Ref.: Ms. No. FISH6866 25/07/2016, 6:04 CONCILIATING ARTISANAL AND RECREATIONAL FISHERIES IN ANEGADA BAY, ARGENTINA Fisheries Research

Dear Dr. Llompart,

I can now inform you that the Editorial Board has evaluated the manuscript FISH6866: CONCILIATING ARTISANAL AND RECREATIONAL FISHERIES IN ANEGADA BAY, ARGENTINA.

The Editor has advised that the manuscript is acceptable subject to satisfactory moderate revision.

The comments below should be taken into account when revising the manuscript. Along with your revised manuscript, you will need to supply revision notes in which you list all the changes you have made to the manuscript, and in which you detail your responses to all the comments passed by the reviewer(s) and the Editor. Should you disagree with any comment(s), please explain why.

To submit a revision, please visit http://ees.elsevier.com/fish/ and log in as an Author. You will see a menu item called Submission Needing Revision. The revised manuscript and the revision notes can be submitted there.

When submitting your revised manuscript, please ensure that you upload the source files (e.g. Word). Uploading a PDF file at this stage will create delays should your manuscript be finally accepted for publication. If your revised submission does not include the source files, we will contact you to request them.

You are kindly requested to submit your revised manuscript within 4 weeks. If your revision is received after that deadline, it may be treated as a new submission.

Please note that this journal offers a new, free service called AudioSlides: brief, webcast-style presentations that are shown next to published articles on ScienceDirect (see also http://www.elsevier.com/audioslides). If your paper is accepted for publication, you will automatically receive an invitation to create an AudioSlides presentation.

Fisheries Research features the Interactive Plot Viewer, see: http://www.elsevier.com/interactiveplots. Interactive Plots provide easy access to the data behind plots. To include one with your article, please prepare a .csv file with your plot data and test it online at

http://authortools.elsevier.com/interactiveplots/verification before submission as supplementary material.

Kind regards,

Sharmila Vadivelan Journal Manager Fisheries Research fish@elsevier.com

Note: While submitting the revised manuscript, please double check the author names provided in the submission so that authorship related changes are made in the revision stage. If your manuscript is accepted, any authorship change will involve approval from co-authors and respective editor handling the submission and this may cause a significant delay in publishing your manuscript. Important note: If a reviewer has provided a review or other materials as attachments, those items will not be in this letter. Please ensure therefore that you log on to the journal site and check if any

attachments have been provided.

Dear Mr. Editor-in-Chief

G.A. Rose

We are sending the revised manuscript entitled "CONCILIATING ARTISANAL AND RECREATIONAL FISHERIES IN ANEGADA BAY, ARGENTINA" authors (FM Llompart, DC Colautti and CRM Baigún) having considered the comments and suggestions.

With compliments,

Dr. Facundo Llompart

Laboratorio de Ecología, Fisiología y Evolución de organismos acuáticos.

Centro Austral de Investigaciones Científicas (CADIC-CONICET).

Bernardo Houssay 200, Ushuaia (9410), Tierra del Fuego, Argentina.

Tel: (+54) 02901-422310 int 121 o 126

Fax: 02901-430644

Web: http://www.cadic-conicet.org/facundo-llompart/

Editor comments: The Ms requires a language editing

The Ms was copyedited and proofread in accordance with the rules and the nuances of the British English languages by **PRS** (Proof Reading Service London England). However, if the editor still considers that the Ms needs to be improved we can ask this service to do a new revision

Reviewer 1:

a. Also in the abstract (i.e. the necessity to implement a true integrated management plan that considers all fisheries (AF, RF and trawl: "To 34 resolved conflicts, a comanagement including AF, RF and industrial (trawl) stakeholders and non-fishing community is suggested".

We included in line 34 the industrial (trawl) fishery as requested and also added a paragraph in the Discussion section (lines 507-512).

b. Authors state that they have used now several studies cases around the word to compare and expanded their findings in the discussion section. But they need to incorporate in the discussion the latest ms published on the same topic in Australia, which has just appeared in Marine Policy (Brown, 2016, see reference below). This new article reinforces the idea presented by the authors and therefore should be used to support their conclusions.

We agree that this new paper needs to be mentioned and used it for supporting the study conclusions

Reviewer 4:

c. The discussion section could be improved by adding a new paragraph on possible regulations/tools to protect the most vulnerable target species (both AF/RF). Line 404-405. "This situation demands the urgent implementation of conservation policies in order to protect the most vulnerable target species". Discuss these please.

We adapted the idea provided by the reviewer related to proposed tools for the most vulnerable species conservation.

Elsevier Editorial System(tm) for Fisheries

Research

Manuscript Draft

Manuscript Number: FISH6866R3

Title: CONCILIATING ARTISANAL AND RECREATIONAL FISHERIES IN ANEGADA BAY, ARGENTINA

Article Type: Research Paper

Keywords: arisanal fishery; recreational fishery; Anegada Bay; fisheries conflicts; common-pool resources; sea management.

Corresponding Author: Dr. Facundo Llompart,

Corresponding Author's Institution:

First Author: Facundo Llompart

Order of Authors: Facundo Llompart; Darío Colautti, Doctor; Claudio Baigún, Doctor

Manuscript Region of Origin: ARGENTINA

A final reviewed of the entire manuscript and figures files was done and now is prepared to final production. Also, a list of five bullet points was included in a separate word file called "Highlights".

- An error was fixed in the abstract section of the Ms: This phrase "However, the vulnerability index of AF landings resulted in higher values than the <u>AF</u>" was replaced by "However, the vulnerability index of AF landings resulted in higher values than the RF".

Highlights:

• The spatio-temporal overlap between artisanal and recreational fisheries was analyzed

• Temporal overlap was detected during one month but shared a 40% of the fishing areas

• Recreational catch exceeded the artisanal but together were considered low regionally

• The artisanal fisheries caught mostly adult *M. schmitti*, species without sport value

• Artisanal fishery banned is poorly justified and co-governance can resolve conflicts

CONCILIATING ARTISANAL AND RECREATIONAL FISHERIES IN ANEGADA BAY, ARGENTINA

- 3 FM Llompart^{a,b,c}*, DC Colautti^{c,d} and CRM Baigún^{c,e}.
- *Corresponding author: Tel.: +54 (02901) 422-310 int. 121
- 5 *Email address*: <u>facundollompart@hotmail.com</u> (F.M. LLompart)
- 6 a-Centro Austral de Investigaciones Científicas, 200 Bernardo Houssay,
- 7 V9410CAB Ushuaia, Tierra del Fuego, Argentina.
- 8 b- Universidad Nacional de Tierra del Fuego (UNTDF), Onas 400, Ushuaia,
- 9 Tierra del Fuego, Argentina.
- 10 c- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),
- 11 Buenos Aires, Argentina.
- 12 d- Instituto de Limnología "Dr. Raúl A. Ringuelet", Boulevard 120 y 62, CP:
- 13 1900 CC: 712 La Plata, Buenos Aires, Argentina.
- 14 e- Instituto de Investigación e Ingeniería Ambiental (3iA), Universidad
- 15 Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia s/n (1650),
- 16 Gral. San Martín, Buenos Aires, Argentina.

17 Abstract

- 18 Recreational and artisanal fisheries are common activities in Latin America
- 19 often interpreted as competitors due to the use of common-pool resources in
- 20 coastal areas. Conflicts between the (historical) artisanal fisheries (AF) and
- 21 (emerging) recreational fisheries (RF) in Anegada Bay resulted in the
- 22 prohibition of the former. This study address key fisheries characteristics to
- 23 detect the degree of spatio-temporal overlap between them considering the
- annual dynamic of the coastal fish assemblage and proposed management
- alternatives. Both fisheries exerted different fishing effort coinciding with the
- 26 dynamics of the fish assemblages but partial temporal and spatial overlap
- 27 where apparent especially during one month. However, both fisheries focused
- their catches on different targets species thus greatly reducing the overlap in
- 29 resource usage. Moreover, the low proportion of juveniles caught, limited
- 30 fishing effort using selective bottom gillnets and scarce total harvest (168
- 31 tons/years) for AF compared with those of RF harvest (631 tons/years) in
- 32 Anegada Bay poorly justified the actual prohibition. However, the
- 33 vulnerability index of AF landings resulted in higher values than the RF. To
- 34 resolved conflicts, a co-management including AF, RF and industrial (trawl)
- 35 stakeholders and non-fishing community is suggested. Because of the
- 36 economic importance of fishing for local people, an efficient inter and intra-
- 37 sector communications process and new fisheries guidelines are urgent for the
- equitable use of fish resource without compromising the goals of a protected
- 39 area.

40 Key words: coastal fisheries, Anegada Bay, fisheries conflicts, common-pool

41 resources, sea management.

42 **1. Introduction**

43 Fisheries and coastal systems are intrinsically diverse, complex and dynamic 44 (Jentoft and Chuenpagdee 2009). Moreover, an ongoing coastal area migration 45 is happening in many parts of the world (Pauly 2006) which is adding pressure onto the resources, and consequently, is increasing competition among the 46 47 numerous users of these limited resources (Jentoft 2000). The demands of new 48 actors in coastal areas (recreational fishers, conservation organisations, scuba 49 divers, tourist operators, among others) and the consequent diversity of usages 50 have added a complexity to the interactions thereon. They are creating new 51 governability challenges that are ultimately aimed towards a shared and 52 rational use of coastal marine resources. However, in finding practical 53 management solutions about resource sharing have proved to be very difficult, 54 since human dimensions are involved on multiple levels, horizontally between 55 the users and vertically between the users, managers, scientists, politicians, 56 and the public at large (Arlinghaus 2005). 57 In the last few years, there has been an international increment of concern about the roles that are played by artisanal and recreational fishing in global 58 59 catches and in local economies (Coleman et al. 2004, Bené 2006, 60 Chuenpagdee et al. 2006, Cooke and Cowx 2006, Teh and Sumalia 2013). For

61	example, the artisanal fisheries sector involves 450 million people (Berkes et
62	al. 2001). They harvest an estimated 21 million tonnes per year in marine
63	environments (Chuenpagdee et al. 2006) and they represent a huge socio-
64	economic relevance for many coastal populations (Allison and Ellis 2001,
65	Berkes et al. 2001, Andrew et al. 2007, Zeller et al. 2007). For the case of
66	recreational fisheries, approximately 11.5% of the world's population is
67	involved in capturing 12% of the total global catch (Cooke and Cowx 2004).
68	This produces high revenues for both developed and developing countries
69	(Pitcher and Hollingworth 2002). These values rearrange these fisheries into
70	the foreground and they show the need to improve our knowledge about
71	artisanal and recreational fisheries in coastal zones, in order to secure their
72	sustainable development (Salas et al. 2007, Chuenpagdee 2011).
73	Evaluations that try to account for the conflicts between the fishery sectors
74	and to quantify their reduction under alternative policies are still preliminary
75	(Pitcher and Hollingworth 2002). The understanding of conflicts is a
76	prerequisite for the planned sustainability actions (Renae 2006). Intra-sectoral
77	conflicts, especially between the artisanal and recreational fisheries, may be
78	due to several reasons, such as: i) the current increment of recreational fisher's
79	participation rates, together with the improved areas of accessibility to
80	previously remote fishing areas (Arlingahus 2005); ii) a spatiotemporal

81	overlap, since fishing is practised and is restricted to within a few nautical
82	miles from the coastline, due to the seasonal nature of available resources,
83	especially in temperate environments; iii) a mutual mistrust about fishing
84	practices or their impacts; and iv) different views and priorities about the
85	guidelines for the sustainable use of resources which are not based on
86	knowledge as much as they are on one's own values and interests (Jentoft and
87	Chuenpagdee 2009). Besides, intra-sectoral conflicts can be more severe when
88	two fisheries share the same targets species whereas inter-sectoral conflicts
89	with non-fishing stakeholders, governance institutions, and citizens in general,
90	can drive up the expense of fishery management (Arlinghaus 2005).
91	Recreational and artisanal fisheries are frequent coastal activities in many
92	parts of the world, including the Latin American countries (FAO 2012, Defeo
93	2014). Argentina, for instance, has an extended marine shoreline (5000 km)
94	where artisanal fishing is becoming a permanent livelihood for many people
95	(Elías et al. 2011). In Anegada Bay, in the Northern Argentinean Patagonia,
96	artisanal fisheries have been taking place for more than 100 years. Such
97	fisheries provided a major source of food, employment, and economic
98	benefits to the ancient inhabitants of Anegada Bay showing a temporal
99	increase between 1939 and 1945, due to the demands of shark-oil from the
100	school shark [Galeorhinus galeus (Linnaeus, 1758)] and then the fishing

101	efforts decreased (Lasta et al. 2001). Until 2007, artisanal fishing was
102	developed by following the fishing regulations imposed by the enforcement
103	authority (Dirección Provincial de Pesca, Provincia de Buenos Aires
104	http://www.maa.gba.gov.ar/pesca), but after was banned.
105	On the other hand, in Anegada Bay, the beginnings of the recreational
106	fisheries took place 6 decades ago, but there is evidence of an abrupt
107	increment over the last 15 years. Previous results on recreational fisheries
108	have shown the current relevance of this activity, in terms of attracting
109	tourism (39,649 \pm 9320 people per year for the last ten years), the employment
110	demands, and the incomes that this produces (Llompart et al. 2012). Over
111	time, however, the conflicts involved in these two fishery sectors and
112	including the local non-fishing stakeholders, have led to a prohibition of
113	artisanal fishing in the bay. Even though, such a decision was not based on an
114	integral evaluation. To partially address this gap of information, the objective
115	of this study was to obtain a comprehensive framework for both artisanal and
116	recreational fisheries in the bay and then to analyse to what extent such
117	activities were overlapped on a spatiotemporal basis, regarding the amount
118	and the types of fish caught. The main reasons for the conflicts and the
119	governance constraints are also analysed, in order to propose sustainable

120	management alternatives to enhance the fish and the conservation of the
121	fisheries in the marine protected area of Anegada Bay.
122	2. Materials and Methods
123	2.1. Study area
124	Anegada Bay is located along the southern coastline of the Buenos Aires
125	Province, Argentina (Fig. 1). This zone is a protected nature area of multiple
126	uses, being considered as part of North Patagonia. The area protects several
127	types of coastal environments, e.g., marshes, tidal plains, and sandy beaches
128	(Penchaszadeh et al. 2003). The bay comprises of small islands and banks that
129	are connected by a diffuse network of channels with depths ranging from 10m
130	to 24m in the main channel (Lucifora 2003). The tidal regime is
131	predominantly a mixed semidiurnal, with a maximum amplitude of 2.56m and
132	a minimum of 1.73m (SHN 2009). The water temperature ranges from 6.8°C
133	in winter to 19.2°C in summer, while the salinity varies between 32.5 and 35.0
134	PSU (Borges 1997, 2006). The climate is dry (300 mm/year of precipitation)
135	and the prevailing winds are from the northwest.
136	2.2.1. Recreational fishery
137	The main recreational fisheries (RF) take place in San Blas Bay, both from the
138	shoreline and from boats (Fig. 1). The shore-based RF (SRF) are carried out

along 4km of the village's coastline, on a steeply sloping pebble and gravel

beach, and for 4.4 km on a gently sloped sandy beach, located to the south of
the village. For the purposes of this study, the fishing information from these
two sites is presented together, as both being SRF.

143 For the assessment of RF, we developed a two-stage stratified sampling

144 design. The two variables that were considered were the fishing place (shore-

145 based and boat-based) and the fishing efforts over time [i.e., months and also

146 weekdays and weekend days (Malvestuto and Knight 1991)]. We conducted a

147 roving-creel survey (Robson 1991, Pollock et al. 1994, Sullivan et al. 2006)

148 during 108 days of field work between April 2009 and April 2010 (except for

149 May and August of 2009) and we used a semi-structured questionnaire

150 (Sudman and Bradburn 1982) in order to obtain information about the anglers

151 preferences and their fishing trips. After each angler's interview, the species

152 composition and the number and the length of fish caught were recorded and

153 compared with minimum legal catch size and length at first maturity. Their

154 total weight was calculated from the length-weight relationships for each

155 species and that was estimated in the study area (Llompart unpublished data).

156 The basic catch and effort statistics were calculated following the procedure of

157 Pollock et al. (1994). The details about the formulas employed and the

158 sampling design can be found in Llompart et al. (2012). For the case of the

159 SRF, two daily instantaneous counts of the anglers were made.

160	Since the particular dynamics of boat-based recreational fishery (BRF)
161	prevented the implementation of access point surveys (Pollock et. al. 1994),
162	their catch estimation was carried out in a different way. In order to get an
163	estimated of the amount of catches, the total number of boats available to rent
164	(between 35 and 40), the number of BRF anglers per year (11,430), the mean
165	duration of the fishing trip (4 hours) and total number of fishing trip per month
166	(2321 per season) were registered and contrasted with official records. In the
167	landing port, the catch amount and composition (in percentages) were
168	recorded (N = 130 records) during all months of the 2009-2010 fishing season
169	and validated in fillets plants ($N = 50$ samples). This information was
170	supplemented by the records of the daily catches of one boat randomly
171	sampled considered to be representative of the others and also supported by
172	more than 30 BRF fishing trips in every month of the season and in at least 10
173	different sites within the bay. The number of daily fishing trips made by all of
174	the boats during each month of the year was provided by the coastal guard
175	placed in San Blas Bay. The BRF catch per unit effort (CPUE) was estimates
176	from the total catch of species during a mean fishing trip time and then
177	expanded to the total fishing monthly time to obtained the total catch along the
178	year. These values were contrasted with the CPUE expressed for the fishing
179	guides during interviews ($N = 28$) and then expanded for the same total

monthly fishing time. Since very similar values were obtained this result is notshow in this paper (but see Llompart 2011).

182 For both types of recreational fisheries, catch data reflect the total once since

- 183 locally catch and release of any species or size is negligible, except for
- 184 mandatory release of coastal large sharks. This fishery is an off-shore
- 185 specialized recreational activity oriented to the exclusive catch of large size
- 186 sharks (Carcarhinus brachyurus, Galeorhinus galeus, Notorynchus
- 187 *cepedianus* and *Carcharias taurus*) that takes also place in the outer side of
- 188 the bay (Lucifora 2003). However, such fishery does not present any
- 189 interference and overlapping with the AF, SRF and BRF it is excluded from
- 190 the present study.
- 191 2.2.2. Artisanal fisheries

This traditional activity operated with small boats and within the first 3 to 5 192 193 nautical miles from the shoreline and takes places between October 15 and 194 December 15 of each year. This fishery had a daily pattern, setting the bottom 195 gillnets in the afternoon and then picking them up the next morning. The 196 fishing gear was regulated by the provincial authority which dictated that there 197 were to be no more than seven bottom gillnets in each boat, with each one having a maximum length of 50 m and a minimum mesh size of 105 mm 198 199 between the opposite knots.

200	The captures from the artisanal fishery were assessed for 2003–2007 from the
201	official landings records of the Ministerio de Asuntos Agrarios de la Provincia
202	de Buenos Aires. The landings records included targets and by-catch species
203	in weight, but there were no data available about poaching or illegal catch. In
204	addition, during 2007, three random fisher folks were selected during four
205	fishing trips and samples catches were analysed to obtain the fish-length-
206	frequency distribution. Supplementary data to assess the AF activity, such as
207	the composition of the catch species, the harvest, and the CPUE in kg h^{-1} , was
208	re-analysed from Colautti et al. (2010). Finally, fishermen was interviewed (N
209	= 11) to obtained a socio-economic perspective.
210	Based on data provided by fishers in the proposed management plan of San
211	Blas Bay (Zalba et al. 2008) the distribution of AF and RF areas were mapped
212	and potential spatial overlapping measured by mean of GIS software.
213	The intrinsic vulnerability index (Cheung et al. 2007) for landings of RF and
214	AF was calculated from the intrinsic vulnerability index of the main target
215	species available in FishBase (Froese and Pauly 2016), and weighted by their
216	annual catch.

- 217 **3. Results**
- 218 3.1. Spatio-temporal distribution of fishing efforts and fisheries
- 219 characterization

220	The SRF is an annual activity employing 304,532 fishing hours per year. The
221	SRF effort exhibited a considerable increase during spring and in the summer
222	months (named the fishing season), especially during January (Fig. 2).
223	Comparatively, the BRF fishing season started later in October and finished
224	during the middle of April, involving approximately 45,000 fishing hours per
225	fishing season. The boats available to rent were entirely built after the 2000
226	year and 80% are construct by fiberglass ranging from 12 to 5.8 meters in
227	length (mean 7.3 m \pm 1.3 m) with engines horsepower between 205 \pm 65 and
228	remodeled to provide comfort to anglers (poses-rods, seats, etc.). It had an
229	average value of 45,000 dollars. It realized an average of 1.3 daily fishing trips
230	and the transport capacity was between 19 and 7 anglers (mean 10.2 ± 3.2)
231	who paid 30 dollars (in 2010) per fishing trip. BRF guides interviewed come
232	from the Buenos Aires province (85%) where they were employed in
233	traditional areas and only a 10% was always linked to fishing.
234	In contrast with the RF, the AF season was shorter and was concentrated only
235	in the two spring months, when 95% of the fishing effort was detected, and
236	thus, showed a clear accomplishment of the norm (Fig. 2). According to the
237	fishing license provided by Provincial Fisheries Division only 7 fishermen in
238	2003 and 14 for the rest of the study period possessed legal licenses to fishing
239	in Anegada Bay. All of the fishermen interviewed were Argentinean resident

240	with at least 25 years of local experience in artisanal fishing. Three of them
241	had wooden boats of 11.65 m \pm 1.3 m in length with internal motors and a
242	maximum load capacity between 200-300 boxes of fish (about 35 kilograms
243	of fish in each one). The others had boats composed by fiberglass averaging
244	6.5 m in length \pm 0.7 m, driven by outboard motors of 47 horsepower and
245	have an average maximum load capacity of 40 ± 10 fish boxes. The catch was
246	sold fresh or filleted locally in villages, closed towns or exported. Artisanal
247	fishermen as well as fishing guides declared that fishing was the most relevant
248	economic income for their livelihoods.
249	Spatial distribution of fishing activity strongly differed according to fisheries
250	types. Whereas the SRF occupied only a small sector almost limited to San
251	Blas village neighbors, the BRF extended on a larger area that include also
252	outside reserve areas. In turn, the AF selected fishing ground patches located
253	at the north part of the bay. The distribution of SRF and BRF did not show
254	any spatial interaction but this was apparent between the AF and the BRF. In
255	this case, the AF fishery shared almost 40% of its fishing areas whereas only
256	15% of the BRF was allocated in common area with the AF (Fig. 3).
257	3.2 CPUE, monthly catches, vulnerability and the total harvest
258	The CPUE values in the SRF increased during the spring months and reached
259	a maximum during December, when the angler's catch rate was estimated as

- being 1.8 fish h^{-1} (Fig. 4). In turn, the BRF, the mean season's CPUE values were estimated as being 6.8 fish h^{-1} .
- 262 For the AF, the CPUE values varied among years but were similar on average
- in October (18 ± 4.4 kg fish h^{-1}) and November (15.5 ± 7.1 kg fish h^{-1}) (Table
- 264 1).
- 265 Catch composition analysis showed that RF was based on few species. Indeed,
- 266 the most prevalent species in the SRF were Cynoscion guatucupa (Cuvier,
- 267 1830), followed by Micropogonias furnieri (Desmarest, 1823), together
- accounting for 74% in weight of the total catch, whereas the *Mustelus schmitti*
- 269 (Springer, 1939) represented only 9.2% (Figure 4). The monthly distribution
- 270 of the SRF catch showed higher yields during December and with similar
- 271 values during November and January.
- 272 The catch estimated for the BRF exhibited the same trend as did the SRF,
- where 89% of the total catch was accounted for by *M. furnieri* and *C*.
- 274 guatucupa, followed by M. schmitti, which represented only 7.9% of the total
- harvest in weight (Fig. 5). January was the month with the largest number of
- 276 catches, followed by December and November.
- 277 The two main target species of RF showed intrinsic vulnerability values of 40
- for SRF and 32 for BRF (i.e. an average value between low to moderate
- vulnerability), but the rays extracted by the same fishery reached intrinsic

280	vulnerability values above 70 (high to very high intrinsic vulnerability). The
281	average intrinsic vulnerability for RF landings was 36.25 (out of 100), a level
282	considered as moderate to high.
283	On the other hand, the AF captures were strongly dominated by <i>M. schmitti</i>
284	(96%), which indicates that this activity was almost mono-specific. A similar
285	monthly yield trend was apparent in the AF among years where 42% of the
286	total catch was recorded during October and 57.7% during November, while
287	only 0.3% was corresponded to December (Table 1). For M. schmitti an
288	intrinsic vulnerability value of 58 (high vulnerability) was estimated. The AF
289	intrinsic vulnerability of landings was 57.6 due to the almost monospecific
290	extraction. The RF annual total harvest (SRF + BRF) was estimated as being
291	462 tonnes whereas the AF annual harvest varied between 108 tonnes and
292	254.3 tonnes (Table 1). In any case, the AF mean across the years (169.7 \pm
293	61.8 tons) was a figure 2.7 times smaller when in respect to the total annual
294	harvest of the RF.

- 295 *3.3 Fish lengths and angler's preferences*
- 296 The average total length (TL) recorded for the captures of *M. schmitti* in the
- 297 RF (53.8 \pm 7.1 cm) was shorter than the minimum legal size (60 cm,
- 298 Provincial Fisheries Authority) and also for their length at first maturity
- estimated for this species in Anegada Bay [$\bigcirc = 56.3$ cm, and $\bigcirc = 54.6$ cm,

300	(Colautti et. al 2010)]. In contrast, the AF captures of M. schmitti had a size
301	distribution that ranged from 44 cm to 87 cm TL, with a well-defined modal
302	value at 64 cm. Although this distribution included both sexes, it was noted
303	that only 3.3 % of the captured female were below the length at first maturity
304	while this was 7.6 % for males. Also, 15% of the captured AF fish
305	corresponded to fish below the RF minimum legal size (Fig. 6).
306	In turn, the average TL of the RF catches for <i>M. furnieri</i> and <i>C. guatucupa</i>
307	were 53.4 cm and 43.2 cm, respectively, with both of these lengths being
308	greater than the lengths at first maturity ($\bigcirc = 36$ cm and $\bigcirc = 34$ cm, $\bigcirc = 35$ cm
309	and $3 = 30$ cm) and larger than the minimum legal size (35 cm and 30 cm),
310	respectively (Cosseau and Perrota 2000; Provincial Fisheries Authority).
311	The angler's interviews ($n = 856$) came from 12 different provinces of the
312	country and half of them had travelled more than 900 kilometres for fishing in
313	Anegada Bay. Among them, 73% believed that this bay was the best place for
314	marine coastal fishing in Argentina. The monthly fishing quality, as reflected
315	by the angler's opinions, was felt to be more positive during December,
316	followed by November and October, in a descendent order. With respect to the
317	targeted species, M. furnieri were selected by the anglers (47%) as their
318	preferred fish and <i>C. guatucupa</i> was the second-most preferred species (16%)
319	while any angler mentions a preference to catch <i>M. schmitti</i> .

320 **4. Discussion and conclusions**

321 This study has represented a first attempt to examine the main management 322 problems that have been identified in the most relevant marine recreational 323 fisheries of North Patagonia, and thus, have provided clues in order to 324 understand the various conflicts and the governance limitations. Traditionally, 325 main reasons for the conflicts in Anegada Bay have been related to the 326 perception that the (ancient) AF can impact strongly on local fish assemblage 327 and could also affect the (emerging) RF quality. However, Brown et al. (2016) 328 recently demonstrated that the closure of net fisheries not produced an 329 improvement of Queensland's recreational fisheries performance. Stakeholders 330 have promoted the wrong idea when viewing artisanal fishing in the bay as a lucrative activity that uses fishing gear (nets) for the massive extraction of 331 332 fish, with a high environmental cost, while recreational fishing has been 333 conceived as a public and sporadic activity that is being realised only for fun 334 and for being environmental friendly and without visible impact on fish 335 resources (however, see Lewin et al. 2006). Even more, there is an increasing 336 evidence showing that recreational fisheries could strongly affected threatened 337 and overfished species and promoting biological changes on stocks similar to 338 commercial fisheries (e.g. Schroeder and Love 2002, Post et al. 2002, 339 Coleman et al. 2004, Cook and Cowx 2004).

340 4.1. Disentangling temporal and spatial fishing patterns

341 Fishing efforts and performances are strongly associated with the fish species 342 dynamics, and thus, they represent key factors that are needed to understand 343 the recreational and artisanal activities. Although the SRF is practised 344 throughout the year, this fishery type along with BRF shows clear different 345 peaks of fishing efforts during November to March as also displayed by 346 monthly catches and CPUE maximum values. This can be related to a 347 seasonally increase in the abundance of their main target species according to 348 the rise in sea water temperatures and due to their reproductive migration 349 patterns (Llompart et al. 2010, Llompart 2011, Llompart et al. 2013a). In 350 contrast, the AF had a very limited fishing season of only two months per 351 year, but with similar efforts and harvest rates during October and November 352 (except when the AF operated only once in December 2006, solely catching 353 1.3% of the mean total harvest). This short fishing season obeyed not only to 354 the temporal regulatory constraints made by the fishery authorities, but also 355 because it is during these months when the adult population fraction of their 356 target species inhabits the coastal areas of the bay (Colautti et al. 2010). 357 According to these fishing patterns, only a partial level of temporal 358 overlapping between both fisheries sectors existed during November. Indeed, 359 October appears to be an important for the AF, but much less relevant for the

360	SRF and the BRF, since only 7% and 3% for the total efforts and 8% and 3%
361	for the total catch, respectively take place during this month. However, during
362	November, the AF obtained nearly half of the total catch, coinciding when the
363	SRF and the BRF had already increased their activities (13% and 15% for the
364	total effort and 15% and 14% for the total catch, respectively). During
365	December, the AF mostly did not operate, while such a month was better for
366	the SRF in terms of the CPUE, the catch, and the angler's preferences. The
367	higher fishing efforts for the SRF and the maximum monthly catch for the
368	BRF were registered during January, when the AF had ended their fishing
369	season.
370	Artisanal and recreational fisheries exhibited different spatial distribution
371	patterns. Whereas the SRF does not overlapped with the AF, the BRF
372	occupied by far the most extensive area which includes at least 40% of AF
373	fishing grounds. Such overlapping could be relevant and promote conflicts
374	especially during November, even when both fisheries almost not share the
375	main target species. Nonetheless, conflicts regarding the competition for the
376	space can take place as was found in others fisheries (Pawson et al. 2007,
377	Lloret et al. 2008). Field experiences indicated that anglers have not good
378	predisposition to observe fishing nets in "their" fishing areas due to a potential
379	decline in the recreational fishing quality. Prioritizing agreed fishing areas

380	between resource users along with independent and distant ports of landings
381	could decrease the visual contact between fisheries sectors and thus reduce the
382	spatial conflict. In addition, as was successfully implemented in many coastal
383	areas around the world, diversification from traditional fishing into others
384	activity such as ecotourism within the marine protected area could represent a
385	sustainable and alternative way to acquire economic benefit.
386	Intrasectoral conflicts are alleviated due to difference in the target species. The
387	SRF and the BRF greatly focused their catches on <i>C. guatucupa</i> and <i>M</i> .
388	furnieri, which together accounted for three quarters of their total harvest in
389	weight. For the AF, M. schmitti were nearly the single species captured, with
390	negligible captures of C. guatucupa and M. furnieri as by-catch. Moreover, M.
391	schmitti was not even mentioned as being preferable for the recreational
392	anglers, and therefore, their captures were produced involuntarily.
393	The average intrinsic vulnerability for by the RF fish catches reached a value
394	lower than the average vulnerability of all world-wide exploited coastal fish
395	species (48 out of 100) (Cheung et al. 2007). On the other hand, the average
396	intrinsic vulnerability of AF catch was higher than the previous reference
397	value. These results are consequence of the biological characteristic for the
398	main target species. In this sense, AF clearly exerts its fishing pressure on a
399	more vulnerable species, particularly when the adult population fraction enter

400	into the bay for birth and mating purposes. The extraction of large individuals
401	by AF could adversely affect the reproductive potential of M. schmitti
402	populations, particularly if it is considered that larger females are
403	proportionally more fecund (Oddone et. al 2005). Despite the RF had an
404	intrinsic vulnerability of catch lower than AF its extractions not only include
405	M. schmitti but also two rays species (Sympterigia bonapartii and S. acuta)
406	that showed high intrinsic vulnerability status (Cheung et al. 2007). This
407	situation demands the urgent implementation of conservation policies for AF
408	and RF, in order to protect the most vulnerable target species.
409	4.2. Comparison of catch lengths and the total harvest between the fisheries
410	The target species captured by the RF (M. furnieri and C. guatucupa) were
411	above the minimum legal size and their length at first maturity. However, the
412	capturing of M. schmitti, although represent a lower percentage of the total
413	catch, was below the minimum legal size for the species. Such features can be
414	related to the presence of juveniles during the autumn and winter months in
415	the area, when they are caught by unselective baited-hooks and rigs. In
416	contrast, since the AF operated only with selective bottom gillnets, and only
417	when the adult population fraction migrated into the bay, a small percentage
418	of the sharks captured were above the legal size. Moreover, the AF captures
419	were identified as being comprised of 1% juveniles (less than 50 cm TL) and

420 27.7% of young adults (less than 62.5 cm TL), according to the categories
421 suggested by Colautti et al. (2010).

422 A main characteristic of both fisheries is that they can be considered selective 423 due they are concentrated on only few species. These issues preclude applying 424 a more balanced fishing approach that distributes the effort among different 425 species. Selective fishing can results in target and non-target species being 426 killed disproportionately to their abundances, modifying their roles in natural 427 assemblages, and intrinsic capacities to sustain impacts (Zhou et al. 2010). However, the dominant species of the Anegada Bay fish assemblage are C. 428 429 guatucupa, M. furnieri and M. schmitti (Llompart et al. 2013a) which were 430 also identified as the most typical ones for the inner coastal assemblage of Argentina (Jaureguizar et al. 2006). Therefore, both fisheries are based on the 431 most abundant species into the bay. The diversification of AF catches could be 432 433 possible towards *Odontesthes argentinesis* species (see Llompart et al 2013b). 434 In addition, new regulations especially for vulnerable species in Anegada Bay 435 need to focus on catch lengths regulations more than in total harvest. In this 436 sense, size selection of *M. schmitti* population appears to be happened in 437 Anegada Bay. The RF affects the juvenile and young-adult population fraction while AF extracted the larger size individuals. Oddone et al. (2005) found that 438 439 the litter size of *M. schmitti* appears to be linearly related to the pregnant

440	female's length. This is why selective catching large size favours genotypes
441	with slower growth producing evolutionary changes with time. Meanwhile,
442	target size below the first length at maturity have impacts on the reproductive
443	potential of the stock (Lloret et al. 2012). To acquire sustainability, a
444	mandatory catch and release fishing for RF was proposed for juveniles of M .
445	schmitii that not have sport nor monetary value (Llompart et al. 2012). The
446	same regulation should be implemented on other target and non-target species
447	with high vulnerability index such as chondricthyans. For example, RF
448	catches are directed to other vulnerable species such as Myliobatis spp. and
449	Atlantoraja castelnaui but only during tournaments by weight (Llompart
450	2011) while rays are frequent SRF and BRF by-catch species. Since fish
451	mortality rates after release depends strongly on the fishing tackle used and
452	angler behavior (see the Special Issue: The Science and Practice of Catch-and-
453	Release Angling, published in Fisheries Research, volume 186, 2017) educate
454	anglers in science-based best angling practices is relevant to minimize
455	negative impacts. Finally, to decrease the proportion of large size M. schmitti
456	in the AF catch, a length frequency distribution analysis but using
457	experimental gill nets containing smaller mesh size between opposite notes
458	(100 mm) could be useful to tested and implement. Also, a continuous

459	monitoring program to acquire fishery-independent information to evaluate
460	catch lengths, by-catch levels and fishing effort should be performed.
461	The results from the total harvest of the RF sector proved to be almost three
462	times that of the AF, being the SRF largely more important than the BRF in
463	terms of anglers involved and fishing effort. This is in agreement with
464	different studies that have reported that catches by the recreational fisheries
465	when compared to the commercial harvest (Schroeder and Love 2002, Pawson
466	et al. 2008) and this highlights the potential impacts of this activity. However,
467	both coastal fisheries in Anegada Bay appear to be having a low impact on a
468	regional scale. When the species is considered at a broader geographical area
469	is this important to note that outside of the marine reserve area (in the el
470	Rincón area), a multi-specific commercial bottom trawling fishery industry
471	(practiced mostly by vessels between 18 m and 39 m in length), capture about
472	20,000 tonnes of fish per year (Aráoz and Carozza 2014), of which 3,000
473	tonnes correspond to the <i>M. schmitti</i> (total of 8500 ± 2267 tons at national
474	level between the 1990-2015 period). This has reduced their biomass by 50%
475	between 1994 and 2003 (Massa and Hozborn 2003, Massa et al. 2004) and
476	actually M. schmitti is categorized as endangered species by UICN (Massa et
477	al. 2006). Species with high intrinsic vulnerability to exploitation and
478	intensively fished are more prone to have high risk of population depletion

479	and extinction (Cheung et al. 2005). Conversely, in Anegada Bay a total
480	harvest of nearly 631 tonnes annually (RF + AF) of which 208 tonnes
481	correspond to M. schmitti is sufficient to support the local population of nearly
482	800 residents and thousands of tourists per year. Such numbers highlights that
483	a well administered small scale fishery, particularly in developing countries,
484	could represent the best option for the sustainable utilisation of coastal
485	resources, especially if they meet most of the criteria that are required for an
486	enlightened fisheries policy, in terms of supporting employment, livelihood,
487	and food security (Pauly 2006).
488	4.3. Fishery management directions
489	Conflicts between artisanal and recreational fisheries have been addressed for
490	different marines fisheries elsewhere (e.g. Kearney 2002, Morales-Nin et al.
491	2005, Lloret et al. 2008, Veiga et al. 2010, Brown et al. 2016). Most of such
492	examples corresponded to fisheries managed under command-control and
493	centralized approaches that do not emphasize the need to find win-win
494	solutions for both sectors. While fisheries management objective need to be
495	shifted toward preserving the integrity of the ecosystems and biological
496	diversities as well as assuring social sustainability, it is critical to move from
497	such conventional approaches that fail to ensure equity benefits and solve
498	multi-stakeholder conflicts.

499 Problems and management constraints in Anegada Bay align also with 500 common limitations observed in different Latin American fisheries where 501 poor institutional structures, ineffective control of fishing efforts, poor 502 enforcement of their policies and weak frameworks to integrate social, bio-503 ecological, and economic aspects promote recurrent conflicts (Salas et. al 2007, Arlinghaus 2008). For example, although the management plans for the 504 505 multiple-use of the natural reserves in the San Blas Bay promoted the 506 development of artisanal fisheries in a sustainable way, considering their 507 historical and cultural value (Zalba et al. 2008), anyway it was banned. The 508 absence of consistency in management propositions reduces the mutual 509 credibility for future cooperative actions. Appropriate incentives that are 510 offered by the management system, primarily to the fishermen (but also to 511 managers, scientists, and other stakeholders), may be the only alternative to 512 achieve compliance (Oresanz et al. 2005). 513 To resolve intra-sectoral conflicts in the long term, an efficient 514 communication process between the fishery sectors is requested (Newton and 515 Elliot 2016). The actual barriers that impair a good communication between 516 the sectors, such as a lack of rigorous scientific information, need to be 517 overcome and transferred from the researchers to the fishers and the managers 518 by promoting better mechanisms and collective efforts to focus on effective

519 participatory management and conservation guidelines. A fear from the

520 fishermen of management actions, which could limit their fishing

521 opportunities, together with the fisher's suspicions of science, is a prerequisite

solution to improve the collaboration and to find robust management actions,

523 for the equitable and the optimal use of common-pool resources by coastal

524 fisheries (Dedual et al. 2013).

525 Moreover, since the migratory behaviour of the main target species for AF

and RF fisheries in Anegada Bay (Llompart et al. 2013) belong to the same

527 stock exploited by the industrial trawl fisheries that operate in El Rincón area

528 (Jaureguizar et al. 2006), a more comprehensive management plan must be

529 implemented at a regional scale (Colautti et al. 2010). Only from this

530 integrative perspective it is possible to achieve a comprehensive picture of the

531 current status of the stocks health, their potential change for recovery and to

532 find a balance between risks and opportunities offered by each fishery.

533 However, fishery sustainability is dependent not only from a fishing

534 perspective but should also encompass other equally important dimensions

535 (Charles 2001). Inter-sectoral conflicts with no-fishing stakeholders,

536 conservationist demands, and wildlife watchers should be considered as well.

537 The nature of the multiple uses of common pool resources in Anegada Bay by

538 local residents, fishers, and tourists in general, dictate that these activities can

539	no longer be treated in isolation and requires more comprehensive governance
540	guidelines. Recovering of artisanal fishery activity could be difficult without
541	changing management paradigms. An adaptive co-management approach for
542	small scale fisheries is emerging in Latin America as a potential solution to
543	enhance the capability of the governing system (Castrejón and Defeo 2015,
544	Trimble and Berkes 2015). In this context, the promotion of recreational
545	fisheries at the expense of, or in conjunction with the artisanal fisheries,
546	together with a transformation of the conflictive relationships, to one of
547	collaboration, constitutes a governability challenge that is ultimately reliant on
548	self-regulated systems, with only a slight intervention by the public hand
549	(Berkes 2003).
550	The fact that the recreational and artisanal fisheries exhibit a weak temporal
551	overlapping and because anglers prefer M. furnieri and C. guatucupa as target
552	species while AF is directed to M. schmiiti, represents an advantage to reduce
553	the conflicts of a common use of coastal resources in Anegada Bay. Moreover,
554	during November when both sectors share a proportion of common fishing
555	grounds areas, a situation-specific Territorial Use Right in Fisheries strategy
556	could be appropriate to ameliorate potential conflicts as was implemented in
557	other Latin American small-scale fisheries (Defeo et al. 2016). In Anegada
EEQ	Der mich strate en immlies alle estine en alexies distate for estimate al fishers in

558 Bay, such strategy implies allocating exclusive rights for artisanal fishers in

559 certain areas especially during November. As RF occupies larger extensions, 560 but main activity take place during summer months, such a measure would not 561 impact on their performance nor reduce angler expectative and satisfaction. 562 Future directions also should be complemented with regular and improve 563 monitoring of both fisheries addressing the potential for catches underreports, 564 miss reported landings and illegal catch selling and poaching. Further, in this 565 study, fisheries data from BRF did not arrive from specific technique as was 566 for the SRF, thus requiring some caution with data comparison and interpretation. 567 568 There is an urgent need to evaluate not only the potential impact that the 569 different types of fishing activities and their effects on the sustainability of 570 coastal resources and on the general functioning of coastal ecosystems, but also on supporting livelihoods for local people. Close a net fishery is only 571 572 likely to increase recreational harvest if net harvest is larger relative to 573 recreational harvest (Brown et al. 2016), however this was not the case in 574 Anegada Bay. Indeed, this study provided strong evidences that limited total 575 harvest of both fisheries, their slight overlap in temporal and spatial scales, 576 along with different targeted species due the selectivity of the gear uses and

577 the angler's preferences provide favourable conditions for reconciliation.

578 Instead of considering as direct "competitors" AF and RF should allow for a

579	sustainable co-existence in the bay, without compromising the conservational
580	goals pursued by the natural protected area.
581	Acknowledgments
582	Financial support from the PAE N°22666/04 – ANPCyT is gratefully
583 584	acknowledged. Local fishermen and stakeholders provided valuable support for data collection and field operations. The authors are also thankful to two
585	anonymous reviewers that contributed with their corrections and suggestions
586	to improve the manuscript.
587	1 1
588	References
589	
590 501	Allison, E.A., and Ellis, F. 2001. The livelihoods approach and management
591 592	of sman-scale fishenes. <i>Marine Policy 25 577–588</i> .
593	Andrew N.L. Béne C. Hall S.I. Allison F.H. Heck S. and Ratner B.D.
594	2007 Diagnosis and management of small-scale fisheries in developing
595	countries. Fish and Fisheries 8: 227–240.
596	
597	Aráoz, F.N., and Carozza, C. 2014. Asociación Íctica costera bonaerense
598	"Variado costero" Capturas declaradas por la flota comercial Argentina
599	durante el año 2014. INIDEP N°20, 18pp.
600	
601	Arlinghaus, R. 2005. A conceptual framework to identify and understand
602	conflicts in recreational fisheries systems, with implications for sustainable
603	management. Aquatic Resources, Culture and Development 1: 145–174.
604	
605	Arlinghaus, R. 2008. Social barriers to sustainable recreational fisheries
606	management under quasicommon property fishing rights regime. American
607	Fisheries Society Symposium 49:105–122.
608	
609	Béné, C. 2006. Small-scale fisheries: Assessing their contribution to rural
610	livelihoods in developing countries. Rome: FAO Fisheries Circular N° 1008.
611	

612	Berkes, F. 2003. Alternatives to conventional management: lessons from
613	small-scale fisheries. Environment 31: 1-14.
614	
615	Berkes, F., Mahon R., McConney, P., Pollnac R.C., and Pomeroy R.S. 2001.
616	Managing small-scale fisheries: alternative directions and methods. Ottawa:
617	International Development Research Centre.
618	
619	Borges, M.E. 1997. Conservación de la Bahía Anegada. Ministerio de Asuntos
620	Agrarios. Dirección Provincial de Pesca. La Plata. Reporte Técnico Nº 17/97.
621	15p.
622 692	Dennes ME 2006 Esclería de los estres en embientos del sur honcomenses
623 624	Borges, M.E. 2006. Ecologia de las ostras en ambientes del sur bonaerense:
624 625	del Sur 265n
626	dei 5di. 205p.
627	Brown, C.J. 2016. Social, economic and environmental effects of closing
628	comercial fisheries to enhance recreational fishing. <i>Marine Policy</i> 73: 204-209
629	
630	
631	Castrejón, M., and Defeo, O. 2015. Co-governance of small-scale
632	shellfisheries in Latin America: institutional adaptability to external drivers of
633	changes. In: Interactive governance for small-scale Fisheries, MARE
634	Publication Series.
635 626	Charles AT 2001 Systemable fichery systems London, Plashwell Science
030 637	Ltd. 270 pp
638	Etd, 370 pp.
639	Chuenpagdee, R., Liguori, L., Palomares, M.L.D., and Pauly, D. 2006.
640	Bottom-up, global estimates of small-scale marine fisheries catches. <i>Fisheries</i>
641	Centre Research Reports 14(8) 110pp.
642	
643	Chuenpagdee, R. 2011. Too big to ignore. Global network for the future of
644	small scale fisheries. In World Small Scale Fisheries: Contemporary visions
645	(Chuenpagdee R, ed). Eburon Delft.
646	
647	Cheung, W.W. L., Pitcher, T. J., and Pauly, D. 2005. A fuzzy logic expert
648	system to estimate intrinsic extinction vulnerabilities of marine fishes to
649	fishing. Biological Conservation, 124: 97–111.

650	
651	Cheung, WWL., Watson, R., Morato, Pitcher, T. J., and Pauly, D. 2007.
652	Intrinsic vulnerability in the global fish catch. Marine Ecology Progress Series
653	333: 1–12.
654	
655	Colautti, D., Baigún, C., López C.A., Llompart, F., Molina, J.M., Suquele, P.,
656	and Calvo, S. 2010. Population biology and fishery characteristics of
657	Smoothhound Mustelus schmitti in Anegada Bay, Argentina. Fisheries
658	research 106: 351-357.
659	
660	Coleman, F.C., Figueira, W.F., Ueland, J.S. and Crowder, L.B. 2004. The
661	impact of United States recreational fisheries on marine fish populations.
662	Science 305: 1958–1960.
663	
664	Cooke, S.J., and Cowx, I.G. 2004. The role of recreational fishing in global
665	fisheries. BioScience 54: 857–859.
666	
667	Cooke, S.J., and Cowx, I.G. 2006. Contrasting recreational and commercial
668	fishing: searching for common issues to promote unified conservation of
669	fisheries resources and aquatic environments. <i>Biological Conservation</i> 128:
671	93–108.
672	Cousseau M.B. and Perrotta R.G. 2000 Peces Marinos de Argentina
673	Biología, Distribución, Pesca, Mar del Plata-Argentina, INIDEP, 167p.
674	
675	Dedual, M., Sague Pla, O., Arlinghaus, R., Clarke, A., Ferter, K., and Geertz-
676	Hansen, P. 2013. Communication between scientists, recreational fishers,
677	fishery managers and recreational fishers: lessons learned from a comparative
678	analysis of international case studies. Fisheries Management and Ecology 20:
679	234–246.
680	
681	Defeo, O. 2014. Enfoque ecosistémico pesquero: Conceptos fundamentales y
682	su aplicación en Uruguay . Final Report, Project CP/URU/030/GFF Piloting of
683	an Ecosystem-based Approach to Living Aquatic Resources Management (p.
684	99). Uruguay: DINARA.
685	

686	Defeo, M., Castrejón, M., Pérez-Castañeda, R.P., Castilla, J.C., Gutiérrez
687	N.L., Essington, T.E., and Folke, C. 2016. Co-management in Latin American
688	small-scale shellfisheries: assessment from long-term case studies. Fish and
689	Fisheries 17: 176–192.
690	
691	Elías, I., Carozza, C., Di Giácomo, E., Isla, M., Orensanz (Lobo), J.M., Parma
692	A.M., Pereiro, R.C., Perier, M.R., Perrotta, R.G., Ré, M.E. and Ruarte, C.
693	2011. Coastal fisheries of Argentina. In: Coastal fisheries of Latin America
694	and the Caribbean (Salas, S., Chuenpadgdee, R., Charles, A., and Seijo, J.C.
695	eds.). FAO Fisheries and Aquaculture Technical Paper. No. 544. Rome, FAO.
696	430p.
697	-
698	FAO. 2012. Recreational fisheries. FAO Technical Guidelines for Responsible
699	Fisheries. No. 13. Rome, FAO. 2012. 176 pp.
700	
701	FAO. 2012b. Voluntary guidelines of the responsible governance of tenure of
702	land, fisheries and forests in the context of national security. FAO, Rome, 40p.
703	
704	FAO, 2015. Voluntary guidelines for securing sustainable small-scale fisheries
705	in the context of food security and poverty eradication, FAO, Rome, 18p.
706	
707	Froese, R. and D. Pauly. Editors. 2016. FishBase. World Wide Web electronic
708	publication. www.fishbase.org, version (06/2016).
709	
710	Jaureguizar A.J., Menni R., Lasta C. and Guerrero R. 2006. Fish assemblages
711	of the northern Argentine coastal system: spatial patterns and their temporal
712	variations. Fisheries Oceanography 15, 326–344.
713	
714	Jentoft, S., 2000. The community: a missing link of fisheries management.
715	Marine Policy 24, 53–60.
716	
717	Jentoft, S., and Chuenpagdee, R. 2009. Fisheries and coastal governance as a
718	wicked problem. Marine Policy 33(4): 553-560.
719	

720	Kearney, RE, 2002. Co-management: the resolution of conflict between
721	commercial and recreational fishers in Victoria, Australia. Ocean & Coastal
722	Management 45: 201-214
723	
724	Lasta, A.C., Ruarte, C.O., and Carozza, C.R. 2001. Flota costera Argentina:
725	Antecedentes y situación actual. El mar argentino y sus recursos pesqueros. 3:
726	89-106.
727	
728	Lewin, W.C., Arlinghaus, R., and Mehner, T. 2006. Documented and potential
729	biological impacts of recreational angling: Insights for conservation and
730	management. Reviews in Fisheries Science 14: 305–367.
731	
732	Llompart FM, Molina JM, Cazorla AL, Baigún CR, Colautti DC 2010. Fish
733	fauna from Anegada Bay protected area, Buenos Aires Province, Argentina.
734	Check list, 127: 579-582.
735	
736	Llompart, F.M. 2011. La ictiofauna de Bahía San Blas (Provincia de Buenos
737	Aires) y su relación con la dinámica de las pesquerías deportiva y artesanal.
738	PhD thesis. Universidad Nacional de La Plata, Argentina.
739	
740	Llompart, F.M., Colautti, D.C., and Baigún C.R.M. 2012. Assessment of a
741	major shore-based marine recreational fishery in the Southwest Atlantic,
742	Argentina. New Zealand Journal of Marine and Freshwater Research 46 57-
743	70.
744	Llamport EM Calcutti DC Cruz Limánaz AM & Daigur CM 2012a
740 746	Liompart., F.M., Colautti, D.C, Cruz-Jimenez., A.M, & Baigun, C.M. 2013a.
740	Seasonal pattern of the coastal fish assemblage in Anegada Bay, Argentina.
(4) 740	Journal of the Marine Biological Association of the United Kingdom 93(8),
748	2213-2285.
749	
750	Liompart, F.M., Colautti, D.C., Maiztegui, T., Cruz-Jiménez, A.M. and
751	Baigun, C.R.M. 2013b. Biological traits and growth patterns of pejerrey
752	<i>Odontesthes argentinensis. Journal of Fish Biology</i> 82: 458–474.

- 753 Lloret, J., Zaragoza, N., Caballero, D., Font, T., Casadevall, M. & Riera, V. 2008. Spearfishing pressure on fish communities in rocky coastal habitats in a 754 755 Mediterranean marine protected area. Fisheries Research 94: 84-91. 756 757 Lloret. J., Muñoz, M., Casadevall, M. 2012. Threats posed by artisanal 758 fisheries to the reproduction of coastal fish species in a Mediterranean marine 759 protected area. Estuarine, Coastal and Shelf Science 113: 133-140. 760 761 Lucifora, L.O. 2003. Ecología y Conservación de los Grandes Tiburones Costeros de Bahía Anegada. Provincia de Buenos Aires. Argentina. Tesis 762 763 Doctoral. Universidad Nacional de Mar del Plata. 410p. 764 765 Malvestuto, S.P., and Knight, S.S. 1991. Evaluation of components of 766 variance for a stratified two-stage roving creel survey design with implications for sample size allocation. In: Guthrie D, Hoenig JM, Holliday M, Jones CM, 767 768 Mills MJ, Moberly SA, Pollock KH, Talhelm DR (eds.). Creel and angler 769 surveys in fisheries management. Bethesda, Maryland. American Fisheries 770 Society: 108–115. 771 772 Massa, A.M., and Hozbor, N.M. 2003. Peces cartilaginosos de la plataforma 773 Argentina: Explotación, situación y necesidades para un manejo pesquero 774 adecuado. Frente Marítimo 19: 199-206. 775 776 Massa, A.M., Lasta, C., and Carozza, C. 2004. Estado actual y explotación del 777 gatuzo (Mustelus schmitti). En: Sanchez R, Veis S (eds.). El Mar Argentino y 778 sus recursos pesqueros Tomo 4. Biología y evaluación del estado de 779 explotación. Pub. Esp. INIDEP: 67-83. 780 781 Massa, A., Hozbor, N., Chiaramonte, G.E., Balestra, A.D. and Vooren, C.M. 782 2006. Mustelus schmitti. The IUCN Red List of Threatened Species 2006: 783 e.T60203A12318268.http://dx.doi.org/10.2305/IUCN.UK.2006.RLTS.T60203 784 A12318268.en. Downloaded on 08 September 2016. 785 786 Morales-Nin, B., Moranta, J. García, C.Tugores, M. P. Maria Grau, A., Riera, 787 F. and Cerda, M. 2005. The recreational fishery off Majorca Island (western
 - 34

788	Mediterranean): some implications for coastal resource management. ICES
789	Journal of Marine Science, 62: 727-739.
790	
791	Newton, A., and Elliot. M. 2016. A Typology of stakeholders and guidelines
792	for engagement in transdisciplinary, participatory processes. Frontiers in
793	Marine Sciences. https://doi.org/10.3389/fmars.2016.00230.
794	
795	Orensanz, J. M., Parma, A. M., Jerez, G., Barahona, N., Montecinos, M. and
796	Elías, I. 2005. What are the key elements for the sustainability of 'S-
797	fisheries'? Insights from South America. Bulletin of Marine Science 30: 527-
798	556.
799	
800	Pawson, M.G., Glenn, H., and Padda, G., 2008. The definition of marine
801	recreational fishing in Europe. Marine Policy 32: 339–350.
802	
803	Pauly, D. 2006. Major trends in small-scale marine fisheries, with emphasis
804	on developing countries, and some implications for the social sciences.
805	Maritime studies 4(2):7-22.
806	Danahaaradah D.E. Danaga M.E. Danaharanga C. Dannigan C. Ohannat S.
808	Penchaszaden, P.E., Borges, M.E., Damboronea, C., Damgan, G., Obernat, S., Pastorino, G. Schwindt, F. and Spivak, F. 2003, Especies animales
809	bentónicas introducidas, actual o potencialmente invasoras en el sistema del
810	Río de la Plata y la región costera oceánica aledaña del Uruguay y de la
811	Argentina. En "Protección ambiental del Río de la Plata y su frente marítimo:
812	prevención y control de la contaminación y restauración de hábitats". Proyecto
813	PNUD/GEF RLA/99g 31. 357p.
814	
815	Pitcher, T.J., and Hollingworth, C.E. 2002. Recreational Fisheries: Ecological,
816	Economic and Social Evaluation. Fish and Aquatic Resources Series No 8,
817	Blackwell Science, Oxford, UK, 288pp.
818	
819	Pollock, K.H., Jones, C., and Brown, T. 1994. Angler survey methods and
820 891	Dublication Nº 25, 271n
041 822	$\mathbf{r} u \mathbf{o} \mathbf{r} \mathbf{c} \mathbf{u} \mathbf{o} \mathbf{r} \mathbf{n} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{r} \mathbf{r} \mathbf{p}.$
823	Post, J.R. Sullivan, M., Cox, S., Lester, N.P., Walters, C.J., Parkinson, F.A.
824	Paul, A.J, Jackson, L. and Shuter, B.J. 2002. Canada recreational fishery: the
825	invisible collapse?. Fisheries, 27: 6-17.

826	
827	Renae, C. 2006. The effectiveness of recreational only fishing areas in North
828	Queensland estuaries for reducing conflict and improving recreational catches.
829	PhD thesis, James Cook University.
830	
831	Robson, D.S. 1991. The roving creel survey. En: Gutrie D, Hoenig JM,
832	Holliday M, Jones CM, Mills M, Moberley S, Pollock K, Talheim D (eds.).
000 834	Symposium 12: 19.24
835	Symposium, 12. 19-24.
836	Salas, S., Chuenpagdee, R., Seijo, J.C., and Charles, A., 2007, Challenges in
837	the assessment and management of small scale fisheries in Latin America and
838	the Caribbean, Fisheries Research 87: 5-16.
839	
840	Schroeder, D.M., and Love, M.S. 2002. Recreational fishing and marine fish
841	populations in California. California Cooperative Oceanic Fisheries
842	Investigations Reports 43: 182–190.
843	
844	SHN. Servicio de Hidrografía Naval. 2009. Available at:
845	htttp://www.hidro.gov.ar/oceanografia. Accessed 20 October 2009.
846 847	Sudman C and Dradburn NM 1082 Astring quastional a gradient and to
047 848	Sudman, S., and Bradburn, N.M. 1982. Asking questions: a practical guide to questionnaire construction. Washinton D.C. Jossey Bass 416n
849	questionnane construction. Washinton D.C. Jossey-Dass. 410p.
850	Sullivan, P.J., Breidt, F.J., Ditton, R.B., Knuth, A.B., Leaman, B.M.,
851	O'Connell M.V., Parsons, G.R., Pollock, K.H., Stephen, J.S., and Stokes, S.L.
852	2006. Review of Recreational Fisheries Survey Methods. Washington D.C.
853	The National Academies Press. 203p.
854	
855	Teh, L.C.L., and Sumaila, U.R. 2013. Contribution of marine fisheries to
856	worldwide employment. Fish and Fisheries 14 77-88.
857	
858	Trimble, M., and Berkes, F. 2015. Towards adaptive co-management of small-
859	scale fisheries in Uruguay and Brazil: lessons from using Ostrom's design
860	principles. <i>Maritime studies</i> 14:14.
861	

- 862 Veiga, P, Ribeiro, J., Goncalves J. M. and Erzini, K. 2010. Quantifying
- 863 recreational shore angling catch and harvest in southern Portugal (north-east
- 864 Atlantic Ocean): implications for conservation and integrated fisheries
- 865 management. Journal of Fish Biology 76: 2216–2237
- 866
- Zalba, S.M., Nebbia, A.J., and Fiori, S.M. 2008. Propuesta de plan de manejo
- de la Reserva Natural de Uso Múltiple Bahía San Blas. 1a edición. Bahía
- 869 Blanca: Universidad Nacional del Sur.147p.
- 870
- 871 Zeller, D., Booth, S., and Pauly, D. 2007. Fisheries contributions to the gross
- 872 domestic product: underestimating small-scale fisheries in the Pacific. *Marine*
- 873 Resource Economics 21: 355-374

Year	Months	CPUE	Catch	Total
2003	10	17.9	49.4	108
	11	25.3	58.5	
2005	10	12.6	56.3	254.3
	11	14.1	198	
2006	10	18.1	107.6	
	11	8	59.7	169.6
	12	2.9	2.29	
2007	10	23.4	71.2	146.7
	11	14.8	75.5	

Figure 1. Geographic location of study area. Dotted line showed the boundary of the Anegada Bay protected area.

Figure 2. The percentage monthly distribution of the fishing efforts for the recreational fishery (RF) that was performed from the shoreline (Sh, black bars) and from boats (Bo, grey bars), in comparison with the artisanal fishery (AF, dotted black and white).

Figure 3. Spatial distribution of recreational and artisanal fisheries in Anegada Bay.

Figure 4. Total monthly catches in kilogrammes (Kg.) and their SE (vertical line) for the prevalent target species in the recreational shoreline fishery of Anegada Bay. *Rays correspond to *Sympterygia bonapartii* + *S. acuta* species. The dotted line corresponds to the capture per unit effort (CPUE).

Figure 5. Total monthly catch in kilogrammes for the prevalent target species in the recreational boat-based fishery of Anegada Bay. *Rays correspond to the *Sympterygia bonapartii* + *S. acuta* species.

Figure 6. Total length-frequency-distribution for the landing of *Mustelus schmitti* obtained by the bottom gillnets of the artisanal (black bars) and the recreational fisheries (continue grey line) of Anegada Bay. The vertical grey lines show the length at first maturity for the males and the females (dotted) and the minimum legal size required by the Provincial Fishery Authority (stripe).