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Among the potential applications of coordination polymers, electrical con-

ductivity ranks high in technological interest. We report the synthesis, crystal

structure and spectroscopic analysis of an AgI–thiosaccharinate one-dimen-

sional coordination polymer {systematic name: catena-poly[[[aquatetrakis(�3-

1,1-dioxo-1,2-benzisothiazole-3-thiolato-�3N:S3:S3)tetrasilver(I)]-�2-4,4
0-(propane-

1,3-diyl)dipyridine-�2N:N0] dimethyl sulfoxide hemisolvate]}, {[Ag4(C7H4NO2S2)4-

(C13H14N2)(H2O)]�0.5C2H6OS}n, with the 4,40-(propane-1,3-diyl)dipyridine
ligand acting as a spacer. A relevant feature of the structure is the presence of an

unusually short Ag� � �Ag distance of 2.8306 (9) Å, well within the range of

argentophilic interactions, confirmed experimentally as such by a Raman study

on the low-frequency spectrum, and corroborated theoretically by an Atoms in

Molecules (AIM) analysis of the calculated electron density. Electrical

conductivity measurements show that this complex can act as a semiconductor

with moderate conductivity.

1. Introduction

The synthesis of coordination compounds with AgI metal

centres results in a large panoply of different structural motifs,

even when using similar starting coligands, due to the extreme

coordination versatility of the AgI cation. In the case of silver

thiosaccharinates, this characteristic has been widely tested

(Burrow et al., 2016).

In addition, coordination polymers are currently a trending

topic due to the potential applications of their varied prop-

erties, among which electrical conductivity (EC) ranks high in

technological interest (Givaja et al., 2012).

In this work, we present the synthesis, structural char-

acterization and electrical conductivity (EC) measurements of

a new coordination polymer, denoted {[Ag4(tsac)4(tmdp)-

(H2O)]�0.5DMSO}n, (I), where tsac is the thiosaccharinate

anion, tmdp is 4,40-(propane-1,3-diyl)dipyridine and DMSO is

dimethyl sulfoxide.

In addition, the EC of (I) is compared with those of some

related polymeric silver thiosaccharinates, viz. [Ag2(tsac)2-

(4,40-bipyridine)1.5]n, (II) (Dennehy et al., 2016), and [Ag-

(tsac)(4-MeOpy)]n (4-MeOPy is 4 methoxypyridine), (III)

(Dennehy et al., 2010), with the aim of explaining eventual EC

differences in terms of their structural variations.
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2. Experimental

2.1. Synthesis and crystallization

Compound (I) was synthesized by adding Htsac (12 mg,

0.06 mmol), AgNO3 (10 mg, 0.06 mmol) and tmdp (24 mg,

0.12 mmol) (1:1:2 molar ratio, all solids) to dimethyl sulfoxide

(2 ml). This resulted in a clear yellow solution into which

CH2Cl2 (2 ml) was diffused slowly. Crystals suitable for

structural study by X-ray diffraction had appeared after 10 d.

Analytical composition calculated for C42H35Ag4N6O9.5S8.5:

C 34.09, H 2.38, N 5.67%; found: C 33.93, H 1.89, N 5.21%.

FT–IR (�, cm�1): 3444 (vw), 1609 (m), 1462 (s), 1417 (m), 1321

(m), 1228 (m), 1168 (m), 1122 (w), 1001 (m), 796 (w), 768 (w),

626 (w), 587 (m), 555 (m), 534 (m), 430 (m).

2.2. Refinement

Crystal data, data collection and structure refinement

details for (I) are summarized in Table 1. Some metric and

displacement-parameter restraints were used to refine the

disordered DMSO solvent, and thus facilitate convergence.

The occupation factor of the two disordered moieties

wouldnot behave steadily in an independent refinement, so

they were forced to add up to 0.50, roughly the oscillation

mean value, after which refinement went smoothly. H atoms,

except those of the water ligand and the disordered DMSO

solvent molecule, were found in a difference map. Those

attached to C atoms were finally idealized and refined as
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Table 1
Experimental details.

Crystal data
Chemical formula [Ag4(C7H4NO2S2)4(C13H14N2)-

(H2O)]�0.5C2H6OS
Mr 1479.75
Crystal system, space group Triclinic, P1
Temperature (K) 290
a, b, c (Å) 13.7710 (4), 13.9822 (4),

14.7181 (5)
�, �, � (�) 81.074 (3), 79.523 (3), 73.152 (3)
V (Å3) 2651.23 (15)
Z 2
Radiation type Mo K�
� (mm�1) 1.85
Crystal size (mm) 0.42 � 0.30 � 0.10

Data collection
Diffractometer Rigaku OD Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku

OD, 2015)
Tmin, Tmax 0.50, 0.85
No. of measured, independent and

observed [I > 2�(I)] reflections
26030, 11551, 7060

Rint 0.032
(sin 	/
)max (Å

�1) 0.682

Refinement
R[F 2 > 2�(F 2)], wR(F 2), S 0.056, 0.158, 1.03
No. of reflections 11551
No. of parameters 659
No. of restraints 62
H-atom treatment H atoms treated by a mixture of

independent and constrained
refinement

��max, ��min (e Å�3) 1.17, �0.85

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008),
XP in SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON
(Spek, 2009).
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riding, with aromatic C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C),

methylene C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C), and

methyl C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). The H atoms

of the water molecule were assigned where the closest

potential hydrogen-bonding acceptors were located and

refined with idealized geometry afterwards, with Uiso(H) =

1.5Ueq(O). The propylene C—C distances were subject to a

similarity restraint.

Although there are about 2500 missing reflections above

sin(	)/
 = 0.60, we wanted to include as much high-angle data

as possible. A trial refinement was made at a maximum 2	
value of 52�, to investigate if any introduced bias could be

detected. Analysis of the results obtained in both refinements

showed no perceivable differences regarding the quality of the

final parameters (the maximum difference was found for a

C—C bond length, of the order of 1/1500, with an s.u. value of

6/1500). But, in addition, we found that standard validation

procedures (checkCIF) treated similar conflicting situations

differently (in our case, a Hirshfeld difference with s.u. ’
0.12), which in the refinement with the smaller data set would

be ranked as a ‘B alert’, but as a much lighter ‘G alert’ with the

whole data set. This seems to stress the benefit of using as

much data as possible (irrespective of its distribution in reci-

procal space), as long as uninformative noise is avoided.

2.3. Spectroscopic analysis and electrical conductivity
measurements

IR spectra were obtained on an FT–IR–NIR Thermo

Scientific Nicolet iS50 using KBr dispersions.

Raman spectra, in turn, were gathered with a LabRAMHR

Horiba Jobin Yvon Raman system equipped with two

monochromator gratings and a charge-coupled device

detector. A 1800 g mm�1 grating and a 50 mm hole resulted in

a spectral resolution of 1.5 cm�1. The spectrograph is coupled

to an imaging microscope with 10�, 50� and 100� magnifi-

cations. The He–Ne laser line at 632.8 nm is used as the

excitation source. Each spectrum was averaged over eight

scans with a collection time of 120 s for each scan. Raman

spectra were acquired on powder samples at room tempera-

ture; measurements were carried out using a backscattering

geometry, with 10� magnification.

Direct current (DC) electrical conductivity measurements

were performed on different single crystals with carbon paint

at 300 K and two contacts. The contacts were made with

tungsten wires (25 mm diameter). The samples were measured

at 300 K, applying an electrical current with voltages from +10

to �10 V. The electric current flowing through the sample as a

consequence of the potential difference was recorded.

The samples were measured in a Quantum Design PPMS-9

connected to an external voltage source (Keithley model 2400

source-meter) and amperometer (Keithley model 6514 elec-

trometer).

2.4. Atoms in Molecules (AIM) analysis

Density functional theory calculations were performed on a

fragment of the polymeric complex containing the three

putative Ag� � �Ag interactions. X-ray structures were used

without geometry optimization. The Becke three-parameter

exchange functional with a Lee–Yang–Parr correlation func-
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Figure 1
(a) A view of the [Ag(tsac)]4 conglomerate. Dashed lines denote interconglomerate S—O� � �� interactions. The inset shows a fitting of the conglomerate
and its ‘twofold’ rotated image. (b) A view of the tmdp ligand, with displacement ellipsoids drawn at the 40% probability level. (c) The coordination
polyhedra around the four independent Ag atoms.
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tional (B3LYP) was used in the study (Becke, 1988, 1993;

Serpe et al., 2001). The Stuttgard–Dresden effective core

potential along with the SDD valence basis set was used for

AgI atoms (Fuentealba et al., 1989; Cao & Dolg, 2002;

Schwerdtfeger et al., 1989), whereas all other atoms were

treated with the 6-31G basis set (Ditchfield et al., 1971;

Rassolov et al., 2001). The AIM analysis of the electron density

was performed using the Multiwfn program (Lu & Chen,

2012).

3. Results and discussion

3.1. Structure analysis

The asymmetric unit of (I) consists of four AgI cations (Ag1

to Ag4), four anionic tsac ligands (tsac1 to tsac4) and one

tmdp ligand. The formula is completed by one water molecule

and half of a disordered DMSO solvent molecule. The tsac

ligands are unexceptional, not departing from their expected

geometry, and their most relevant role is the way in which they

interact with the AgI cations, through a �3 coordination

involving the exocyclic S atoms (bridging two metal centres)

and the endocyclic N atom, which define an [Ag(tsac)]4
conglomerate (Fig. 1a). Table 2 presents selected coordination

distances.

The fact that the four anions coordinate in a similar way is

reflected in the IR spectrum, which shows only one absorption

band for the anion. In the same spectrum (see Fig. S1 in the

supporting information), the bands corresponding to the

nitrogenated colligate can also be observed.

The resulting globular clusters are made up of two extre-

mely similar [Ag(tsac)]2 rings (highlighted in Scheme 1),

further connected through four S—Ag bonds. In this sense, the

cluster can be considered as a dimer of dimers. Even if this

particular choice of rings is rather arbitrary, due to the two

possible S—Ag bonds for each S atom, the one we appoint is

sustained by a plausibility argument based on symmetry

reasons, viz. the whole [Ag(tsac)]4 group, as described herein,

presents a kind of twofold pseudosymmetry, relating Ag1 with

Ag2, and Ag3 with Ag4, as shown in the inset in Fig. 1. A

search in the Cambridge Structural Database (CSD, Version

5.38 and updates; Groom et al., 2016) disclosed that a very

similar arrangement has been reported in Dennehy et al.

(2007) (CSD refcode XIHREM), whose nucleus is also made

up of two dimers linked by four S—Ag bonds, in a disposition

analogous to that in (I). This similarity is confirmed in Fig. 2,

which shows a least-squares fit of the AgI cations in both

nuclei, making the identical topologies of both clusters

apparent, while disclosing some significant metric differences,

as discussed below.

The cohesion of the [Ag(tsac)]4 group in (I) is further

enhanced by four intramolecular S O� � �� bonds, presented

in Table 3 and shown in Fig. 1(a) as dashed lines. It is to be

noted that all the exocyclic SO2 groups, as well as all the five-

membered rings are involved in these interactions.

The 4,40-(propane-1,3-diyl)dipyridine (tmdp) molecule

departs severely from coplanarity (Fig. 1b), with the planes of

the terminal pyridine groups, denoted Py(N15) and Py(N25),

defining dihedral angles with the C115–C135 central group of

113.2 (2) and 80.7 (2)�, respectively, and 34.5 (2)� with each

other. The elongated ligand acts as a spacer between neigh-

bouring [Ag(tsac)]4 clusters, linking them (through atoms N15

and N25) to define chains parallel to [101] (Fig. 3). With the

inclusion of these lateral tmdp ligands, Ag1 and Ag2 end up

being four-coordinated in an AgN2S2 distorted tetrahedral
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Table 2
Selected bond lengths in (I) (Å).

Ag1—N15 2.307 (6) Ag3—N13 2.317 (5)
Ag1—N11 2.422 (5) Ag3—S21 2.416 (2)
Ag1—S22 2.607 (2) Ag3—S24 2.472 (2)
Ag1—S24 2.647 (2) Ag4—N14 2.354 (6)
Ag2—N12 2.320 (5) Ag4—S22 2.461 (2)
Ag2—N25i 2.335 (6) Ag4—S23 2.510 (2)
Ag2—S23 2.606 (2) Ag4� � �O1W 2.612 (9)
Ag2—S21 2.615 (2)

Ag1� � �Ag3 2.8307 (8) Ag3� � �Ag4 3.0692 (9)
Ag2� � �Ag4 2.9180 (8) Ag2� � �Ag3 3.3489 (8)

Symmetry code: (i) x + 1, y, z � 1.

Figure 2
Least-squares fit of the AgI cations in the [AgSCN]4 conglomerates of (I)
(full lines) and XIHREM (dashed lines), disclosing the similarity in
topology but differences in metrics.

Table 3
S O� � �� bonds in (I).

O/perp is the perpendicular distance of the O atom to the plane, O� � �Cg/perp
is the angle between the O� � �Cg vector and the plane normal, and S O/perp
is the angle between the S O vector and the plane normal. Cg1 is the
centroid of the S11/N11/C11/C21/C71 ring, Cg2 that of the S12/N12/C12/C22/
C72 ring, Cg3 that of the S13/N13/C13/C23/C73 and Cg4 that of the S14/N14/
C14/C24/C74 ring.

S O� � �Cg O� � �Cg (Å) O/perp (Å) O� � �Cg/perp (�) S O/perp (�)

S13 O13� � �Cg4 3.533 (8) 3.428 30.30 111.5 (3)
S14 O14� � �Cg3 3.718 (9) 3.440 13.41 115.5 (7)
S11 O21� � �Cg2 3.343 (6) 3.124 46.34 116.9 (3)
S12 O22� � �Cg1 3.388 (6) 3.244 41.68 116.6 (3)
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environment, while Ag3 and Ag4 are three-coordinated in a

quasi-planar AgNS2 environment, with the cations lying

0.06 (2) and 0.14 (2) Å from the least-squares plane defined by

the ligands. In this sense, it is worth mentioning that water

molecule O1W occupies a pseudo-apical site in the Ag4

polyhedron, at a quasi-coordination Ag� � �O distance of

2.612 (9) Å. Even if rather weak (AIM calculations suggest it

to be comparable to a medium-strength O� � �H hydrogen

bond), this type of AgI� � �OW interaction is not unusual; a

search in the CSD found 130 cases of a comparable

AgIX3–OW (X = S, N or O) polyhedra, with a mean Ag—OW

coordination distance of 2.50 (15) Å and a 2.135–2.855 Å span,

with the present case lying in the longest quartile.

The resulting coordination of each AgI cation can be seen

qualitatively in Figs. 1(a) and 1(c), and quantitative details can

be found in Table 2. The difference in coordination numbers is

reflected in the Ag—S and Ag—N coordination distances,

distinctly shorter in Ag3 and Ag4. The corresponding bond

valence, as calculated by the program Valence (Brown, 2002),

remains fairly constant, around the expected 1+ charge of the

cation, viz. Ag1 = 0.943, Ag2 = 1.003, Ag3 = 1.075 and Ag4 =

1.036, with a total for all four cations of 4.057.

The one-dimensional substructure (the elemental unit

building up the crystal structure) resembles a thin wire with

evenly spaced bulky protuberances on it. In the packing

process, the chains align parallel to each other but shift along

the chain direction so as to have the protuberances facing the

thin section in neighbouring chains (Fig. 3), and thus opti-

mizing compactness. They are interconnected by weaker

(interchain) noncovalent bonds, as well as a few more, medi-

ated by the water ligands and DMSO solvent molecules

(Table 4) interspersed between the chains. Regarding the

latter DMSO molecule, it makes an S O� � �O S short

contact to the S4—O24 group [O� � �O = 2.871 (2) Å].

3.2. Argentophilic interactions

A distinctive characteristic of silver thiosaccharinates is the

fact that the different bridging modes displayed by the anion

can lead to intricate crystal structures with short Ag� � �Ag

distances. When these short contacts are interactive (and not

the mere result of packing constraints), they are called

argentophilic interactions (Kristiansson, 2001; Castiñeiras et

al., 2006; Schmidbaur & Schier, 2015).

These metallophilic contacts can be formed with or without

the assistance of an anion or any other ligand bridging the

metal cations. The proximity of the two AgI atoms may lead to

strong d10–d10 interactions and, as a rule of thumb, they are

usually considered to be present for Ag� � �Ag distances

shorter than 3.44 Å (twice the AgI van der Waals radius;

Bondi, 1964). In the present structure of (I), there are four of

these short Ag� � �Ag distances (Table 2).

A CSD survey of reported Ag� � �Ag distances in similar

complexes disclosed that the 2.8307 (8) Å value in (I) is the

second shortest found in silver thiosaccharinates, second only

to the extremely effective centrosymmetric double bridge [�2-

�2S:S]2 = (SAg2S) present in XIHQUB (Dennehy et al., 2008)

and leading to a value of 2.789 Å. The remaining short

distances found involve either (i) a combination of the �2-

�2N:S bite on one side plus a �2-�
2S:S bridge on the other, as

in EPUMUZ (Dennehy et al., 2016; d= 2.886 Å), or (ii) plainly

the same head-to-tail [Ag(tsac)]2 dimers found in (I). As a

comparison, the values in the already discussed topologically

similar XIHREM (2.952 and 3.000 Å), in spite of being within

what is usually considered ‘ligand-assisted’ argentophilic

interaction distances, are nonetheless significantly longer than

the shortest distances found in (I), viz. 2.830 and 2.918 Å.

Argentophilic interactions are currently being studied both

from experimental and theoretical points of view (e.g.

Lamming et al., 2017). Among the former studies, some

reports in the literature show that the Ag� � �Ag stretching

vibration may reveal the eventual presence (and strength) of a

silver–silver interaction (Morishima et al., 2014; Harvey, 1996).

We have evaluated argentophilic interactions by means of

Raman spectroscopy in a previous work (Dennehy et al.,

2016). The Raman spectrum of (I) (see Fig. S2 in the

supporting information) also shows a weak stretching band at

78 cm�1 that could be assigned to the Ag� � �Ag vibrational

mode and is consistent with the presence of an Ag� � �Ag

metallophilic interaction in this complex. The Ag—S

stretching modes are reflected in a band appearing at

249 cm�1 (Martina et al., 2012). The bands at 366 cm�1 could

be attributed to Ag—N stretching vibrations, while the bands

at 116 and 153 cm�1 could be related to other Ag—N modes.
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Table 4
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A
O1W—H1WB� � �O14 0.95 (10) 2.59 (11) 3.425 (18) 147 (9)
O1W—H1WB� � �O24 0.95 (10) 2.59 (8) 3.072 (18) 112 (8)
O1W—H1WA� � �O1Ai 0.96 (9) 2.05 (18) 2.65 (2) 119 (12)
C125—H12B� � �O1W i 0.97 2.53 3.369 (17) 144
C44—H44� � �O11ii 0.93 2.52 3.260 (13) 137
C53—H53� � �S21iii 0.93 2.86 3.572 (9) 134
C75—H75� � �O24iv 0.93 2.41 3.284 (16) 158
C105—H105� � �S23v 0.93 2.82 3.508 (9) 132

Symmetry codes: (i) �x þ 1;�yþ 1;�zþ 1; (ii) �xþ 1;�y;�zþ 1; (iii) �xþ 2,
�y;�z; (iv) x; y; zþ 1; (v) x� 1; y; zþ 1.

Figure 3
The parallel [101] chains, showing the ‘knot’ versus ‘thread’ disposition
optimizing compactness.
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To complement those experimental studies, we have also

approached the problem from a theoretical point of view, by

way of an Atoms in Molecules (AIM) analysis (Bader, 1990),

which for the detection of interatomic interactions analyses

the values and shape of the calculated electron-density curve

[�(r)], its gradient [r(r)] and its Laplacian [r2�(r)]. (Further

information on the method is given in the supporting infor-

mation.)

The calculations made showed that there was a significant

accumulation of electron density between Ag1� � �Ag3,

Ag2� � �Ag4 and Ag3� � �Ag4, confirmed by the presence of

bond critical points (BCPs). In contrast, there was no BCP in

the intermetallic region between Ag2� � �Ag3, in accordance

with the longer intermetallic distance (Fig. 4).

This kind of analysis has the advantage of allowing qu-

antitative estimations of the interaction strengths, at least in

relative terms, by comparison with other more familiar inter-

actions in the structure.

This information is presented in Table 5, where in the two

rightmost columns, the electron density and its Laplacian at

the CP are shown.

From the values therein, it is clear that the strengths of the

argentophilic interactions lie midway between those of coor-

dination bonds and the weaker noncovalent interactions.

However, the Ag1� � �Ag3 contact is almost twice as strong as

the remaining ones in Table 5, and comparable to the long

Ag4—O1W coordination bond, thus highlighting its relevance.

3.3. Electrical conductivity

It has been stated that, in addition to the techniques

mentioned above, as well as the short intermetallic distances,

argentophilic interactions could be evidenced via some further

physical properties of the complexes, such as electrical

conductivity (EC) (Jansen, 1987; Su et al., 2000). In order to

obtain clues about this eventual EC–argentophilicity rela-

tionship (the latter as qualitatively evaluated by the shortest

Ag� � �Ag distance in the structure) or on the way in which the

crystal structure might influence this behaviour, we thought of

comparing the EC values in (I) with those of related polymeric

complexes presenting argentophilic contacts of varied strength
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Table 5
Comparison of the relative strengths of argentophilic interactions in (I)
with those of selected covalent and noncovalent interactions.

Cg1 is the centroid of the S11/N11/C11/C21/C71 ring, Cg2 that of the S12/N12/
C12/C22/C72 ring, Cg3 that of the S13/N13/C13/C23/C73 and Cg4 that of the
S14/N14/C14/C24/C74 ring.

Interaction #CP Contact Distance �(r) (�100) r2�(r) (�10)

Ag� � �Ag CP1 Ag1� � �Ag3 2.8307 (8) 3.23 0.80
CP3 Ag3� � �Ag4 3.0692 (9) 1.99 0.51
CP2 Ag4� � �Ag2 2.9180 (8) 2.75 0.69
CP4 Ag4� � �O1W 2.612 (9) 2.66 0.85

O� � �� O13� � �Cg4 3.533 (8) 0.37 0.14
O14� � �Cg3 3.718 (9) 0.36 0.15
O21� � �Cg2 3.343 (6) 0.68 0.25
O22� � �Cg1 3.388 (6) 0.53 0.19

S—Ag S21—Ag3 2.416 (2) 7.21 1.90
S21—Ag2 2.615 (2) 4.77 1.23
S22—Ag1 2.607 (2) 4.85 1.25
S22—Ag4 2.461 (2) 6.59 1.74
S23—Ag2 2.606 (2) 4.90 1.25
S23—Ag4 2.510 (2) 6.03 1.50
S24—Ag1 2.647 (2) 4.63 1.17
S24—Ag3 2.472 (2) 6.43 1.59

Figure 4
(a) Selected BCPs (orange balls) in (I). (b) Contour lines of the charge
density in the Ag1–Ag3–Ag4 plane [highlighted in yellow in part (a)]. (c)
Contour lines of the charge density in the Ag2–Ag3–Ag4 plane
[highlighted in pink in part (a)]. Note the lack of BCPs in the Ag2–
Ag3 and Ag1–Ag4 intermetallic zones.
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(= intermetallic distance), but with a rather similar [as in

structure (II)] or a totally different [as in structure (III)]

bridging connectivity (Scheme 2). With this idea in mind, we

measured the corresponding ECs at T = 300 K in single

crystals of all three compounds, wired with tungsten tips

connected through a graphite tincture (details of the set-up

can be seen in Fig. 5a) to end up with the curves shown in

Fig. 5(b) and the values reported in Table 6. The ECs obtained

indicate that all three polymers could be semiconductors with

moderate conductivity. A comparative inspection suggests an

extremely feeble (if any) correlation between the EC and the

argentophilic interaction, but at the same time suggest a strong

link of the EC with the way in which connectivity is achieved

(Scheme 2). Thus, compound (III), which bridges metal

centres through S—Ag junctions, presents the largest EC,

surpassing the remaining two by four orders of magnitude. On

the other hand, in structures (I) and (II), where the bridges are

formed via the N—Ag bonds of nitrogenated bases, the

conductivity decreases dramatically. Analysis of these results

seems to point to the Ag—S versus S—N connection mode of

the bridging anion as a decisive factor, much more relevant

than intermetallic interaction, and correlates with previously

published data where the metal–sulfur connectivity seems to

be the key in the electrical conductivity values versus metal–

metal distances (Givaja et al., 2012). It is clear that with such a

poor casuistry, no conclusive assertion can be made on the

subject and many more cases ought to be analyzed, but it

certainly seems to be a topic worth considering in any further

structural work on polymeric silver complexes.
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Table 6
Electric conductivity and argentophilic interactions in (I), (II) and (III).

Compound EC (S cm�1) Ag� � �Ag (Å) Bridging mode

(I) 2.5 � 10�8 2.830 N—Ag
(II) 2.9 � 10�7 2.886 N—Ag
(III) 9.5 � 10�3 3.024 S—Ag

Figure 5
(a) Left column: the set-up used for the measurement of electrical
conductivity in monocrystals of (a) (I), (b) (II) and (c) (III). Right
column: the corresponding EC curves. Lettering code: G is graphite paste
and W is tungsten wires.
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Structure and electrical properties of a one-dimensional polymeric silver thio-

saccharinate complex with argentophilic interactions

Mariana Dennehy, Pilar Amo-Ochoa, Eleonora Freire, Sebastián Suárez, Emilia Halac and 

Ricardo Baggio

Computing details 

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: 

CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to 

refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used 

to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

catena-Poly[[[aquatetrakis(μ3-1,1-dioxo-1,2-benzisothiazole-3-thiolato-κ3N:S3:S3)tetrasilver(I)]-

μ2-4,4′-(propane-1,3-dyl)dipyridine-κ2N:N′] dimethyl sulfoxide hemisolvate] 

Crystal data 

[Ag4(C7H4NO2S2)4(C13H14N2)(H2O)]·0.5C2H6OS
Mr = 1479.75
Triclinic, P1
a = 13.7710 (4) Å
b = 13.9822 (4) Å
c = 14.7181 (5) Å
α = 81.074 (3)°
β = 79.523 (3)°
γ = 73.152 (3)°
V = 2651.23 (15) Å3

Z = 2
F(000) = 1458
Dx = 1.854 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 6300 reflections
θ = 3.6–26.1°
µ = 1.85 mm−1

T = 290 K
Fragment, yellow
0.42 × 0.30 × 0.10 mm

Data collection 

Rigaku OD Xcalibur Eos Gemini 
diffractometer

Radiation source: fine-focus sealed X-ray tube, 
Enhance (Mo) X-ray Source

Graphite monochromator
Detector resolution: 16.0604 pixels mm-1

ω scans
Absorption correction: multi-scan 

(CrysAlis PRO; Rigaku OD, 2015)

Tmin = 0.50, Tmax = 0.85
26030 measured reflections
11551 independent reflections
7060 reflections with I > 2σ(I)
Rint = 0.032
θmax = 29.0°, θmin = 3.0°
h = −17→14
k = −19→18
l = −19→19

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.056
wR(F2) = 0.158
S = 1.03

11551 reflections
659 parameters
62 restraints
Hydrogen site location: mixed
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H atoms treated by a mixture of independent 
and constrained refinement

w = 1/[σ2(Fo
2) + (0.0606P)2 + 6.6052P] 

where P = (Fo
2 + 2Fc

2)/3

(Δ/σ)max = 0.001
Δρmax = 1.17 e Å−3

Δρmin = −0.85 e Å−3

Special details 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; 
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq Occ. (<1)

Ag1 0.65543 (5) 0.22505 (5) 0.46035 (4) 0.07203 (19)
Ag2 0.88094 (4) 0.27268 (4) 0.23224 (4) 0.06322 (17)
Ag3 0.76014 (5) 0.09579 (5) 0.32270 (4) 0.06839 (18)
Ag4 0.66209 (5) 0.30577 (4) 0.23040 (5) 0.07152 (19)
S11 0.84966 (13) 0.21588 (13) 0.59344 (11) 0.0551 (4)
S21 0.92920 (14) 0.10318 (14) 0.33902 (11) 0.0610 (5)
O11 0.8151 (4) 0.1529 (4) 0.6700 (3) 0.0688 (13)
O21 0.8090 (4) 0.3215 (4) 0.5947 (4) 0.0749 (14)
N11 0.8288 (4) 0.1844 (4) 0.4955 (3) 0.0562 (14)
C11 0.9170 (5) 0.1469 (5) 0.4442 (4) 0.0538 (16)
C21 1.0095 (5) 0.1425 (5) 0.4830 (4) 0.0512 (15)
C31 1.1124 (6) 0.1069 (6) 0.4467 (5) 0.069 (2)
H31 1.131614 0.079417 0.390412 0.083*
C41 1.1838 (6) 0.1136 (7) 0.4961 (6) 0.084 (3)
H41 1.252856 0.091592 0.472183 0.100*
C51 1.1575 (7) 0.1517 (7) 0.5798 (6) 0.086 (3)
H51 1.208629 0.154018 0.612192 0.104*
C61 1.0564 (6) 0.1865 (6) 0.6168 (5) 0.0663 (19)
H61 1.038097 0.213381 0.673411 0.080*
C71 0.9836 (5) 0.1804 (5) 0.5678 (4) 0.0508 (15)
S12 0.90767 (14) 0.45315 (14) 0.35417 (13) 0.0613 (5)
S22 0.62518 (13) 0.40188 (13) 0.36506 (14) 0.0599 (4)
O12 0.9364 (4) 0.5197 (5) 0.2777 (4) 0.0888 (17)
O22 0.9875 (4) 0.3742 (4) 0.3914 (4) 0.0771 (15)
N12 0.8226 (4) 0.4027 (4) 0.3260 (4) 0.0542 (13)
C12 0.7336 (5) 0.4323 (5) 0.3765 (4) 0.0547 (16)
C22 0.7294 (5) 0.5008 (5) 0.4466 (5) 0.0561 (16)
C32 0.6476 (6) 0.5427 (6) 0.5116 (6) 0.073 (2)
H32 0.583357 0.532327 0.514579 0.087*
C42 0.6658 (8) 0.6011 (7) 0.5723 (7) 0.099 (3)
H42 0.613532 0.627817 0.618554 0.118*
C52 0.7595 (9) 0.6196 (7) 0.5647 (8) 0.101 (3)
H52 0.768754 0.660994 0.604262 0.121*
C62 0.8403 (7) 0.5784 (6) 0.5000 (6) 0.081 (2)
H62 0.904173 0.590096 0.495595 0.097*
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C72 0.8223 (6) 0.5191 (5) 0.4420 (5) 0.0603 (17)
S13 0.77183 (17) −0.04495 (15) 0.14420 (12) 0.0661 (5)
S23 0.79677 (17) 0.24580 (16) 0.09670 (13) 0.0706 (5)
O13 0.6707 (5) −0.0539 (5) 0.1495 (4) 0.0920 (18)
O23 0.8391 (6) −0.1206 (5) 0.1963 (4) 0.099 (2)
N13 0.7665 (5) 0.0683 (4) 0.1702 (4) 0.0658 (16)
C13 0.8007 (6) 0.1233 (6) 0.0992 (4) 0.0605 (18)
C23 0.8414 (5) 0.0700 (6) 0.0148 (4) 0.0565 (17)
C33 0.8920 (6) 0.1030 (6) −0.0706 (5) 0.072 (2)
H33 0.903369 0.166448 −0.082209 0.086*
C43 0.9246 (6) 0.0342 (7) −0.1378 (5) 0.078 (2)
H43 0.958826 0.053267 −0.195180 0.094*
C53 0.9087 (6) −0.0566 (7) −0.1227 (6) 0.080 (2)
H53 0.929421 −0.097954 −0.170315 0.096*
C63 0.8618 (6) −0.0909 (6) −0.0375 (5) 0.0645 (18)
H63 0.852797 −0.155356 −0.026103 0.077*
C73 0.8295 (5) −0.0260 (5) 0.0287 (4) 0.0566 (16)
S14 0.4768 (3) 0.2283 (3) 0.1562 (4) 0.1564 (19)
S24 0.58604 (17) 0.09204 (16) 0.40010 (14) 0.0744 (6)
O14 0.5430 (12) 0.2127 (11) 0.0714 (8) 0.224 (8)
O24 0.4002 (9) 0.3222 (7) 0.1609 (11) 0.239 (8)
N14 0.5432 (5) 0.2110 (5) 0.2431 (6) 0.093 (2)
C14 0.5281 (5) 0.1352 (5) 0.3060 (6) 0.070 (2)
C24 0.4566 (6) 0.0842 (6) 0.2798 (8) 0.084 (3)
C34 0.4227 (6) 0.0062 (7) 0.3280 (8) 0.098 (3)
H34 0.443561 −0.021910 0.385174 0.117*
C44 0.3593 (8) −0.0302 (9) 0.2928 (12) 0.139 (5)
H44 0.334741 −0.082728 0.326089 0.167*
C54 0.3305 (11) 0.0102 (10) 0.2072 (14) 0.191 (9)
H54 0.290155 −0.018167 0.181236 0.230*
C64 0.3598 (11) 0.0901 (10) 0.1607 (14) 0.194 (9)
H64 0.338601 0.119274 0.103853 0.233*
C74 0.4222 (8) 0.1268 (8) 0.2002 (10) 0.116 (4)
N15 0.5352 (5) 0.2612 (5) 0.5904 (5) 0.0738 (18)
N25 0.0154 (5) 0.3171 (4) 1.1297 (4) 0.0636 (15)
C15 0.5497 (6) 0.3145 (6) 0.6487 (6) 0.081 (2)
H15 0.606869 0.339695 0.635095 0.097*
C25 0.4839 (7) 0.3354 (7) 0.7301 (7) 0.102 (3)
H25 0.497345 0.375572 0.768450 0.122*
C35 0.4003 (9) 0.2993 (8) 0.7563 (7) 0.117 (2)
C45 0.3833 (7) 0.2470 (7) 0.6937 (7) 0.099 (3)
H45 0.325658 0.222573 0.705694 0.118*
C55 0.4503 (6) 0.2293 (6) 0.6120 (6) 0.081 (2)
H55 0.435691 0.193616 0.570298 0.097*
C65 0.0985 (6) 0.3269 (7) 1.1586 (6) 0.084 (2)
H65 0.107427 0.305888 1.220409 0.101*
C75 0.1716 (6) 0.3668 (7) 1.1009 (8) 0.101 (3)
H75 0.227885 0.371349 1.124832 0.121*
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C85 0.1632 (8) 0.3997 (7) 1.0092 (8) 0.108 (2)
C95 0.0806 (6) 0.3843 (6) 0.9810 (6) 0.077 (2)
H95 0.072422 0.400772 0.918608 0.092*
C105 0.0090 (6) 0.3457 (5) 1.0403 (5) 0.0659 (19)
H105 −0.046711 0.339131 1.016770 0.079*
C115 0.3344 (8) 0.3133 (6) 0.8456 (7) 0.119 (2)
H11A 0.281135 0.279603 0.849357 0.143*
H11B 0.375009 0.280774 0.894774 0.143*
C125 0.2860 (8) 0.4175 (6) 0.8625 (7) 0.117 (2)
H12A 0.234327 0.443215 0.821442 0.140*
H12B 0.337977 0.453345 0.840643 0.140*
C135 0.2371 (8) 0.4496 (7) 0.9533 (6) 0.113 (2)
H13A 0.202733 0.520722 0.944030 0.135*
H13B 0.291114 0.442577 0.989975 0.135*
S1A 0.6847 (8) 0.4079 (6) 0.8253 (6) 0.133 (3) 0.328 (5)
O1A 0.6320 (12) 0.4694 (10) 0.9058 (11) 0.186 (9) 0.328 (5)
C1A 0.8110 (12) 0.4169 (19) 0.7950 (17) 0.22 (2) 0.328 (5)
H1A 0.844439 0.378155 0.744136 0.330* 0.328 (5)
H1B 0.810526 0.485971 0.776836 0.330* 0.328 (5)
H1C 0.847147 0.391445 0.847388 0.330* 0.328 (5)
C2A 0.6862 (17) 0.2819 (7) 0.8598 (14) 0.127 (8) 0.328 (5)
H2A 0.719371 0.242681 0.809211 0.191* 0.328 (5)
H2B 0.722893 0.257230 0.911939 0.191* 0.328 (5)
H2C 0.617077 0.276749 0.877144 0.191* 0.328 (5)
S1B 0.7251 (11) 0.3810 (9) 0.8874 (12) 0.133 (3) 0.172 (5)
O1B 0.6320 (12) 0.4694 (10) 0.9058 (11) 0.186 (9) 0.172 (5)
C1B 0.8110 (12) 0.4169 (19) 0.7950 (17) 0.22 (2) 0.172 (5)
H1D 0.869773 0.360862 0.783539 0.330* 0.172 (5)
H1E 0.778031 0.438247 0.740327 0.330* 0.172 (5)
H1F 0.832267 0.471290 0.810252 0.330* 0.172 (5)
C2B 0.6862 (17) 0.2819 (7) 0.8598 (14) 0.127 (8) 0.172 (5)
H2D 0.744977 0.225914 0.848166 0.191* 0.172 (5)
H2E 0.639151 0.262109 0.910763 0.191* 0.172 (5)
H2F 0.653021 0.303303 0.805264 0.191* 0.172 (5)
O1W 0.5624 (10) 0.4406 (7) 0.1121 (8) 0.184 (5)
H1WA 0.523 (13) 0.505 (4) 0.088 (12) 0.275*
H1WB 0.550 (3) 0.395 (8) 0.077 (8) 0.275*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

Ag1 0.0633 (4) 0.0866 (4) 0.0619 (4) −0.0244 (3) 0.0095 (3) −0.0088 (3)
Ag2 0.0624 (3) 0.0821 (4) 0.0466 (3) −0.0265 (3) 0.0027 (2) −0.0102 (3)
Ag3 0.0698 (4) 0.0936 (4) 0.0426 (3) −0.0252 (3) −0.0023 (3) −0.0107 (3)
Ag4 0.0654 (4) 0.0731 (4) 0.0835 (4) −0.0293 (3) −0.0065 (3) −0.0152 (3)
S11 0.0542 (10) 0.0723 (11) 0.0373 (8) −0.0190 (8) −0.0006 (7) −0.0047 (7)
S21 0.0628 (11) 0.0771 (11) 0.0354 (8) −0.0121 (9) 0.0025 (7) −0.0081 (8)
O11 0.070 (3) 0.098 (4) 0.042 (3) −0.038 (3) −0.003 (2) 0.003 (2)
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O21 0.072 (3) 0.074 (3) 0.071 (3) −0.004 (3) −0.004 (3) −0.021 (3)
N11 0.051 (3) 0.074 (4) 0.037 (3) −0.007 (3) −0.007 (2) −0.005 (2)
C11 0.049 (4) 0.069 (4) 0.039 (3) −0.016 (3) −0.006 (3) 0.006 (3)
C21 0.054 (4) 0.052 (3) 0.042 (3) −0.015 (3) −0.002 (3) 0.006 (3)
C31 0.052 (4) 0.095 (5) 0.052 (4) −0.013 (4) 0.001 (3) −0.004 (4)
C41 0.053 (5) 0.128 (7) 0.063 (5) −0.024 (5) −0.009 (4) 0.009 (5)
C51 0.061 (5) 0.123 (7) 0.079 (6) −0.035 (5) −0.024 (5) 0.012 (5)
C61 0.073 (5) 0.077 (5) 0.052 (4) −0.028 (4) −0.018 (4) 0.009 (3)
C71 0.050 (4) 0.060 (4) 0.043 (3) −0.020 (3) −0.009 (3) 0.007 (3)
S12 0.0549 (10) 0.0743 (11) 0.0622 (11) −0.0306 (9) −0.0107 (8) −0.0019 (9)
S22 0.0451 (9) 0.0628 (10) 0.0737 (12) −0.0176 (8) −0.0049 (8) −0.0112 (9)
O12 0.079 (4) 0.109 (4) 0.090 (4) −0.059 (3) −0.010 (3) 0.012 (3)
O22 0.057 (3) 0.088 (4) 0.087 (4) −0.015 (3) −0.016 (3) −0.013 (3)
N12 0.047 (3) 0.060 (3) 0.058 (3) −0.020 (3) −0.001 (3) −0.012 (3)
C12 0.062 (4) 0.060 (4) 0.047 (4) −0.027 (3) −0.009 (3) 0.002 (3)
C22 0.055 (4) 0.052 (4) 0.060 (4) −0.010 (3) −0.014 (3) −0.004 (3)
C32 0.054 (4) 0.079 (5) 0.083 (5) −0.004 (4) −0.014 (4) −0.024 (4)
C42 0.095 (7) 0.094 (6) 0.104 (7) −0.003 (6) −0.017 (6) −0.042 (6)
C52 0.105 (8) 0.083 (6) 0.127 (9) −0.011 (6) −0.034 (7) −0.053 (6)
C62 0.091 (6) 0.074 (5) 0.092 (6) −0.028 (5) −0.031 (5) −0.015 (5)
C72 0.064 (5) 0.058 (4) 0.063 (4) −0.018 (3) −0.022 (4) −0.003 (3)
S13 0.0841 (14) 0.0762 (12) 0.0419 (9) −0.0343 (11) −0.0004 (9) −0.0039 (8)
S23 0.0935 (15) 0.0871 (13) 0.0480 (10) −0.0530 (12) −0.0116 (10) −0.0007 (9)
O13 0.088 (4) 0.102 (4) 0.093 (4) −0.051 (3) 0.019 (3) −0.018 (3)
O23 0.138 (6) 0.094 (4) 0.060 (3) −0.027 (4) −0.029 (4) 0.015 (3)
N13 0.090 (5) 0.080 (4) 0.035 (3) −0.042 (3) 0.003 (3) −0.007 (3)
C13 0.072 (5) 0.091 (5) 0.034 (3) −0.045 (4) −0.009 (3) −0.006 (3)
C23 0.050 (4) 0.094 (5) 0.031 (3) −0.027 (4) −0.009 (3) −0.002 (3)
C33 0.070 (5) 0.099 (6) 0.049 (4) −0.040 (4) −0.001 (4) 0.006 (4)
C43 0.076 (5) 0.120 (7) 0.032 (4) −0.027 (5) 0.007 (3) −0.005 (4)
C53 0.076 (6) 0.104 (7) 0.055 (5) −0.019 (5) 0.000 (4) −0.015 (4)
C63 0.066 (5) 0.075 (5) 0.049 (4) −0.009 (4) −0.009 (3) −0.013 (3)
C73 0.056 (4) 0.072 (4) 0.042 (4) −0.019 (3) −0.010 (3) 0.000 (3)
S14 0.156 (3) 0.136 (3) 0.223 (4) −0.100 (3) −0.140 (3) 0.094 (3)
S24 0.0768 (13) 0.0880 (13) 0.0605 (11) −0.0384 (11) 0.0086 (10) −0.0054 (10)
O14 0.323 (17) 0.298 (15) 0.148 (9) −0.224 (14) −0.170 (11) 0.113 (10)
O24 0.176 (10) 0.115 (6) 0.46 (2) −0.062 (7) −0.210 (13) 0.117 (9)
N14 0.080 (5) 0.084 (4) 0.128 (6) −0.045 (4) −0.052 (5) 0.035 (4)
C14 0.049 (4) 0.053 (4) 0.103 (6) −0.015 (3) 0.004 (4) −0.011 (4)
C24 0.049 (4) 0.063 (5) 0.139 (8) −0.020 (4) −0.011 (5) −0.004 (5)
C34 0.054 (5) 0.082 (6) 0.162 (10) −0.037 (4) −0.003 (5) −0.003 (6)
C44 0.082 (7) 0.101 (8) 0.245 (17) −0.049 (6) −0.049 (9) 0.024 (9)
C54 0.162 (13) 0.130 (10) 0.34 (2) −0.101 (10) −0.171 (16) 0.085 (13)
C64 0.173 (13) 0.129 (10) 0.34 (2) −0.090 (10) −0.191 (15) 0.083 (12)
C74 0.087 (7) 0.102 (7) 0.180 (11) −0.051 (6) −0.069 (8) 0.033 (7)
N15 0.054 (4) 0.089 (4) 0.072 (4) −0.022 (3) 0.015 (3) −0.012 (4)
N25 0.058 (4) 0.079 (4) 0.053 (3) −0.024 (3) 0.006 (3) −0.010 (3)
C15 0.059 (5) 0.083 (5) 0.093 (6) −0.017 (4) 0.014 (4) −0.020 (5)
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C25 0.095 (7) 0.094 (6) 0.112 (8) −0.035 (5) 0.040 (6) −0.048 (6)
C35 0.114 (4) 0.100 (4) 0.124 (4) −0.051 (3) 0.066 (4) −0.033 (3)
C45 0.076 (6) 0.093 (6) 0.113 (8) −0.033 (5) 0.036 (5) −0.009 (6)
C55 0.069 (5) 0.093 (6) 0.072 (5) −0.019 (5) 0.005 (4) −0.006 (4)
C65 0.063 (5) 0.125 (7) 0.068 (5) −0.030 (5) −0.006 (4) −0.018 (5)
C75 0.037 (4) 0.118 (7) 0.148 (10) −0.031 (5) 0.022 (5) −0.037 (7)
C85 0.103 (4) 0.096 (4) 0.120 (4) −0.053 (3) 0.062 (4) −0.039 (3)
C95 0.074 (5) 0.077 (5) 0.067 (5) −0.023 (4) 0.025 (4) −0.007 (4)
C105 0.057 (4) 0.071 (4) 0.068 (5) −0.020 (4) 0.005 (4) −0.011 (4)
C115 0.116 (4) 0.103 (3) 0.126 (4) −0.051 (3) 0.066 (3) −0.032 (3)
C125 0.113 (4) 0.102 (3) 0.125 (4) −0.052 (3) 0.064 (3) −0.033 (3)
C135 0.107 (4) 0.100 (3) 0.123 (4) −0.053 (3) 0.062 (3) −0.036 (3)
S1A 0.193 (10) 0.098 (5) 0.105 (7) −0.011 (6) −0.056 (6) −0.015 (5)
O1A 0.19 (2) 0.145 (15) 0.19 (2) 0.001 (14) 0.008 (16) −0.073 (14)
C1A 0.20 (3) 0.22 (3) 0.30 (4) −0.13 (3) 0.07 (3) −0.21 (3)
C2A 0.14 (2) 0.123 (17) 0.103 (16) 0.016 (15) −0.065 (15) −0.003 (13)
S1B 0.193 (10) 0.098 (5) 0.105 (7) −0.011 (6) −0.056 (6) −0.015 (5)
O1B 0.19 (2) 0.145 (15) 0.19 (2) 0.001 (14) 0.008 (16) −0.073 (14)
C1B 0.20 (3) 0.22 (3) 0.30 (4) −0.13 (3) 0.07 (3) −0.21 (3)
C2B 0.14 (2) 0.123 (17) 0.103 (16) 0.016 (15) −0.065 (15) −0.003 (13)
O1W 0.231 (12) 0.141 (7) 0.220 (11) −0.094 (8) −0.116 (9) 0.041 (7)

Geometric parameters (Å, º) 

Ag1—N15 2.307 (6) C63—H63 0.9300
Ag1—N11 2.422 (5) S14—O14 1.411 (15)
Ag1—S22 2.607 (2) S14—O24 1.429 (12)
Ag1—S24 2.647 (2) S14—N14 1.653 (8)
Ag1—Ag3 2.8307 (8) S14—C74 1.776 (10)
Ag2—N12 2.320 (5) S24—C14 1.668 (9)
Ag2—N25i 2.335 (6) N14—C14 1.333 (10)
Ag2—S23 2.606 (2) C14—C24 1.502 (11)
Ag2—S21 2.615 (2) C24—C74 1.331 (14)
Ag2—Ag4 2.9180 (8) C24—C34 1.359 (11)
Ag2—Ag3 3.3489 (8) C34—C44 1.340 (14)
Ag3—N13 2.317 (5) C34—H34 0.9300
Ag3—S21 2.416 (2) C44—C54 1.376 (19)
Ag3—S24 2.472 (2) C44—H44 0.9300
Ag3—Ag4 3.0692 (9) C54—C64 1.343 (17)
Ag4—N14 2.354 (6) C54—H54 0.9300
Ag4—S22 2.461 (2) C64—C74 1.367 (15)
Ag4—S23 2.510 (2) C64—H64 0.9300
Ag4—O1W 2.612 (9) N15—C15 1.296 (10)
S11—O11 1.418 (5) N15—C55 1.337 (10)
S11—O21 1.421 (5) N25—C105 1.325 (9)
S11—N11 1.665 (6) N25—C65 1.340 (10)
S11—C71 1.751 (7) C15—C25 1.379 (11)
S21—C11 1.714 (7) C15—H15 0.9300
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N11—C11 1.319 (8) C25—C35 1.358 (13)
C11—C21 1.470 (9) C25—H25 0.9300
C21—C71 1.379 (9) C35—C45 1.351 (14)
C21—C31 1.393 (9) C35—C115 1.460 (6)
C31—C41 1.355 (11) C45—C55 1.384 (11)
C31—H31 0.9300 C45—H45 0.9300
C41—C51 1.364 (12) C55—H55 0.9300
C41—H41 0.9300 C65—C75 1.384 (12)
C51—C61 1.373 (11) C65—H65 0.9300
C51—H51 0.9300 C75—C85 1.370 (15)
C61—C71 1.365 (9) C75—H75 0.9300
C61—H61 0.9300 C85—C95 1.362 (14)
S12—O12 1.420 (6) C85—C135 1.460 (6)
S12—O22 1.434 (5) C95—C105 1.369 (10)
S12—N12 1.670 (6) C95—H95 0.9300
S12—C72 1.759 (8) C105—H105 0.9300
S22—C12 1.709 (7) C115—C125 1.455 (6)
N12—C12 1.302 (8) C115—H11A 0.9700
C12—C22 1.496 (9) C115—H11B 0.9700
C22—C72 1.363 (10) C125—C135 1.457 (6)
C22—C32 1.387 (10) C125—H12A 0.9700
C32—C42 1.399 (12) C125—H12B 0.9700
C32—H32 0.9300 C135—H13A 0.9700
C42—C52 1.370 (13) C135—H13B 0.9700
C42—H42 0.9300 S1A—O1A 1.520 (3)
C52—C62 1.374 (13) S1A—C1A 1.751 (3)
C52—H52 0.9300 S1A—C2A 1.752 (3)
C62—C72 1.376 (10) C1A—H1A 0.9600
C62—H62 0.9300 C1A—H1B 0.9600
S13—O23 1.415 (6) C1A—H1C 0.9600
S13—O13 1.421 (6) C2A—H2A 0.9600
S13—N13 1.664 (6) C2A—H2B 0.9600
S13—C73 1.756 (7) C2A—H2C 0.9600
S23—C13 1.693 (8) S1B—O1B 1.517 (3)
N13—C13 1.300 (8) S1B—C1B 1.746 (3)
C13—C23 1.485 (9) S1B—C2B 1.749 (3)
C23—C73 1.379 (10) C1B—H1D 0.9600
C23—C33 1.403 (9) C1B—H1E 0.9600
C33—C43 1.409 (11) C1B—H1F 0.9600
C33—H33 0.9300 C2B—H2D 0.9600
C43—C53 1.330 (11) C2B—H2E 0.9600
C43—H43 0.9300 C2B—H2F 0.9600
C53—C63 1.384 (10) O1W—H1WA 0.956 (10)
C53—H53 0.9300 O1W—H1WB 0.953 (10)
C63—C73 1.362 (9)

N15—Ag1—N11 111.9 (2) C73—C23—C13 112.0 (6)
N15—Ag1—S22 100.45 (17) C33—C23—C13 128.7 (7)
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N11—Ag1—S22 105.35 (14) C23—C33—C43 116.0 (7)
N15—Ag1—S24 99.32 (19) C23—C33—H33 122.0
N11—Ag1—S24 121.61 (14) C43—C33—H33 122.0
S22—Ag1—S24 116.15 (7) C53—C43—C33 122.9 (7)
N15—Ag1—Ag3 150.49 (18) C53—C43—H43 118.6
N11—Ag1—Ag3 79.72 (13) C33—C43—H43 118.6
S22—Ag1—Ag3 102.32 (5) C43—C53—C63 121.4 (8)
S24—Ag1—Ag3 53.52 (5) C43—C53—H53 119.3
N12—Ag2—N25i 102.99 (19) C63—C53—H53 119.3
N12—Ag2—S23 127.40 (15) C73—C63—C53 116.9 (8)
N25i—Ag2—S23 92.24 (16) C73—C63—H63 121.6
N12—Ag2—S21 108.22 (14) C53—C63—H63 121.6
N25i—Ag2—S21 116.38 (16) C63—C73—C23 123.5 (6)
S23—Ag2—S21 109.02 (6) C63—C73—S13 129.4 (6)
N12—Ag2—Ag4 82.64 (13) C23—C73—S13 107.1 (5)
N25i—Ag2—Ag4 135.26 (16) O14—S14—O24 117.3 (8)
S23—Ag2—Ag4 53.68 (5) O14—S14—N14 110.7 (6)
S21—Ag2—Ag4 103.06 (5) O24—S14—N14 108.5 (7)
N12—Ag2—Ag3 107.90 (13) O14—S14—C74 113.0 (8)
N25i—Ag2—Ag3 148.13 (15) O24—S14—C74 110.7 (7)
S23—Ag2—Ag3 75.23 (4) N14—S14—C74 94.2 (5)
S21—Ag2—Ag3 45.78 (5) C14—S24—Ag3 96.3 (3)
Ag4—Ag2—Ag3 58.163 (19) C14—S24—Ag1 114.3 (3)
N13—Ag3—S21 106.92 (16) Ag3—S24—Ag1 67.04 (6)
N13—Ag3—S24 105.52 (17) C14—N14—S14 112.5 (6)
S21—Ag3—S24 147.31 (7) C14—N14—Ag4 129.5 (6)
N13—Ag3—Ag1 143.77 (16) S14—N14—Ag4 117.5 (4)
S21—Ag3—Ag1 95.14 (5) N14—C14—C24 112.3 (8)
S24—Ag3—Ag1 59.44 (5) N14—C14—S24 126.2 (6)
N13—Ag3—Ag4 76.88 (15) C24—C14—S24 121.4 (6)
S21—Ag3—Ag4 103.82 (5) C74—C24—C34 119.4 (9)
S24—Ag3—Ag4 87.29 (6) C74—C24—C14 112.3 (8)
Ag1—Ag3—Ag4 70.03 (2) C34—C24—C14 128.2 (10)
N13—Ag3—Ag2 85.74 (14) C44—C34—C24 119.7 (12)
S21—Ag3—Ag2 50.87 (5) C44—C34—H34 120.1
S24—Ag3—Ag2 136.51 (6) C24—C34—H34 120.1
Ag1—Ag3—Ag2 86.51 (2) C34—C44—C54 119.8 (11)
Ag4—Ag3—Ag2 53.872 (18) C34—C44—H44 120.1
N14—Ag4—S22 110.2 (2) C54—C44—H44 120.1
N14—Ag4—S23 105.5 (2) C64—C54—C44 121.0 (12)
S22—Ag4—S23 143.14 (7) C64—C54—H54 119.5
N14—Ag4—O1W 90.5 (3) C44—C54—H54 119.5
S22—Ag4—O1W 100.3 (3) C54—C64—C74 117.2 (13)
S23—Ag4—O1W 88.2 (3) C54—C64—H64 121.4
N14—Ag4—Ag2 138.93 (18) C74—C64—H64 121.4
S22—Ag4—Ag2 89.29 (5) C24—C74—C64 122.5 (10)
S23—Ag4—Ag2 56.79 (5) C24—C74—S14 108.7 (7)
O1W—Ag4—Ag2 122.1 (3) C64—C74—S14 128.6 (10)
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N14—Ag4—Ag3 73.22 (16) C15—N15—C55 116.2 (7)
S22—Ag4—Ag3 99.45 (5) C15—N15—Ag1 119.2 (5)
S23—Ag4—Ag3 81.93 (5) C55—N15—Ag1 124.6 (6)
O1W—Ag4—Ag3 157.8 (2) C105—N25—C65 115.3 (7)
Ag2—Ag4—Ag3 67.97 (2) C105—N25—Ag2ii 121.8 (5)
O11—S11—O21 117.6 (3) C65—N25—Ag2ii 122.4 (5)
O11—S11—N11 109.3 (3) N15—C15—C25 122.7 (8)
O21—S11—N11 108.5 (3) N15—C15—H15 118.7
O11—S11—C71 111.1 (3) C25—C15—H15 118.7
O21—S11—C71 112.3 (3) C35—C25—C15 122.4 (9)
N11—S11—C71 95.7 (3) C35—C25—H25 118.8
C11—S21—Ag3 106.1 (2) C15—C25—H25 118.8
C11—S21—Ag2 100.6 (2) C45—C35—C25 114.7 (8)
Ag3—S21—Ag2 83.35 (6) C45—C35—C115 121.9 (10)
C11—N11—S11 110.0 (5) C25—C35—C115 123.4 (10)
C11—N11—Ag1 130.0 (4) C35—C45—C55 121.0 (9)
S11—N11—Ag1 119.7 (3) C35—C45—H45 119.5
N11—C11—C21 115.8 (6) C55—C45—H45 119.5
N11—C11—S21 124.7 (5) N15—C55—C45 123.0 (9)
C21—C11—S21 119.5 (5) N15—C55—H55 118.5
C71—C21—C31 119.6 (7) C45—C55—H55 118.5
C71—C21—C11 110.7 (6) N25—C65—C75 123.0 (9)
C31—C21—C11 129.7 (6) N25—C65—H65 118.5
C41—C31—C21 117.9 (7) C75—C65—H65 118.5
C41—C31—H31 121.0 C85—C75—C65 121.7 (9)
C21—C31—H31 121.0 C85—C75—H75 119.2
C31—C41—C51 122.0 (8) C65—C75—H75 119.2
C31—C41—H41 119.0 C75—C85—C95 113.8 (7)
C51—C41—H41 119.0 C75—C85—C135 119.6 (12)
C41—C51—C61 120.8 (8) C95—C85—C135 126.6 (12)
C41—C51—H51 119.6 C105—C95—C85 122.9 (9)
C61—C51—H51 119.6 C105—C95—H95 118.6
C71—C61—C51 117.9 (8) C85—C95—H95 118.6
C71—C61—H61 121.1 N25—C105—C95 123.1 (8)
C51—C61—H61 121.1 N25—C105—H105 118.4
C61—C71—C21 121.7 (6) C95—C105—H105 118.4
C61—C71—S11 130.4 (6) C125—C115—C35 115.0 (8)
C21—C71—S11 107.9 (5) C125—C115—H11A 108.5
O12—S12—O22 117.9 (4) C35—C115—H11A 108.5
O12—S12—N12 109.1 (3) C125—C115—H11B 108.5
O22—S12—N12 108.9 (3) C35—C115—H11B 108.5
O12—S12—C72 111.5 (4) H11A—C115—H11B 107.5
O22—S12—C72 111.7 (3) C115—C125—C135 124.1 (9)
N12—S12—C72 95.3 (3) C115—C125—H12A 106.3
C12—S22—Ag4 108.8 (2) C135—C125—H12A 106.3
C12—S22—Ag1 100.2 (2) C115—C125—H12B 106.3
Ag4—S22—Ag1 83.95 (6) C135—C125—H12B 106.3
C12—N12—S12 110.8 (5) H12A—C125—H12B 106.4
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C12—N12—Ag2 129.0 (4) C125—C135—C85 119.3 (8)
S12—N12—Ag2 118.8 (3) C125—C135—H13A 107.5
N12—C12—C22 115.1 (6) C85—C135—H13A 107.5
N12—C12—S22 125.0 (5) C125—C135—H13B 107.5
C22—C12—S22 119.9 (5) C85—C135—H13B 107.5
C72—C22—C32 120.3 (7) H13A—C135—H13B 107.0
C72—C22—C12 110.8 (6) O1A—S1A—C1A 109.3 (6)
C32—C22—C12 128.9 (7) O1A—S1A—C2A 109.1 (6)
C22—C32—C42 117.3 (8) C1A—S1A—C2A 109.2 (12)
C22—C32—H32 121.3 S1A—C1A—H1A 109.5
C42—C32—H32 121.3 S1A—C1A—H1B 109.5
C52—C42—C32 120.9 (9) H1A—C1A—H1B 109.5
C52—C42—H42 119.6 S1A—C1A—H1C 109.5
C32—C42—H42 119.6 H1A—C1A—H1C 109.5
C42—C52—C62 121.6 (8) H1B—C1A—H1C 109.5
C42—C52—H52 119.2 S1A—C2A—H2A 109.5
C62—C52—H52 119.2 S1A—C2A—H2B 109.5
C72—C62—C52 117.0 (8) H2A—C2A—H2B 109.5
C72—C62—H62 121.5 S1A—C2A—H2C 109.5
C52—C62—H62 121.5 H2A—C2A—H2C 109.5
C22—C72—C62 122.9 (7) H2B—C2A—H2C 109.5
C22—C72—S12 108.1 (5) O1B—S1B—C1B 109.6 (6)
C62—C72—S12 129.1 (6) O1B—S1B—C2B 109.3 (7)
O23—S13—O13 117.0 (4) C1B—S1B—C2B 109.6 (12)
O23—S13—N13 110.4 (4) S1B—C1B—H1D 109.5
O13—S13—N13 109.4 (4) S1B—C1B—H1E 109.5
O23—S13—C73 110.9 (4) H1D—C1B—H1E 109.5
O13—S13—C73 111.9 (4) S1B—C1B—H1F 109.5
N13—S13—C73 95.0 (3) H1D—C1B—H1F 109.5
C13—S23—Ag4 104.2 (2) H1E—C1B—H1F 109.5
C13—S23—Ag2 110.9 (2) S1B—C2B—H2D 109.5
Ag4—S23—Ag2 69.53 (5) S1B—C2B—H2E 109.5
C13—N13—S13 112.2 (5) H2D—C2B—H2E 109.5
C13—N13—Ag3 123.1 (5) S1B—C2B—H2F 109.5
S13—N13—Ag3 120.6 (3) H2D—C2B—H2F 109.5
N13—C13—C23 113.6 (6) H2E—C2B—H2F 109.5
N13—C13—S23 125.5 (5) Ag4—O1W—H1WA 158 (9)
C23—C13—S23 120.9 (5) Ag4—O1W—H1WB 97 (9)
C73—C23—C33 119.2 (7) H1WA—O1W—H1WB 103.4 (15)

Symmetry codes: (i) x+1, y, z−1; (ii) x−1, y, z+1.

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A

O1W—H1WB···O14 0.95 (10) 2.59 (11) 3.425 (18) 147 (9)
O1W—H1WB···O24 0.95 (10) 2.59 (8) 3.072 (18) 112 (8)
O1W—H1WA···O1Aiii 0.96 (9) 2.05 (18) 2.65 (2) 119 (12)
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C125—H12B···O1Wiii 0.97 2.53 3.369 (17) 144
C44—H44···O11iv 0.93 2.52 3.260 (13) 137
C53—H53···S21v 0.93 2.86 3.572 (9) 134
C75—H75···O24vi 0.93 2.41 3.284 (16) 158
C105—H105···S23ii 0.93 2.82 3.508 (9) 132

Symmetry codes: (ii) x−1, y, z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) −x+2, −y, −z; (vi) x, y, z+1.
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