𝑝 = 1 and

𝑢
𝑝

𝑘𝑗
→ 𝑢𝑝 strongly in 𝐿𝑞′ (ℝ𝑛),

Now, using (4.7) and (4.9), we have

lim inf
𝑘→∞

𝜆(𝑉𝑘) = lim
𝑗→∞

𝜆(𝑉𝑘𝑗 ) = lim
𝑗→∞

1
2
[𝑢𝑘𝑗 ]

𝑝
𝑠,𝑝 + ∫Ω 𝑉𝑘𝑗 (𝑥)|𝑢𝑘𝑗 |𝑝 d𝑥 ≥ 1

2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥 ≥ 𝜆(𝑉 ).

This and (4.8) imply that

lim
𝑘→∞

𝜆(𝑉𝑘) = 𝜆(𝑉 );

and the proof is complete. □
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Remark 4.4. Let 𝑉 ∈ 𝐿𝑞(Ω), and let {𝑉𝑘}𝑘∈ℕ be a sequence in 𝐿𝑞(Ω) such that 𝑉𝑘 → 𝑉 . Suppose that {𝑢𝑘}𝑘∈ℕ ⊂ 𝑊 𝑠,𝑝(Ω)
is the sequence of the positive eigenfunctions associated with 𝜆(𝑉𝑘) with ‖𝑢𝑘‖𝑝 = 1. Then, proceeding as in the proof of the
previous lemma, it is possible to extract a subsequence {𝑢𝑘𝑗}𝑗∈ℕ such that

𝑢𝑘𝑗 ⇀ 𝑢 weakly in 𝑊 𝑠,𝑝(Ω), 𝑢𝑘𝑗 → 𝑢 strongly in 𝐿𝑝(ℝ𝑛), 𝑢𝑘𝑗 → 𝑢 strongly in 𝐿𝑝𝑞′ (ℝ𝑛).

Therefore

𝜆(𝑉 ) = lim
𝑗→∞

𝜆(𝑉𝑘𝑗 ) = lim
𝑗→∞

1
2
[𝑢𝑘𝑗 ]

𝑝
𝑠,𝑝 + ∫Ω 𝑉𝑘𝑗 (𝑥)|𝑢𝑘𝑗 |𝑝 d𝑥 ≥ 1

2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥 ≥ 𝜆(𝑉 ).

Then 𝑢 is the positive eigenfunction of 𝜆(𝑉 ) normalized by ‖𝑢‖𝑝 = 1; additionally
[
𝑢𝑘𝑗

]𝑝
𝑠,𝑝

→ [𝑢]𝑝𝑠,𝑝. Thereby 𝑢𝑘𝑗 → 𝑢 in

𝑊 𝑠,𝑝(Ω). In fact, proceeding as before, we observe that all subsequences of {𝑢𝑘}𝑘∈ℕ have a further subsequence that converges
to 𝑢 in 𝑊 𝑠,𝑝(Ω). From that, we conclude that 𝑢𝑘 → 𝑢 in 𝑊 𝑠,𝑝(Ω).

With the continuity of the functional 𝜆 on hand, let us go further and prove a differentiability property. Recall that for 𝑉 ∈
𝐿𝑞(Ω) such that ‖𝑉 ‖𝑞;Ω = 1 the tangent space of 𝜕𝐵(0, 1) = {𝑉 ∈ 𝐿𝑞(Ω) ∶ ‖𝑉 ‖𝑞;Ω = 1} at 𝑉 is

𝑇𝑉 (𝜕𝐵(0, 1)) =
{
𝑊 ∈ 𝐿𝑞(Ω) ∶ ∫Ω |𝑉 |𝑞−2𝑉 𝑊 d𝑥 = 0

}
.

Given 𝑊 ∈ 𝑇𝑉 (𝜕𝐵(0, 1)) and 𝛼 ∶ (−1, 1) → 𝐿𝑞(Ω) a differentiable curve such that

𝛼(𝑡) ∈ 𝜕𝐵(0, 1) for all 𝑡 ∈ (−1, 1), 𝛼(0) = 𝑉 and 𝛼′(0) = 𝑊 ,

we define 𝜆̃ ∶ (−1, 1) → ℝ by 𝜆̃(𝑡) ∶= 𝜆(𝑉𝑡), where 𝑉𝑡 = 𝛼(𝑡). By the previous lemma 𝜆̃ is continuous. Moreover:

Lemma 4.5. 𝜆̃ is differentiable at 𝑡 = 0 and

𝜆̃′(0) = ∫Ω𝑊 (𝑥)|𝑢|𝑝 d𝑥,
where 𝑢 is the positive eigenfunction associated with 𝜆(𝑉 ) normalized by ‖𝑢‖𝑝 = 1.

Proof. We begin the proof by observing that

𝜆̃(𝑡) − 𝜆̃(0) = 𝜆(𝛼(𝑡)) − 𝜆(𝑉 ) ≤ ∫Ω(𝑉𝑡(𝑥) − 𝑉 (𝑥))|𝑢|𝑝 d𝑥
then

lim sup
𝑡→0+

𝜆̃(𝑡) − 𝜆̃(0)
𝑡

≤ ∫Ω𝑊 (𝑥)|𝑢|𝑝 d𝑥,
lim inf
𝑡→0−

𝜆̃(𝑡) − 𝜆̃(0)
𝑡

≥ ∫Ω𝑊 (𝑥)|𝑢|𝑝 d𝑥. (4.10)

Let {𝑡𝑘}𝑘∈ℕ be a sequence in (0, 1) such that 𝑡𝑘 → 0+ and

lim
𝑘→∞

𝜆̃(𝑡𝑘) − 𝜆̃(0)
𝑡

= lim inf
𝑡→0+

𝜆̃(𝑡) − 𝜆̃(0)
𝑡

Since 𝜆̃(𝑡𝑘) → 𝜆̃(0), by Remark 4.4, we have that

𝑢𝑘 → 𝑢 in 𝑊 𝑠,𝑝(Ω),

where 𝑢𝑘 and 𝑢 are the positive normalized eigenfunctions associated with 𝜆(𝑉𝑡𝑘) and 𝜆(𝑉 ), respectively. Then

lim inf
𝑡→0+

𝜆̃(𝑡) − 𝜆̃(0)
𝑡

= lim
𝑘→∞

𝜆̃(𝑡𝑘) − 𝜆̃(0)
𝑡

≥ lim
𝑘→∞∫Ω

(𝑉𝑡𝑘(𝑥) − 𝑉 (𝑥))
𝑡𝑘

|𝑢𝑡𝑘 |𝑝 d𝑥 = ∫Ω𝑊 (𝑥)|𝑢|𝑝 d𝑥. (4.11)
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Similarly, we can see that

lim sup
𝑡→0−

𝜆̃(𝑡) − 𝜆̃(0)
𝑡

≤ ∫Ω𝑊 (𝑥)|𝑢|𝑝 d𝑥. (4.12)

Putting together (4.10), (4.11) and (4.12), we conclude that

lim
𝑡→0

𝜆̃(𝑡) − 𝜆̃(0)
𝑡

= ∫Ω𝑊 (𝑥)|𝑢|𝑝 d𝑥,
as we wanted to show. □

5 THE OPTIMIZATION PROBLEMS

In this section we prove the existence and characterizations of optimal potentials for the first eigenvalue of (1.1). As in the

previous section, Ω ⊂ ℝ𝑛 denotes a bounded extension domain and 𝑉 is a function in 𝐿𝑞(Ω), with 𝑞 ∈ (1,∞) ∩
(
𝑛

𝑠𝑝
,∞

)
.

Let us begin with the optimization problem when the potential function 𝑉 is restricted to a bounded closed convex subset of

𝐿𝑞(Ω).

Theorem 5.1. Let  be a bounded closed convex subset of 𝐿𝑞(Ω). Then there exist a unique 𝑉 ∗ ∈  such that

𝜆(𝑉 ∗) = max{𝜆(𝑉 ) ∶ 𝑉 ∈ }
and 𝑉∗ ∈  (not necessarily unique) such that

𝜆(𝑉∗) = min{𝜆(𝑉 ) ∶ 𝑉 ∈ }. (5.1)

Proof. First we show that there is a unique 𝑉 ∗ ∈  such that

𝜆(𝑉 ∗) = max{𝜆(𝑉 ) ∶ 𝑉 ∈ }.
Let {𝑉𝑘}𝑘∈ℕ ⊂  be such that

lim
𝑘→∞

𝜆(𝑉𝑘) = sup{𝜆(𝑉 ) ∶ 𝑉 ∈ }.
Since  is bounded, there exist a subsequence (still denoted by {𝑉𝑘}𝑘∈ℕ) and 𝑉 ∗ ∈ 𝐿𝑞(Ω) such that

𝑉𝑘 ⇀ 𝑉 ∗ weakly in 𝐿𝑞(Ω). (5.2)

In fact, since  is closed convex subset of 𝐿𝑞(Ω) it follows that  is weakly closed and so 𝑉 ∗ ∈ . Then

𝜆(𝑉 ∗) ≤ sup{𝜆(𝑉 ) ∶ 𝑉 ∈ }. (5.3)

On the other hand, for any 𝜀 > 0 there exists 𝑢 ∈ 𝑊 𝑠,𝑝(Ω) such that

𝜆(𝑉 ∗) + 𝜀 ≥ 1
2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉

∗(𝑥)|𝑢|𝑝 d𝑥.
Then, using that |𝑢|𝑝 ∈ 𝐿𝑞

′ (Ω) (since 𝑞 > 𝑛

𝑠𝑝
) and (5.2), we deduce that

𝜆(𝑉 ∗) + 𝜀 ≥ 1
2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉

∗(𝑥)|𝑢|𝑝 d𝑥 = 1
2
[𝑢]𝑝𝑠,𝑝 + lim

𝑘→∞∫Ω 𝑉𝑘(𝑥)|𝑢|𝑝 d𝑥 ≥ lim
𝑘→∞

𝜆(𝑉𝑘) = sup{𝜆(𝑉 ) ∶ 𝑉 ∈ }.
Therefore,

𝜆(𝑉 ∗) ≥ sup{𝜆(𝑉 ) ∶ 𝑉 ∈ }. (5.4)
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The previous equation and (5.3) imply that

𝜆(𝑉 ∗) = max{𝜆(𝑉 ) ∶ 𝑉 ∈ }.
Suppose now that there exist 𝑉1, 𝑉2 ∈  such that

𝜆(𝑉1) = 𝜆(𝑉2) = max{𝜆(𝑉 ) ∶ 𝑉 ∈ }. (5.5)

Since  is convex, we have 𝑉3 =
𝑉1+𝑉2

2 ∈ . Moreover, since 𝜆 is concave and (5.5),

𝜆(𝑉3) ≥ 𝜆(𝑉1) + 𝜆(𝑉2)
2

= max{𝜆(𝑉 ) ∶ 𝑉 ∈ }.
Then

𝜆

(
𝑉1 + 𝑉2

2

)
= 𝜆(𝑉1) = 𝜆(𝑉2) = max{𝜆(𝑉 ) ∶ 𝑉 ∈ }. (5.6)

On the other hand, by Remark 3.7, there exist 𝑢1, 𝑢2, 𝑢3 ∈ 𝑊 𝑠,𝑝(Ω) such that 𝑢𝑖 is the unique positive eigenfunction associated
with 𝜆(𝑉𝑖) normalized by ‖𝑢𝑖‖𝑝 = 1, 𝑖 = 1, 2, 3. We claim that 𝑢1 = 𝑢2 = 𝑢3. Suppose by contradiction that 𝑢1 ≠ 𝑢3 or 𝑢2 ≠ 𝑢3.
Then

𝜆(𝑉3) = [𝑢3]𝑝𝑠,𝑝 + ∫Ω
𝑉1(𝑥) + 𝑉2(𝑥)

2
|𝑢3|𝑝 d𝑥

= 1
2

(
1
2
[𝑢3]𝑝𝑠,𝑝 + ∫Ω 𝑉1(𝑥)|𝑢3|𝑝 d𝑥 + 1

2
[𝑢3]𝑝𝑠,𝑝 + ∫Ω 𝑉2(𝑥)|𝑢3|𝑝 d𝑥

)
>
𝜆(𝑉1) + 𝜆(𝑉2)

2
= max{𝜆(𝑉 ) ∶ 𝑉 ∈ },

which contradicts (5.6).
Therefore,

(𝑢1, 𝑣) + ∫Ω 𝑉1(𝑥)|𝑢1|𝑝−2𝑢1𝑣 d𝑥 = (𝑢1, 𝑣) + ∫Ω 𝑉2(𝑥)|𝑢1|𝑝−2𝑢1𝑣 d𝑥
for all 𝑣 ∈ 𝑊 𝑠,𝑝(Ω), that is

∫Ω(𝑉1(𝑥) − 𝑉2(𝑥))|𝑢1|𝑝−2𝑢1𝑣 d𝑥 = 0

for all 𝑣 ∈ 𝑊 𝑠,𝑝(Ω). Then 𝑉1 = 𝑉2 a.e. in Ω.
Finally we show that there is 𝑉∗ ∈  such that

𝜆(𝑉∗) = min{𝜆(𝑉 ) ∶ 𝑉 ∈ }.
Let {𝑉𝑘}𝑘∈ℕ ⊂  be such that

lim
𝑘→∞

𝜆(𝑉𝑘) = inf{𝜆(𝑉 ) ∶ 𝑉 ∈ }.
As before, we have that there exist a subsequence (still denoted by {𝑉𝑘}𝑘∈ℕ) and 𝑉∗ ∈  such that

𝑉𝑘 ⇀ 𝑉∗ weakly in 𝐿𝑞(Ω). (5.7)

Then

𝜆(𝑉∗) ≥ inf{𝜆(𝑉 ) ∶ 𝑉 ∈ }. (5.8)
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Let {𝑢𝑘}𝑘∈ℕ ⊂ 𝑊 𝑠,𝑝(Ω) be such that ‖𝑢𝑘‖𝑝 = 1 and

𝜆(𝑉𝑘) =
1
2
[𝑢𝑘]𝑝𝑠,𝑝 + ∫Ω 𝑉𝑘(𝑥)|𝑢𝑘|𝑝d𝑥.

Then, by (5.8) and Lemma 4.2, there exist positive constants 𝐶 and 𝐷 independent of 𝑘 such that

𝐶 ≥ 𝜆(𝑉𝑘) =
1
2
[𝑢𝑘]𝑝𝑠,𝑝 + ∫Ω 𝑉𝑘(𝑥)|𝑢𝑘|𝑝 d𝑥 ≥ 1

2
[𝑢𝑘]𝑝𝑠,𝑝 −

1
4
[𝑢𝑘]𝑝𝑠,𝑝 −𝐷‖𝑉𝑘‖𝑞;Ω‖𝑢𝑘‖𝑝𝑝.

Therefore

[𝑢𝑘]𝑝𝑠,𝑝 ≤ 4
(
𝐶 +𝐷 sup

{‖𝑉 ‖𝑞;Ω ∶ 𝑉 ∈ })
for all 𝑘 ∈ ℕ. Then, {𝑢𝑘}𝑘∈ℕ is bounded in 𝑊 𝑠,𝑝(Ω) and there exist a subsequence (still denoted by {𝑢𝑘}𝑘∈ℕ) and 𝑢 ∈ 𝑊 𝑠,𝑝(Ω)
such that

𝑢𝑘 ⇀ 𝑢 weakly in 𝑊 𝑠,𝑝(Ω), 𝑢𝑘 → 𝑢 strongly in 𝐿𝑝(ℝ𝑛), 𝑢𝑘 → 𝑢 strongly in 𝐿𝑝𝑞′ (ℝ𝑛).

Then, ‖𝑢‖𝑝 = 1 and, using (5.7), we have that

𝜆(𝑉∗) ≥ inf{𝜆(𝑉 ) ∶ 𝑉 ∈ } = lim
𝑘→∞

𝜆(𝑉𝑘) = lim
𝑘→∞

1
2
[𝑢𝑘]𝑝𝑠,𝑝 + ∫Ω 𝑉𝑘(𝑥)|𝑢𝑘|𝑝 d𝑥 ≥ 1

2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉 (𝑥)|𝑢|𝑝 d𝑥 ≥ 𝜆(𝑉∗).

□
The next result is a characterization of the minimal potential 𝑉∗.

Lemma 5.2. Let 𝑢∗ be the positive eigenfunction associated with 𝜆(𝑉∗) such that ‖𝑢∗‖𝑝 = 1. Then 𝑉∗ is the unique minimizer
of the linear operator

𝐿(𝑉 ) ∶= ∫Ω 𝑉 (𝑥)|𝑢∗|𝑝 d𝑥
relative to 𝑉 ∈ .

Proof. We first prove that 𝑉∗ is a minimizer. By (5.1), we have

1
2
[𝑢∗]𝑝𝑠,𝑝 + ∫Ω 𝑉∗(𝑥)|𝑢∗|𝑝 d𝑥 = 𝜆(𝑉∗) ≤ 𝜆(𝑉 ) ≤ 1

2
[𝑢∗]𝑝𝑠,𝑝 + ∫Ω 𝑉 (𝑥)|𝑢∗|𝑝 d𝑥

for all 𝑉 ∈ . Therefore

∫Ω 𝑉∗(𝑥)|𝑢∗|𝑝 d𝑥 ≤ ∫Ω 𝑉 (𝑥)|𝑢∗|𝑝 d𝑥 for all 𝑉 ∈ .
To prove the uniqueness, let 𝑊 ∈  such that

∫Ω𝑊 (𝑥)|𝑢∗|𝑝 d𝑥 = min {𝐿(𝑉 ) ∶ 𝑉 ∈ } = ∫Ω 𝑉∗(𝑥)|𝑢∗|𝑝 d𝑥.
Then

𝜆(𝑉∗) =
1
2
[𝑢∗]𝑝𝑠,𝑝 + ∫Ω 𝑉∗(𝑥)|𝑢∗|𝑝 d𝑥 = 1

2
[𝑢∗]𝑝𝑠,𝑝 + ∫Ω𝑊 (𝑥)|𝑢∗|𝑝 d𝑥 ≥ 𝜆(𝑊 ).

Thus, by (5.1), 𝜆(𝑉∗) = 𝜆(𝑊 ) and therefore 𝑢∗ is an eigenfunction associated with 𝜆(𝑊 ). Then

∫Ω(𝑉∗(𝑥) −𝑊 (𝑥))|𝑢∗|𝑝−2𝑢∗𝑣 d𝑥 = 0

for all 𝑣 ∈ 𝑊 𝑠,𝑝(Ω). Since 𝑢∗ > 0 in Ω, we conclude that 𝑉∗ = 𝑊 a.e. in Ω. □
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5.1 Optimization problems in a closed ball
Let us now consider the case  = 𝐵̄(0, 1) ∶=

{
𝑉 ∈ 𝐿𝑞(Ω) ∶ ‖𝑉 ‖𝑞;Ω ≤ 1

}
, the unit closed ball in 𝐿𝑞(Ω). In this setting further

characterizations of the extremal potentials can be provided.

Indeed, by Theorem 5.1, there exists a unique 𝑉 ∗ ∈ 𝐵̄(0, 1) such that

max{𝜆(𝑉 ) ∶ 𝑉 ∈ 𝐵̄(0, 1)} = 𝜆(𝑉 ∗) ≤ 1
2
[𝑢]𝑝𝑠,𝑝 + ∫Ω 𝑉

∗(𝑥)|𝑢|𝑝 d𝑥 ≤ 1
2
[𝑢]𝑝𝑠,𝑝 + ∫Ω

|𝑉 ∗(𝑥)|‖𝑉 ∗‖𝑞;Ω |𝑢|𝑝 d𝑥
for all 𝑢 ∈ 𝑊 𝑠,𝑝(Ω). Then

max{𝜆(𝑉 ) ∶ 𝑉 ∈ 𝐵̄(0, 1)} = 𝜆(𝑉 ∗) ≤ 𝜆

( |𝑉 ∗|‖𝑉 ∗‖𝑞;Ω
)
.

Since
|𝑉 ∗|‖𝑉 ∗‖𝑞;Ω ∈ 𝜕𝐵(0, 1), then, by Theorem 5.1, 𝑉 ∗ is nonnegative and 𝑉 ∗ ∈ 𝜕𝐵(0, 1). Moreover, by Lemma 4.5, we have

∫Ω𝑊 (𝑥)|𝑢∗| d𝑥 = 0 for all 𝑊 ∈ 𝑇𝑉 ∗ (𝜕𝐵(0, 1)),

where 𝑢∗ is the positive eigenfunction of 𝜆(𝑉 ∗) normalized by ‖𝑢∗‖𝑝 = 1.

This procedure proves the validity of the following result.

Theorem 5.3. Let 𝑉 ∗ ∈ 𝐵̄(0, 1) be the unique potential that satisfies

𝜆(𝑉 ∗) = max
{
𝜆(𝑉 ) ∶ 𝑉 ∈ 𝐵̄(0, 1)

}
,

according to Theorem 5.1. Then 𝑉 ∗ is nonnegative, 𝑉 ∗ ∈ 𝜕𝐵(0, 1) and

∫Ω𝑊 (𝑥)|𝑢∗| d𝑥 = 0 for all 𝑊 ∈ 𝑇𝑉 ∗ (𝜕𝐵(0, 1)),

where 𝑢∗ is the positive eigenfunction of 𝜆(𝑉 ∗) normalized by ‖𝑢∗‖𝑝 = 1.

Similarly, we have:

Theorem 5.4. There exists 𝑉∗ ∈ 𝜕𝐵(0, 1) such that

𝜆(𝑉∗) = min{𝜆(𝑉 ) ∶ 𝑉 ∈ 𝐵̄(0, 1)}.

Moreover, 𝑉∗ is nonpositive, ‖𝑉∗‖𝑞;Ω = 1 and

∫Ω𝑊 (𝑥)|𝑢∗| d𝑥 = 0 for all 𝑊 ∈ 𝑇𝑉∗ (𝜕𝐵(0, 1)),

where 𝑢∗ is the positive eigenfunction of 𝜆(𝑉∗) normalized by ‖𝑢∗‖𝑝 = 1.

Corollary 5.5. In the notation of Theorems 5.3 and 5.4, we have Ω = supp(𝑉 ∗) = supp(𝑉∗) and there exist two constants 𝐶∗

and 𝐶∗ such that

|𝑢∗(𝑥)|𝑝 = 𝐶∗|𝑉 ∗(𝑥)|𝑞−1,
|𝑢∗(𝑥)|𝑝 = 𝐶∗|𝑉∗(𝑥)|𝑞−1,

for a.e. 𝑥 ∈ Ω.

Proof. See the proofs of Proposition 3.10 and Theorem 3.11 in [11]. □
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5.2 Optimization problems in the class of rearrangements of a given potential
Let 𝑉0 ∈ 𝐿𝑞(Ω) and let (𝑉0) be the set of rearrangements of 𝑉0, that is 𝑉 ∈ (𝑉0) if and only if 𝑉 ∶ Ω → ℝ is a measurable

function and

|{𝑥 ∈ Ω ∶ 𝑉 (𝑥) ≥ 𝑡}| = |{𝑥 ∈ Ω ∶ 𝑉0(𝑥) ≥ 𝑡}|
for any 𝑡 ∈ ℝ.

Remark 5.6. If 𝑉 ∈ (𝑉0) then 𝑉 ∈ 𝐿𝑞(Ω) and ‖𝑉 ‖𝑞;Ω = ‖𝑉0‖𝑞;Ω. See, for instance, [7, Lemma 2.1].

Let (𝑉0) be the the weak closure of (𝑉0). In [7, Theorem 6], the author proves that (𝑉0) is convex, see also [6,19]. Hence

(𝑉0) is strongly closed. Then, by Remark 5.6, we have that (𝑉0) is a bounded closed convex subset of 𝐿𝑞(Ω).
Thus, by Theorems 5.1, we have:

• There exists a unique 𝑉 ∗ ∈ (𝑉0) so that

𝜆(𝑉 ∗) = max{𝜆(𝑉 ) ∶ 𝑉 ∈ (𝑉0)};

• There exists 𝑉∗ ∈ (𝑉0) so that

𝜆(𝑉∗) = min
{
𝜆(𝑉 ) ∶ 𝑉 ∈ (𝑉0)

}
. (5.9)

By [7, Theorems 1 and 4], there is 𝑊 ∈ (𝑉0) so that

𝐿(𝑊 ) = min
{
𝐿(𝑉 ) ∶ 𝑉 ∈ (𝑉0)

}
.

Then, by Lemma 5.2, we have that 𝑉∗ = 𝑊 a.e in Ω. Hence 𝑉∗ ∈ (𝑉0). Moreover, by Lemma 5.2 and Theorem 5 in [7], there

is a decreasing function 𝜑 ∶ ℝ → ℝ so that 𝑉∗ = 𝜑◦|𝑢∗|𝑝. Therefore we proved the next result.

Theorem 5.7. Let 𝑉0 ∈ 𝐿𝑞(Ω). There is a rearrangement 𝑉∗ of 𝑉0 in Ω such that

𝜆(𝑉∗) = min{𝜆(𝑉 ) ∶ 𝑉 ∈ (𝑉0)}.

Moreover there exists a decreasing function 𝜑 ∶ ℝ → ℝ so that 𝑉∗ = 𝜑◦|𝑢∗|𝑝, where 𝑢∗ is the positive eigenfunction associated
with 𝜆(𝑉∗) such that ‖𝑢∗‖𝑝 = 1.
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APPENDIX A: REGULARITY OF FRACTIONAL P-EINGENFUNCTIONS
We begin by proving that the eigenfunctions are bounded.

Lemma A.1. Let Ω ⊂ ℝ𝑛 be a bounded extension domain and let 𝑉 ∈ 𝐿𝑞(Ω) with 𝑞 ∈ (1,∞) ∩
( 𝑛

𝑠𝑝
,∞

)
. If 𝑢 is an eigenfunction

associated with 𝜆 then 𝑢 ∈ 𝐿∞(ℝ𝑛).

Proof. In this proof we follow ideas from [12].
If 𝑝𝑠 > 𝑛, by Theorem 2.4, then the assertion holds. Then let us suppose that 𝑠𝑝 ≤ 𝑛. We will show that if ‖𝑢+‖𝑝𝑞′ ≤ 𝛿 then

𝑢+ is bounded, where 𝛿 > 0 must be determined.
For 𝑘 ∈ ℕ0 we define the function 𝑢𝑘 by

𝑢𝑘 ∶=
(
𝑢 − 1 + 2−𝑘

)
+.

Observe that, 𝑢0 = 𝑢+ and for any 𝑘 ∈ ℕ0 we have that 𝑢𝑘 ∈ 𝑊 𝑠,𝑝(Ω),

𝑢𝑘+1 ≤ 𝑢𝑘 a.e. ℝ𝑛,

𝑢 <
(
2𝑘+1 − 1

)
𝑢𝑘 in {𝑢𝑘+1 > 0},

{𝑢𝑘+1 > 0} ⊂
{
𝑢𝑘 > 2−(𝑘+1)

}
.

(A.1)

Now, since

|𝑣+(𝑥) − 𝑣+(𝑦)|𝑝 ≤ |𝑣(𝑥) − 𝑣(𝑦)|𝑝−2(𝑣(𝑥) − 𝑣(𝑦))(𝑣+(𝑥) − 𝑣+(𝑦)) for all 𝑥, 𝑦 ∈ ℝ𝑛,

for any function 𝑣 ∶ ℝ𝑛 → ℝ, we have that

1
2
[𝑢𝑘+1]𝑝𝑠,𝑝 ≤ (𝑢, 𝑢𝑘+1) = 𝜆∫Ω 𝑢

𝑝−1𝑤𝑘+1 d𝑥 − ∫Ω 𝑉 (𝑥)𝑢𝑝−1𝑢𝑘+1 d𝑥 ≤ |𝜆|∫Ω 𝑢𝑝−1𝑤𝑘+1 d𝑥 + ∫Ω 𝑉−(𝑥)𝑢
𝑝−1𝑢𝑘+1 d𝑥,

https://doi.org/10.1002/mana.201600110
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for all 𝑘 ∈ ℕ0. Then, by (A.1) and the Hölder inequality, we have that

1
2
[𝑢𝑘+1]𝑝𝑠,𝑝 ≤ |𝜆|∫Ω 𝑢𝑝−1𝑤𝑘+1 d𝑥 + ∫Ω 𝑉−(𝑥)𝑢

𝑝−1𝑢𝑘+1 d𝑥

≤ (
2𝑘+1 − 1

)𝑝−1 (|𝜆|‖𝑢𝑘‖𝑝𝑝 + ∫Ω 𝑉−(𝑥)𝑢
𝑝

𝑘
d𝑥

)

≤ (
2𝑘+1 − 1

)𝑝−1 (|𝜆||Ω| 1𝑞 + ‖𝑉 ‖𝑞;Ω)‖𝑢𝑘‖𝑝𝑝𝑞′
(A.2)

for all 𝑘 ∈ ℕ0.
On the other hand, in the case 𝑠𝑝 < 𝑛, using Hölder's inequality, Theorem 2.3, (A.1), and Chebyshev's inequality, for any

𝑘 ∈ ℕ0 we have that

‖𝑢𝑘+1‖𝑝𝑝𝑞′ ≤ ‖𝑢𝑘+1‖𝑝𝑝∗𝑠 |{𝑢𝑘+1 > 0}| 1
𝑞′
− 𝑝

𝑝∗𝑠

≤ 𝐶[𝑢𝑘+1]𝑝𝑠,𝑝|{𝑢𝑘+1 > 0}| 𝑠𝑝𝑛 −1
𝑞

≤ 𝐶[𝑢𝑘+1]𝑝𝑠,𝑝
|||{𝑢𝑘 > 2−(𝑘+1)}||| 𝑠𝑝𝑛 −1

𝑞

≤ 𝐶[𝑢𝑘+1]𝑝𝑠,𝑝
(
2(𝑘+1)𝑝‖𝑢𝑘‖𝑝𝑝𝑞′)𝑞′

( 𝑠𝑝
𝑛
−1
𝑞

)
,

(A.3)

where 𝐶 is a constant independent of 𝑘. Then, by (A.2) and (A.3), for any 𝑘 ∈ ℕ0 we have

‖𝑢𝑘+1‖𝑝𝑝𝑞′ ≤ 𝐶
(
2(𝑘+1)𝑝‖𝑢𝑘‖𝑝𝑝𝑞′)1+𝛼

, (A.4)

where 𝐶 is a constant independent of 𝑘 and 𝛼 = 𝑞′
( 𝑠𝑝
𝑛
− 1

𝑞

)
> 0.

Similarly, in the case 𝑠𝑝 = 𝑛, taking 𝑟 > 𝑝𝑞′ and proceeding as in the previous case 𝑠𝑝 < 𝑛 (with 𝑟 in place of 𝑝∗𝑠 ), we have
that (A.4) holds with 𝛼 = 1 − 𝑝𝑞′

𝑟
> 0.

Therefore if 𝑠𝑝 ≤ 𝑛 then there exist 𝛼 > 0 and a constant 𝐶 > 1 such that

‖𝑢𝑘+1‖𝑝𝑝𝑞′ ≤ 𝐶𝑘
(‖𝑢𝑘‖𝑝𝑝𝑞′)1+𝛼

, (A.5)

for any 𝑘 ∈ ℕ0. Hence, if ‖𝑢0‖𝑝𝑝𝑞′ = ‖𝑢+‖𝑝𝑝𝑞′ ≤ 𝐶
−1
𝛼2 =∶ 𝛿𝑝 then 𝑢𝑘 → 0 in 𝐿𝑝𝑞′ (Ω). On the oher hand 𝑢𝑘 → (𝑢 − 1)+ a.e in ℝ𝑛,

then (𝑢 − 1)+ ≡ 0 in ℝ𝑛. Therefore 𝑢+ is bounded.
Finally, taking −𝑢 in place of 𝑢 we have that 𝑢− is bounded if ‖𝑢−‖𝑝𝑞′ < 𝛿. Therefore 𝑢 is bounded. □

Finally we show a regularity result.

Theorem A.2. Let Ω ⊂ ℝ𝑛 be a bounded extension domain, and let 𝑉 ∈ 𝐿∞(Ω). If 𝑢 is an eigenfunction associated with 𝜆 then
there is 𝛼 ∈ (0, 1) such that 𝑢 ∈ 𝐶𝛼(Ω).

Proof. By Lemma A.1, we have 𝑢 ∈ 𝐿∞(Ω). Then (𝜆 − 𝑉 (𝑥))|𝑢|𝑝−2𝑢 ∈ 𝐿∞(Ω). Therefore, by [14, Theorem 1.1], there is
𝛼 ∈ (0, 1) such that 𝑢 ∈ 𝐶𝛼(Ω). □


