
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tepm20

Download by: [181.167.229.102] Date: 10 January 2018, At: 04:39

Expert Review of Precision Medicine and Drug
Development
Personalized medicine in drug development and clinical practice

ISSN: (Print) 2380-8993 (Online) Journal homepage: http://www.tandfonline.com/loi/tepm20

Drug repositioning: current approaches and their
implications in the precision medicine era

Alan Talevi

To cite this article: Alan Talevi (2018): Drug repositioning: current approaches and their
implications in the precision medicine era, Expert Review of Precision Medicine and Drug
Development, DOI: 10.1080/23808993.2018.1424535

To link to this article:  https://doi.org/10.1080/23808993.2018.1424535

Accepted author version posted online: 04
Jan 2018.
Published online: 10 Jan 2018.

Submit your article to this journal 

Article views: 1

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tepm20
http://www.tandfonline.com/loi/tepm20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/23808993.2018.1424535
https://doi.org/10.1080/23808993.2018.1424535
http://www.tandfonline.com/action/authorSubmission?journalCode=tepm20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tepm20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/23808993.2018.1424535
http://www.tandfonline.com/doi/mlt/10.1080/23808993.2018.1424535
http://crossmark.crossref.org/dialog/?doi=10.1080/23808993.2018.1424535&domain=pdf&date_stamp=2018-01-04
http://crossmark.crossref.org/dialog/?doi=10.1080/23808993.2018.1424535&domain=pdf&date_stamp=2018-01-04


REVIEW

Drug repositioning: current approaches and their implications in the precision
medicine era
Alan Talevi

Laboratory of Research and Development of Bioactive Compounds – Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact
Sciences, University of La Plata, La Plata, Argentina

ABSTRACT
Introduction: Drug repositioning implies finding new medical uses for existing drugs. It represents a cost-
efficient approach, since the new indications are built on the basis of available information on pharmaco-
kinetics, safety and manufacturing. Whereas most of the pioneering drug repurposing stories arose from
serendipitous observations and clever exploitation of side effects, the drug discovery community has lately
addressed repurposing initiatives in a more systematic manner. Today, in the middle of the omics era, we
have the tools to explore drug repurposing opportunities in a tailored, personalized manner.
Areas covered: After a brief discussion on modern approaches to drug repurposing, the author connects
the philosophies of drug repurposing and personalized medicine through the well-known and extended
practice of off-label prescription. The author also discusses which, among current systematic repurposing
approaches, are more appropriate to be integrated with the field of precision medicine.
Expert commentary: Personalized drug repurposing is not a new concept at all: for years, it has been
known as off-label prescription, a practice widely accepted especially in some branches of medicine.
Whereas in the past such approach was in many cases supported by empiric knowledge, today omics
technologies allow us to face novel personalized drug repurposing options in a systematic manner.
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1. Introduction

Generally speaking, drug repurposing involves finding novel
therapeutic indications for approved, discontinued, and
archived drugs, as well as drugs currently undergoing clinical
trials; finding second medical uses for abandoned or discon-
tinued drugs is more specifically referred as drug rescue [1].
In any case, the approach focuses on late-stage chemical
matter (that is, drugs that are or have been approved, and
drugs that are undergoing or have undergone clinical trials)
[2]. Rediscovering a drug in a new therapeutic area repre-
sents a cost-efficient strategy, since the new indication is
built on already available pharmacokinetic, safety, and man-
ufacturing knowledge [3,4], resulting in major savings in time
and resources. In many cases, though, dosing and formula-
tion modifications could be required [5].

Drugs that have not achieved approval for a given indica-
tion due to safety issues might be rescued if the cost–benefit
analysis justifies their administration in a new therapeutic area,
or if the adverse reactions found when studying the originally
pursued indication are not relevant in a different drug admin-
istration schedule or setting.

The major challenges faced by drug repurposing projects are
probably related to commercial, regulatory, or intellectual prop-
erty reasons [5–8]. That probably explains why it has been
embraced in the field of neglected and rare conditions, where
investment revenue is not the main driving force of drug dis-
covery projects [9–11].

According to the Precision Medicine Initiative, precision
medicine is ‘an emerging approach for disease treatment
and prevention that takes into account individual variabil-
ity in genes, environment, and lifestyle for each person’
[12]. It is closely related to personalized and stratified
medicine, terms that are often used interchangeably,
though subtle distinctions between them have been rea-
lized [12,13]. In any case, it is clear today that: (a) some
diseases with common traits that in the past were
approached as a single condition comprise in fact a spec-
trum of diseases and; (b) more effective and/or safe med-
ications might be found if tailored to variations in a
person’s genome, transcriptome, proteome, and metabo-
lome, or to specific types of a general condition. Besides its
contribution to treatment choice, it is also becoming clear
that complex dynamic changes occur both in health and
disease, and thus regular monitoring of health and disease
states can serve to estimate disease risk and prognosis
[14]. The possibilities of personalized medicine have been
greatly expanded by genotyping technologies (in particu-
lar, microarray/biochips and next-generation sequencing)
and state-of-the-art computing.

Is there any bridge between drug repurposing and preci-
sion medicine? Is it possible to systematically repurpose drugs
based on individual data? If so, which of the systematic
approaches currently used to address drug repurposing is
more adequate for such enterprise?
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2. Systematic drug repurposing

Many of the first successful repurposing stories were based
on serendipitous/empirical/retrospective observations.
Minoxidil was originally investigated to treat ulcers; while
conducting trials in dogs, it was observed that the com-
pound elicited a prolonged reduction in blood pressure.
Later, while undergoing clinical trials to prove its efficacy
as antihypertensive medication, the drug showed an unex-
pected positive effect on hair loss [15]. It gained US FDA
approval as antihypertensive medication in 1979 and in
1988 it became the first FDA-approved drug for the treat-
ment of androgenic alopecia. Taking into account the first
pursued therapeutic indication (antiulcer therapy), we may
affirm that minoxidil was repurposed not once but twice.
Sildenafil was initially studied for its potential use in hyper-
tension and ischemic heart disease; during clinical trials,
scientists at Pfizer observed an unexpected effect inducing
penile erection [16]. As no treatment of male erectile dys-
function had so far been approved, Pfizer shifted the focus
of their research and in 1998 the drug received approval as
the first oral treatment for such condition. In 2005, it also
received approval as a treatment of pulmonary hyperten-
sion. The well-known antiplatelet effects of the centennial
aspirin itself have been exploited to repurpose the drug, in
low doses, for secondary prevention of heart attack and
stroke (following a serious cardiovascular event) [17].
Moreover, aspirin has recently completed clinical trials as
potential adjunctive treatment for bipolar disorder (Clinical
Trial.gov identifier NCT01797575) and Phase III clinical trials
to assess its effects on cancer recurrence and survival are
currently under development [18].

Demonaco et al. analyzed the introduction of new clinical
uses between 1999 and 2003 for compounds approved in 1998,
finding that 57% of 143 drug therapy innovations were discov-
ered by practicing clinicians through what they called ‘field
discovery’ (an unorganized discovery process without involve-
ment of the drug manufacturer or other laboratory, performed
by the clinician during patient care) [19]. When surveyed using
a standardized questionnaire to gain deeper understanding on
the field discovery process, 59% of the field discoverers who
answered the questionnaire reported that they had made their
discovery by applying their understanding of the pharmacology
of the drug to the clinical problem at hand, which indicates that
not all the field discoveries are serendipitous in nature.
Demonaco et al. also underlined that user-developed products
(in this case, new therapeutic uses) tend to differ from manu-
facturer-developed products in an important way, since they
tend to be ‘functionally novel’; in other words, users frequently
identify ‘new applications of existing products not originally
envisioned by the product manufacturer’.

On the basis of the impressive examples of successful drug
repurposing stories based on empirical and retrospective
observations, the drug discovery community is now endeavor-
ing to systematize the (organized) identification of prospective
drug repurposing opportunities [20–22], a complementary
approach to field discovery.

Systematic approximations to drug repurposing may present
different degrees of rationality. For example, we may resort to

exhaustive, wet screening of libraries of approved drugs, either
using phenotypic- or target-based screens, and low- or high-
throughput assays [23–25]. High-throughput screening approxi-
mations do have a rational side since they are based on miniatur-
ization and automation, hence displaying cost- and time-efficiency
despite the high cost of technological platforms required and the
high operating costs. They are nevertheless, in essence, ‘brute
force’ approaches (systematically enumerating all possible candi-
dates for the solution and checking whether each candidate
satisfies the problem’s statement). This less rational side of (wet)
high throughput screening can be alleviated using focused
libraries, i.e. relatively small libraries of molecules that are likely
to have a pursued activity based on knowledge of the target
protein and literature precedents for the chemical classes likely
to have activity against a given therapeutic target [26,27]. In a very
interesting recent study, for instance, Klaeger et al. used kinobeads
(immobilized broad-spectrum kinase inhibitors that enable the
purification of endogenous kinases from cells or tissues) and
quantitative mass spectrometry to investigate the target space,
selectivity, and dose-response characteristics of 243 clinical kinase
inhibitors [28]. To illustrate the value of their results to detect drug
repurposing opportunities, the authors demonstrated (in vitro and
in vivo) the efficacy of cabozantinib for the treatment of FLT3-
positive acute myeloid leukemia.

The finest examples of systematic drug repurposing methods
are, possibly, computer-assisted approaches (including those
methods that use computers to integrate and analyze large-
scale information drawn from literature, clinical trials, or disease
and treatment omics data). Using an initial broad classification, we
may categorize suchmethods as bioinformatic-, chemoinformatic-
, network-based, signature-based, and literature-mining approxi-
mations, plus some hybrid approaches [20,29]. Most of them
imply, fundamentally, identifying (hidden) connections between
approved drugs and diseases or pursued drug targets. This is
closely related to Swamson’s ABC model of disjoint but comple-
mentary structures in biomedical literature [30–32]. Consider three
elements, concepts, or arguments A, B, and C. If connections
between A–B and B–C have already been proven, a direct con-
nection might probably exist between A–C even if it has not been
revealed yet.Wemight even say that themore the indirect bridges
between A and C, the best the chances of confirming a direct
connection between them [33]. For instance, an association has
been established between depression and chronic inflammatory
response [34,35], justifying the exploration of anti-inflammatory
drugs as possible new treatments for depressive disorders [36,37].

Underlying the previous discussion lies the idea that scien-
tific data and scientific knowledge are today produced at such
a meteoric rate that an increasing amount of latent knowledge
awaits being exposed. Bridging data, i.e. connectivity, seems
to be the key. Computer-aided drug discovery can help auto-
matizing (or at least semi-automatizing) this kind of discovery.
The link between the ABC model and computer-aided drug
repurposing is illustrated in Figure 1.

2.1. Cheminformatics and drug repurposing

In silico screening constitutes the most common cheminfor-
matic approach to drug repurposing. Of course, the chemical
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libraries submitted to an in silico screen should be focused on
the chemical matter of drug repurposing: approved, withdrawn,
shelved, and investigational drugs. Fortunately, publicly avail-
able resources such as DrugBank and Sweetlead have been
developed, compiling drugs that have received approved or
investigational status by the FDA and other regulatory agencies
[38,39]. In addition to providing access to molecular structures
of approved and investigational drugs, the latest versions of
DrugBank have been expanded to incorporate, among other
data, pharmacogenomic information of considerable value in
the fields of stratified and personalized medicine [38,40]. Such
information includes tens of thousands of coding and noncod-
ing single nucleotide polymorphisms derived from known drug
targets and drug metabolizing enzymes. DrugBank provides
summary tables on these polymorphisms that include: allele
variants; validation status; chromosome location; functional
class (untranslated, intron, exon, etc.); mRNA and protein acces-
sion links; reading frame; and allele frequency in African,
European, and Asian populations, among other fields.
Furthermore, this database also informs on known drug targets
of existing drugs, a remarkable feature to support the construc-
tion of drug-target networks (see Section 2.4).

A different but conceptually interesting approach has been
presented by Wu and coworkers [41], closely similar to pre-
ceding work by Keiser and collaborators [42,43]. The general
idea behind their work is that different therapeutic indications
could be related if each of them includes chemically similar
drugs. These studies speak of a pattern of repurposing oppor-
tunities between pairs of therapeutic classes, which
encourages the systematic cross-screening of drugs from one
therapeutic class for the other.

The existing methods to implement virtual screening to
identify in silico repurposing opportunities include ligand-
based and structure-based approximations or their hybrid
combinations. Possibly, structure-based approximations are

the most likely to produce results in the field of precision
medicine in the short- or mid-term, since most ligand-based
approximations require a minimum of training examples
(including activity data) which are rarely available for drug
targets variants. The general idea would be to use structural
information on the target to guide the selection of new drugs
active on polymorphic or mutant variants. Such molecular
target could potentially be a human gene product or a struc-
tural variant responsible for modified drug sensitivity in a
microorganism strain or subtype. There have been many struc-
ture-based studies applying either docking or molecular
dynamics simulations to explain differences in ligand affinities
to target variants [44,45], exploit such differences to design
new drugs [46,47], or even conduct in silico screening cam-
paigns [48–51]. However, to our best knowledge no in silico
screening addressing variants of drug targets with a focus on
drug repurposing has so far been performed.

On the other hand, it has recently been discussed that the
importance of bioactivation might have been miscalculated in
the context of drug repurposing campaigns based on in silico
screening [52,53]. Since about 10% of existing drugs have
been characterized as (intended or unintended) prodrugs
[54], and many others produce pharmacologically active meta-
bolites, it could be important to take into consideration pos-
sible active metabolites of the potentially repurposed
compound (the major metabolites, in particular) during the
screening protocol. A drug could be repurposed not only by
its intrinsic therapeutic potential but because of the therapeu-
tic potential of its metabolites; the exposure to such metabo-
lites will vary significantly from individual to individual. This
idea is in good agreement with the well-established role of
polymorphic metabolic enzymes in personalized therapy
[55,56]. Have in mind that drugs may be pharmacologically
activated or inactivated after biotransformation, and the
extent and rate of such activation/inactivation will largely
depend on the genotype and expression levels of drug meta-
bolizing enzymes.

2.2. Bioinformatics and drug repurposing

One of the general principles that support computer-aided drug
repositioning is that health disorders linked to similar dysfunc-
tional proteins may be treated with the same drugs (disease-
centric approach). Bioinformatic tools, from sequence alignment
to domain similarity identification tools, may be useful to reveal
unknown protein–protein similarities. While experts in a given
disease are naturally familiarized with target proteins associated
with their specific subject of study, they might well ignore which
other diseases are linked to the same or closely related targets,
hence missing valuable repurposing chances.

The questions become more challenging when dealing
with remote similarities between proteins which do not
seem to have any evolutionary relationship or even do not
share a similar fold or function. For that purpose, a lot of
attention has been paid to the identification of binding site
similarity as a basis for detecting repurposing prospects [57–
59]: similar binding sites can be found in proteins with low or
no overall similarity; several case studies reveal that the

Disease 2 Disease 3

Protein

1

Protein

2

Drug 1 Drug 2
Drug 3

Drug 4

Disease 1

Figure 1. Swanson’s ABC model can be applied to reveal hidden connections
between drugs and molecular targets or diseases. In the diagram, established
(direct) connections are shown in continuous lines, whereas dashed lines
represent hidden (indirect, inferred) connections. In the example, the connec-
tion between Drug 2 and Protein 2 can be inferred from the established
connection between Drug 2 and Drug 3 (e.g. using cheminformatics tools
such as molecular similarity methods). The same hidden connection may be
uncovered by connecting Protein 1 and Protein 2 through bioinformatics. A
patophysiological common basis to Disease 1 and Disease 2 might also provide
arguments to repurpose Drug 4 for Disease 1.
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binding of similar ligands cannot be deduced from fold but
from local similarities [58]. Correlations between ligand bind-
ing promiscuity and binding site and global structure simila-
rities have been established by Haupt and coworkers [60]. For
that purpose, 164 ligands co-crystallized with three or more
nonredundant targets were extracted from the Protein Data
Bank. Such ligands were found in 712 nonredundant protein
targets. All pairs of binding sites for all promiscuous drugs
were then aligned. Direct correlations were found between
the overall structure similarity and the degree of promiscuity,
and between the square root of the number of similar binding
sites and the degree of promiscuity. Such results suggest that
the global structure similarity and the binding site similarity
can be used as criteria to guide drug repositioning initiatives.

In their comprehensive review on different kinds of binding
site similarity comparisons and their recent successful applica-
tions [59], Ehrt et al. have concluded that to the moment no
best-performing algorithm to compare binding sites can be
chosen since adequate benchmarking studies have this far not
been developed. Furthermore, they highlight that poor results
are often observed when using individual approaches but
performance is greatly enhanced when applying different in
silico and experimental methods in a workflow. Alike other
areas of drug discovery where algorithms are routinely
applied, consensus seems to be the key.

It should also be remembered that whereas similar binding
sites frequently bind the same ligands, the converse does not
hold: a ligand may bind to very different binding sites [59].
Consequently, binding site comparison can only cover a part
of the possible drug repurposing cases.

2.3. High-throughput literature analysis and drug
repurposing

The rapid expansion in the volume of the biomedical literature
spawns a combinatorial explosion in the number of implicit
meaningful connections between biomedical concepts; the
probability that such connections remain unnoticed is substan-
tially enhanced by the increasingly disjointed nature of knowl-
edge as a result of specialization [61]; even for a specialist it is
becoming no longer possible to keep up to date with all the
relevant literature on a delimited topic [62]. The challenge
increases under the perspective of drug repurposing, which
intrinsically demands the researcher to reach out to other areas
of knowledge related to the original or new indication of the
repurposed drug. Accordingly, automated literature mining
methods are highly relevant to screen large volumes of scientific
literature and information to find hidden connections.

Co-occurrence methods are the simplest approaches to link
biomedical terms of interest. Implicit connections between
terms that do not co-occur are discovered by finding a third
linking term that occurs directly with each of them. This scheme
allows for two modes of discovery, termed open and closed
[61]. Open discovery starts with a disease C and a set of inter-
mediate B concepts related to this disease are identified in the
literature. These B concepts are then explored to seek out A
concepts (potential treatments). In closed discovery, the starting
point is a hypothesis or observation of a therapeutic relation-
ship between treatment A and disease C, and an explanation

for this hypothesis or observation is sought by exploring for
concepts related to both A and C. The seminal idea by
Swanson’s was of course later expanded and refined. For
instance, Predication-based Semantic Indexing is utilized to
identify sequences of relationships termed ‘discovery patterns,’
e.g. ‘drug x INHIBITS substance y, substance y CAUSES disease z’
[61]. Predications are extracted from the biomedical literature
by the application of natural language processing technology.

A good example of text mining applications in the field of
drug repurposing has recently been reported by Su and Sanger
[63]. These authors mined ClinicalTrials.gov (which contains
biomedical data from more than 220,000 clinical trials). Their
idea is simple but appealing: they look for drugs where the
treatment arm has fewer predefined serious adverse events
than the control arm, indicating that potentially the drug is
reducing the level of such adverse event. Hypotheses can
then be generated for a new use of the drugs based on the
predefined serious adverse event that is indicative of disease.

2.4. Network-based approaches and drug repurposing

Integrating large amounts of data is the key concept under-
lying network analysis. Networks deal with complexity by
simplifying complex systems: entities are represented as
nodes while relationships between nodes are depicted as
edges [64]. Such degree of simplification allows visualizing
and analyzing the system with a holistic perspective, unra-
veling informative associations from the topological archi-
tecture of the network (e.g. modularity, ‘date’ and ‘party’
hubs, nodes neighboring hubs, etc.). Networks may incorpo-
rate different levels of information (for instance, different
types of nodes representing categories of elements may be
allowed, e.g. drugs, proteins, genes, diseases). Moreover, the
edges could be established using experimental data (e.g. the
value of an experimentally measured affinity constant might
be used to link a given drug to a given protein) and/or
predicted/theoretical data (e.g. an association between two
drugs might result from a similarity measure or from proxi-
mity in the chemical space). Edges could be weighted to
reflect different strengths or reliability of associations; occa-
sionally, they might even encode some sort of dynamic link
between two linked elements (e.g. semantic edges) [65,66].
Note that all the approaches to drug repurposing described
in previous sections (cheminformatics, bioinformatics, litera-
ture-mining), jointly with experimental data, can be used to
build networks.

There are currently a vast number of public resources that
provide valuable data to develop protein–protein, drug–pro-
tein, drug–disease, and drug–protein–disease networks. Just
to mention a few examples, DisGeNET [67] offers hundreds of
thousands of associations between human genes and dis-
eases, and (interestingly) disease-variants associations; the
Therapeutic Target Database (TTD) [68] is a drug database
that provides information about known and explored protein
and nucleic acid drug targets, the targeted disease, pathway
information, and the corresponding drugs directed at each of
these targets (including investigational drugs); BindingDB [69]
is a database of experimental protein–small molecule interac-
tion data that today collects over a million data entries
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extracted from scientific articles and patents; STRING is a
public repository that provides protein–protein interaction
data on the basis of both experimental (e.g. co-expression
patterns) and in silico predictions (for instance, co-occurrence
in biomedical literature) [70]; STITCH integrates experimental
and predicted information about interactions between small
molecules and targets [71]: it currently holds information on
more than 430,000 chemicals retrieved from different sources
of verified protein–chemical interactions, which is comple-
mented by automated text-mining and structure-based pre-
dictions and displayed as an interaction network.

In a very interesting application of network analysis to drug
repurposing, Vitali et al. implemented a network-based study to
identify drug repurposing opportunities against triple negative
breast cancer, a subtype of breast cancer whose biology is still
poorly understood [72]. First, they selected a list of genes and
proteins known to have a role in the disease. The list was
generated from a previous study that enumerated genome
aberrations from 104 cases of primary triple negative breast
cancer. The most significantly mutated and differentially
expressed genes were extracted and high-confidence protein–
protein associations with the correspondent disease proteins
were extracted from STRING to produce a protein–protein net-
work, with the edge weights being proportional to the confi-
dence level of the association. The topology of the resulting
network was used to identify potential therapeutic target pro-
teins; for that purpose, three criteria were used: (a) hubs were
discarded (impairing their function results in rapid deterioration

of network information transfer, which may translate into con-
siderable side effects); (b) bridging nodes were selected; and (c)
the selected targets should be druggable (Figure 2). Next,
envisioning the possibility of selecting multi-target drugs, the
authors resorted to the previously reported Topological Score
of Drug Synergy [73] to select target triplets; such score also
takes into account the network topology: it considers the topo-
logical distance between the targets and the network edge
weights, favoring shortest paths with higher edge weights.
DrugBank and the Comparative Toxicogenomics Database
were then explored to extract a list of approved drugs known
to interact with the target proteins; this search was comple-
mented by the application of a data fusion approach based on
matrix tri-factorization. Finally, 18 pathways involved in the
progression of triple negative breast cancer were extracted
from the KEGG repository. Each pathway was modeled as a
Boolean Network and gene expression microarray data were
later integrated to the model, to identify up- and downregu-
lated genes. The effects of imatinib (one of the drugs selected
for repositioning) alone or in combination with other drugs was
estimated; it was predicted that imatinib alone or in combina-
tion with vemurafenib or vemurafenib and flucytosine would
have positive effects against triple negative breast cancer,
which was validated in vitro. In the light of the scope of this
article, we believe that the study by Vitali and collaborators is
an excellent example on how to integrate gene expression data
to network analysis to repurpose drugs for specific subtypes of
a given condition.

Figure 2. Network constrains were applied to the protein-protein network build by Vitali et al. Hubs (a) were excluded from the list of potential targets to reduce the
probabilities of significant adverse reactions. Bridging nodes (b) that were also druggable (c) were selected instead. Reproduced under Creative Commons
Attribution license from reference [72] © 2016 Vitali et al.
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In line with the emerging paradigm of using multi-target
therapies to improve efficacy in the treatment of complex disor-
ders and reduce drug resistance rates [74,75], this type of network-
based approximations are being increasingly applied in oncology
to select drug combinations that may cope with robustness con-
ferred by abundant regulatory loops and redundant pathways in
cancer [76]. Whereas initial computational tools to detect effective
drug combinations such as Combinatorial Drug Assembler [77] or
DrugPairSeeker [78] were simply based on calculating connectivity
scores of drug pairs that maximized the reversal of disease-asso-
ciated gene signatures (see next section for further details), more
recent tools such as DrugComboRanker [79] or SynGeNet [80]
combine transcriptomics with network-mining algorithms. For
example, Regan and coworkers reported the application of
SynGeNet to identify drug combinations to treat melanoma [80].
They retrieved gene expression data of patient-derived BRAFV600E/
Kmutantmelanoma tumor samples and normal skin samples from
the Gene Expression Omnibus dataset. Melanoma-associated
genes were obtained via DisGeNET and a melanoma disease
signaling network was constructed, integrating gene expression
fold change information and protein–protein interactome data.
The top-ranked melanoma-associated disease genes from
DisGeNET were used as root nodes to uncover the dysfunctional
disease signaling network. Gene expression profiles of more than
600 FDA-approved drugs tested in the BRAF-mutant A375 mela-
noma cell line were obtained from LINCS L1000 transcriptomics
database. Individual drugs were ranked by negative connectivity
scores (i.e. by its hypothesized ability to reverse disease-signature).
Such rank was then used to weight each drug; the 61 top-ranked
drugs were clustered into drug communities according to their
targeted pathways, in order to choose possible synergistic drug
combinations. Drug target interaction data was obtained from
DrugBank and STITCH databases. Drug target genesweremapped
on the constructed melanoma disease signaling network, and the
centrality of each target gene within the overall network was
calculated based on the average of betweenness, closeness, and
page-rank centrality metrics. The weighted sum of the centrality
parameters for each of the unique drug targets was computed to
determine the synergy score of drug pairs (note that this approach
does not take into account the distance between two drug tar-
gets, though such distance can be taken into consideration by
assessing if the selected drugs come or do not come from the
same drug community). The method was validated using results
from a previously published in vitro combinatorial drug screening
study across different melanoma cell lines, seemingly demonstrat-
ing that the approach outperformed other transcriptomics-based
methods. SynGeNet was able to predict 12 validated drug combi-
nations against melanoma, 11 of which involved drugs from
different communities.

2.5. Signature-based drug repurposing

Signature-based drug repurposing uses gene expression data to
identify new drug repositioning opportunities. By comparing the
expression profile of a cell before and after exposure to a drug
the changes induced by active compounds on the transcriptome
can be quantitatively assessed [81]. This drug-induced gene
expression profile can then be compared with a disease-asso-
ciated signature. It is hypothesized that inverse similarities

between drug- and disease-associated signatures will speak of
a possible beneficial effect of the drug against the disease of
interest. Although it can be argued that this method does not
consider mechanistic aspects in a direct manner, and that the
effect of a drug on the transcriptome of a reference cell typemay
not be exactly the same that its effect on an unhealthy cell, the
approach has shown promising results in several difficult-to-treat
complex disorders, such as cancer [82], Alzheimer’s disease [83],
and inflammatory bowel disease [84].

Public resources specifically oriented to signature-based
drug repurposing have been developed [85], adding to the
pioneering signature repository from the Broad Institute, the
Connectivity Map (cMap) (https://portals.broadinstitute.org/
cmap/) [86], the first large public database of genome-wide
gene expression profiles from a diversity of human cell lines
treated with more than a thousand bioactive small molecules.
To query the cMap, the authors devised a pattern-matching
tool based on Gene Set Enrichment Analysis (GSEA) [81],
through which connections can be statistically evaluated.
Essentially, GSEA assesses expression data at the level of gene
groups which are defined on the basis of prior biological knowl-
edge (e.g. belonging to the same biochemical pathways, coex-
pression, proximally located in chromosomes); GSEA
determines if the members of a gene group tend to occur
toward the top (or the bottom) of a ranked list of differentially
expressed genes between two cell types, in which case the
gene set is correlated with the phenotypic class distinction
[87]. The resultant ‘connectivity score’ is normalized using ran-
dom permutation, assuming values from −1 to 1 to reflect the
closeness or connection between the expression profiles.
Identifying drugs with similar mode of action constitutes
another possibility of cMap application to drug repurposing.
In this case, it is assumed that if two drugs elicit similar tran-
scriptional responses they could display a common mode of
action and thus they might be applied to treat the same
pathological condition. The cMap query tool allows sscMap
extension and the mode of action by network analysis
(MANTRA) tool [81]. sscMAP is a free-to-download java imple-
mentation of the cMap algorithm bundled with the reference
dataset, enabling integration of user-defined data [88]. The
approach uses a connectivity score computation with permuta-
tion tests at treatment instance and treatment set levels, offer-
ing a statistical mean to control false connections between the
gene signature and the reference profiles [89]. First, sscMAP
introduces a new ranking score by making the following con-
siderations: treatment and control instances are treated simi-
larly; the genes that are highly differentially expressed are given
more weight and; the up- and downregulated genes are
handled equally. The new scoring scheme for representing a
query gene signature either with ordered or unordered gene
list is computed as follows. The connections strength is calcu-
lated between the reference profile R and the gene signature s:

C R; sð Þ ¼
Xm

i¼1

R gið Þs gið Þ (1)

where gi represents the ith gene in the signature, R(gi) denotes
the ith gene rank in the reference profile, and s(gi) denotes the
ith gene rank in the signature. m is the number of genes in the
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gene signature. For ordered gene signatures, the maximum
connection between the reference profile and the gene sig-
nature is achieved by matching the m genes and their regula-
tion status in the reference profile and the gene signature in
the correct order:

C0
max N;mð Þ ¼

Xm

i¼1

N� iþ 1ð Þ m� iþ 1ð Þ (2)

where N is the total number of genes. For unordered gene
signatures, all the genes in the list would have equal weight.
The overall connectivity score is calculated by dividing the con-
nection strength with the maximum connection strength of a
given gene signature and reference profile; it ranges from −1 to
1, where 1 indicates a maximum connection of s with R and −1
indicates a negative connection.

On the other hand, MANTRA makes use of a post-processed
version of the cMap dataset, where compounds are grouped
into a drug similarity network. In this network, two drugs are
connected if they induce similar transcriptional effects in
human cell lines [81]. MANTRA users can either integrate a
drug under investigation into the network and deduct its
mode of action by analyzing the surrounding subnetwork, or
identify repurposing opportunities by searching the neighbor-
hood of a query compound with a desired mode of action for
other compounds non-previously linked to that mode of action.

Fortney et al. have recently adapted a parallel CMap
approach across multiple gene signatures of a disease, and
named their method CMapBatch [89,90]. CMapBatch has inter-
esting perspectives in the field of stratified medicine: instead
of applying CMap to one individual gene signature, it applies
it to an ensemble of signatures for the same disease and then
combines the resulting outcomes. CMapBatch thus resembles
meta-analysis [89].

Recently, a new version of cMap was reported as part of
the NIH LINCS Consortium [91] using the L1000 assay (a new,
low-cost, high-throughput reduced representation expres-
sion profiling method that measures the expression of only
978 landmark genes, whereas the expression values for the
remaining genes are computationally estimated, allowing a
1000-fold scale-up of the cMap) [92]. It was shown that L1000
is highly reproducible, comparable to RNA sequencing, and
suitable for computational inference of the expression levels
of 81% of non-measured transcripts. This next-generation
cMap can be used to discover mechanisms of action of
small molecules, functionally annotate genetic variants of
disease genes, and inform clinical trials.

It is also worth mentioning that valuable specific
resources compiling genomic data in support of precision
medicine in the field of cancer exists, such as the National
Cancer Institute’s Genomic Data Commons (which centra-
lizes, standardizes, and makes accessible data from pre-
vious large-scale NCI programs such as The Cancer
Genome Atlas and Therapeutically Applicable Research to
Generate Effective Treatments, granting public access and
exchange of cancer genomic data) [93] or the Cancer Cell
Line Encyclopedia (providing public access analysis and
visualization of DNA copy number, mRNA expression,
mutation data and more, for 1000 cancer cell lines) [94].

CIVIC [95] constitutes another formidable initiative that
intends to provide a centralized, open-access, open source,
open license knowledge base for expert crowdsourcing of
clinical interpretation of gene variants in cancer. It accepts
public contributions but requires experts to review these
submissions. Clinical interpretations are captured and dis-
played as evidence records consisting of an ‘evidence
statement’ and several structured attributes. Each evidence
record is associated with a specific gene, variant, disease,
and clinical action. Evidence records belong to one of four
evidence types indicating whether a variant is predictive of
response to therapy, prognostic, diagnostic, and/or predis-
posing for cancer. They are assigned to an evidence level
ranging from established clinical utility to inferential evi-
dence, and the quality of the underlying evidence is rated
from one to five stars.

3. Is individual or stratified drug repurposing new?
And if not, what is new to it?

Off-label use of drugs (unlicensed prescribing) constitutes a
possible precedent to drug repurposing in the field of per-
sonalized medicines. Off-label use comprises the use of a
drug in a different dose or frequency, by a different route or
in populations groups different from the ones included in
the product identification (e.g. children) [96–98]. Medicines
may also be used for different indications to those con-
tained within the product license [96,97], which is clearly
in direct relation with the drug repurposing approach,
whereas many unlicensed prescriptions can be related to
the personalized medicine paradigm. It is a frequent prac-
tice to treat patients who have proven resistant to a range
of treatment approaches [98]. Various reasons can justify
off-label uses [97]: the existence of therapeutic gaps, the
strong research conducted in certain areas, and the lack of
commercial interest by some companies about extending
their treatment indications. Absence of license not always
equals absence of evidence. For example, the mood-stabiliz-
ing effects in bipolar disorder of valproic acid, carbamaze-
pine, and lamotrigine were well-established through
controlled trials way before receiving FDA approval
[99,100] and they were extensively prescribed off-label to
treat that condition. An off-label use may have undergone a
proper therapeutic trial but excluded on clinical grounds
such as contraindications or risk of interactions [98]. Off-
label use is a particularly common practice in certain areas,
such as oncology, psychiatry, and pediatrics [98,101–103].

It should however be mentioned that off-label use is often
based on empirical observations instead of evidence from clin-
ical trials [97]; there is evidence that shows that unlicensed use
can be associated to increase risk of adverse reactions [104] and
unlicensed prescriptions increase professional liability [98]. It
has also been noted that undisclosed unlicensed used is con-
trary to the philosophy of patient-focused care [104].

The idea of using a drug outside label specifications to
provide better treatment for specific patients is thus not
new: it has been with us for decades. What is the novelty to
it? The answer is obvious: we now have the tools to do it on a
more solid scientific basis. We will be able, in the immediate
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future, to universally characterize an individual’s disease at the
molecular level in a time frame compatible with clinical
decisions.

Current and emerging tools to assess the genetic profile
of a patient or group of patients seem to provide a scientific
framework for safer, evidence-based off-label use (e.g. adapt-
ing the licensed dose of a medication to the genetic makeup
of a patient; choosing the best therapeutic alternative). The
still meager literature exploring or discussing the link
between precision medicine and drug repurposing under-
lines the central role of last-generation sequencing and
gene expression profiling tools to bridge both concepts
[105–108]. The fundamental notion involves recognizing dis-
ease and patient heterogeneity and characterize such hetero-
geneity with genetic diagnostic tools, so to choose drug
targets and therefore drugs or combination of drugs in a
more informed and specific manner. For instance, the web-
based platform DeSigN for predicting drug efficacy against
cancer cell lines using gene expression patterns has recently
been released [105], which will help choosing anticancer
treatment for specific cancer types or subtypes. In their
excellent article, Li and Jones discuss and exemplify the
horizons of personalized drug repurposing to treat cancer
and rare diseases [106]. A number of DNA sequencing-
based tests are today used in cancer medicine, from single
gene tests for mutations with recognized prognostic and
predictive significance to panels that may include hundreds
of defined cancer genes. Back in 2010, those authors were
the first to publish an example of clinical treatment decision-
making based on whole-genome analysis [109]. They
described the treatment choice for a patient presenting a
rare tongue adenocarcinoma with no standard treatment
options: the oncologists used sequencing tools to reveal
amplification and upregulation of the rearranged during
transfection (RET) proto-oncogene and the treatment with a
(repurposed) RET inhibiting kinase drug conferred 8-month
disease stabilization. The same team later expanded the
application of such approach through the Personalized
OncoGenomics (POG) program [110]. Between 2012 and
2014, 100 adult patients and 6 children with incurable can-
cers (representing 30 different cancer types) agreed to take
part in the study. Fresh tumor and blood samples were
obtained and used for RNA sequencing and whole-genome
analysis. Sequencing and analysis was completed for 85
patients, among them 78 adults. In 83% of these cases, the
clinician who was making treatment decisions indicated that
the data information had been informative. A total of 71% of
patients received a POG-informed treatment, 62% of which
achieved some disease control. A recent case report by this
same group on a patient with metastatic colorectal cancer,
treatment-related toxicity, and resistance to chemotherapy
and radiation [111] seems particularly relevant in relation to
drug repurposing. The patient underwent immunohisto-
chemical analysis for expression of the MMR proteins MSH2,
MSH6, PMS2, and MLH1 and the V600E mutant BRAF protein.
Whole-genome sequencing was carried out on the pretreat-
ment tumor and blood, and whole-genome sequencing and
whole transcriptome sequencing on the metastatic tumor.
Somatic point mutations, small insertions or deletions, and

copy-number alterations were identified. Whole-genome
sequencing identified a large number (more than 2000)
genomic alterations, consistently with defective MMR arising
from the loss of MLH1 observed using immunohistochemis-
try. Among the most differentially expressed genes identified
through transcriptome analysis, there were the founding
members of two proto-oncogene families, FOS and JUN
(their expression levels were 10- and 4-fold greater than for
normal colon tissue, and 3.7- and 4-fold when compared with
the mean expression of the malignant colon adenocarci-
noma, respectively). c-FOS and c-JUN comprise the AP-1
transcriptional complex, which is known to be a key regulator
of disease initiation and progression in many cancer types,
including colorectal cancer. These data supported that block-
ing the renin–angiotensin system could provide therapeutic
benefit, which led to the repurposing of the antihypertensive
angiotensin II receptor antagonist irbesartan as an anticancer
therapy, resulting in the patient experiencing a radical and
persistent response. The previous example is particularly
interesting since the treatment of choice has not traditionally
been used as cancer chemotherapy, representing a case of
‘hard’ (nonapparent) drug repurposing.

Similarly, but at a more basic level of research, Jahchan
et al. used a systematic drug-repositioning bioinformatics
approach querying a large compendium of gene expression
profiles to identify candidate FDA-approved drugs as potential
treatments of small cell lung cancer [112]. It was predicted
that tricyclic antidepressants (imipramine, clomipramine) and
first-generation histamine H1 receptor antagonists (prometha-
zine), among others, could act as novel treatments for small
cell lung cancer. Such predictions were validated in both
chemonaïve and chemoresistant small cell lung cancer cells
in culture, in mouse and human small cell lung cancer tumors
transplanted into immunocompromised mice, and in endo-
genous tumors from a mouse model for small cell lung cancer,
which led to the implementation of a Phase II clinical trial.
Remarkably, the best performing candidates displayed a com-
plex pharmacological profile typical of classic central nervous
system agents.

The application of genome analysis to drug repurposing
has slowly begun to spread to other fields of medicine besides
oncology, though they have not reached clinical applications
in those areas so far. In a very recent work, So et al. used data
from genome-wide association studies to screen for potential
drug repurposing opportunities to treat seven psychiatric con-
ditions [108]. Interestingly, they discriminated their results not
only by disease but also by brain region. Their methods pro-
vided abundant cross-repurposing opportunities between psy-
chiatric disorders (e.g. antidepressants for anxiety,
antipsychotics for major depression, and so on). They also
validated the general approach by ‘rediscovering’ classical
treatments for some of the conditions. Siavelis et al. resorted
to a comprehensive approach using five Alzheimer-related
microarray data sets with three different methods of evaluat-
ing differential gene expression and four drug repurposing
tools [83]. A list of 27 potential anti-Alzheimer agents was
found which was further refined with molecular similarity
tools, ontology enrichment, and network analysis. Zhang
et al. compared Alzheimer-associated genes with approved
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drug targets and found 23 approved drugs that may be effi-
cacious against the disease [113]; in vitro and in vivo evidence
suggests that four angiotensin-converting enzyme inhibitors
have potential to treat Alzheimer’s disease. Similarly, Zhang
et al. generated a list of known and putative anti-Alzheimer
drug targets by analyzing available genomic, epigenomic,
proteomic, and metabolomic data [114]. Drug-target data
was then extracted from DrugBank and the TTD and a list of
75 existing drugs that may be repurposed as medications for
Alzheimer was obtained. The same group has applied a very
similar protocol to repurpose drugs against diabetes [115].
Data from genome-wide association studies, proteomics, and
metabolomics studies revealed a total of 992 proteins as
potential anti-diabetic targets. Information on the drugs that
target these proteins was retrieved from the TTD, finding that
108 of those proteins are drug targets with drug projects
information. After excluding research and preclinical drug tar-
gets, 35 of the 108 proteins were selected as druggable pro-
teins. A total of 58 drugs were found to have a new indication
for treating diabetes. The cMap was used to compare the gene
expression patterns of cells treated by those 58 drugs and that
of cells treated by existing antidiabetic drugs and diabetes-
risk-causing compounds. A total of 9 drugs were found to
have the potential to treat diabetes, among them 4 drugs
targeting COX2 and 2 drugs targeting the alpha-2A adrenergic
receptor.

4. Conclusion

Drug repurposing presents remarkable opportunities to accel-
erate and lower the costs of drug discovery. In the beginning
of drug repurposing, discoveries of this type were serendipi-
tous or based on empirical observations. Today, due to the
potential of the approaches, repurposing prospects are pur-
posely and systematically explored.

Systematic drug repurposing approaches vary in terms of
rationality, from the essentially ‘brute force’ approximations
(exhaustive screening) to computational and signature-based
methods. These methods have slowly and steadily begun to
be applied in the framework of the precision medicine para-
digm. The first successful reports in clinical practice have
already been observed in the field of cancer, whereas other
therapeutics areas are beginning to show their own applica-
tion examples in a more basic research level. Genetic profiling
tools are probably the best suited approaches for personalized
or stratified drug repurposing, though benefits may arise from
their integration to other approximations.

5. Expert commentary

Whereas the successful drug repurposing cases so far are
dominated by serendipitous discoveries or empirical knowl-
edge, current repurposing campaigns deliberately pursue
opportunities in an organized manner. Still, most repurposing
initiatives to date have been oriented to a traditional, ‘one
medication for all’ perspective. Off-label prescriptions may be
regarded as the historical precedent to personalized drug
repurposing: a considerable fraction of unlicensed prescrip-
tions corresponds to a therapeutic indication shift and many

of them are focused on specific patient subpopulations, e.g.
children or refractory patients. If off-label prescribing is the
bridge that connects drug repurposing and personalized med-
icine, the challenge today involves boosting the safety and
efficacy of unlicensed prescription by integrating genomics,
transcriptomics, proteomics, and metabolomics to the stage of
treatment choice.

It is now accepted in most fields of medicine that broad
disease categories encompass heterogeneous conditions that
are now being segregated. Recent (but cumulative) reports in
the cancer arena have made clear that it is possible to rethink
drug repurposing under the view of personalized and preci-
sion medicine. The key to this approximation are last genera-
tion sequencing and genome-wide association studies.
Accordingly, signature-based approximations are the most
likely to deliver personalized drug repurposing for complex
disorders in the near future. They could also provide hints on
the mechanism of action of known drugs, which is sometimes
only partially known. Eventually, though, signature-based
approximations may be complemented by target-based drug
discovery approaches with a focus on protein variants linked
to disease; so far, structure-based studies on variants have
mostly focused on CYP450 polymorphism and we have not
been able to find reports on target-based approaches oriented
to drug repositioning.

As mentioned, most of the current examples of persona-
lized drug repurposing come from oncology, where plenty of
successful cases have been reported. The strategy is, however,
beginning to flourish in other therapeutic areas, such as psy-
chiatry and neurology, still under the form of nonclinical
research.

Signature- and computer-aided approaches will be soon
fully integrated under the network pharmacology paradigm,
where diverse levels of observed and predicted data may be
comprehensively, and synthetically, presented, and topologi-
cal analysis of the network allows selecting the best point or
point combination for therapeutic intervention. In an era
where the multi-target and network pharmacology para-
digms are being actively and progressively pursued to
develop new medicines or drug combinations to treat com-
plex diseases, protein networks provide hints on the best
combination of drug targets, whereas disease networks
might uncover unsuspected relationships between diseases.
It is possible that those networks will be constructed or
adapted in the near future by integrating data from indivi-
dual patients or patient subgroups, expanding the horizons
of personalized medicine.

6. Five-year view

Until no much time ago, it was my opinion that the current
interest on drug repositioning would eventually reach its peak
and then slowly begin to decrease. My reasoning was simple:
the number of candidates for drug repurposing is finite. As
more and more systematic drug repositioning campaigns
were implemented, the drug repurposing opportunities
would be drained (or at least severely reduced). My view has
completely changed after seeing how drug repurposing is
being now integrated with precision medicine, finding
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unexpected solutions for individual patients (e.g. an antihy-
pertensive drug that is used to efficaciously treat a patient
with cancer!). The number of approved or clinical drugs is still
finite but, under the precision medicine paradigm, what is not
finite is the number of health conditions to be treated. In the
limit, each ill person represents a specific situation that
requires diagnose and treatment. Such statement becomes
particularly true in the field of complex disorders whose etiol-
ogy and evolution depends on an intricate combination of
genetic, epigenetic, and environmental factors. Under this
new light, I believe that the interest on drug repositioning
will continue to grow vigorously in the short- and mid-term, as
known drugs are repurposed for particular subtypes of a given
disease.

Due to the global burden of cancer and the comparatively
large investment in that field, it is common that novel technol-
ogies aiming to develop new therapeutic solutions are first
applied in oncology and then more or less slowly ‘spill’ to other
areas of medicine. Accordingly, although successful case reports
on the application of personalized drug repurposing based on
omics technologies have so far come from the cancer arena, it
can be speculated that new successful stories will be told in other
fields of medicine in the following years. How fast this will be
realized will depend on how fast the omics technologies are
developed and universally integrated into the medical practice.

It is to be seen how the pharmaceutical industry will adapt
and rethink itself in the era of precisionmedicine, where off-label
uses of medications will surely be a much more common and
well-founded practice than today. Physicians and data analysts
will surely have a prominent, leading role in this scenario.

Key issues

● Drug repurposing is a time- and cost-efficient strategy to
develop new medications. Whereas the initial successful
drug repurposing stories emerged from serendipitous
observations or exploitation of drugs side effects, the drug
discovery community has shifted in favor of more systema-
tic drug repurposing in the late years.

● So far, molecular docking has not been applied to perform
virtual screening applications to detect drug repurposing
opportunities on the basis of structural knowledge of poly-
morphic or mutant variants of a given molecular target.

● Since about 10% of the drugs in the market are prodrugs
and many marketed drugs are subjected to bioactivation,
drug repurposing initiatives under the philosophy of preci-
sion medicine may consider major metabolites of the stu-
died drugs and should stratify the population or
characterize the individual patient on the basis of the phar-
macogenetics of CYP450 and other major biotransforma-
tion enzymes.

● There are precedents that connect drug repurposing and
personalized medicine. In particular, unlicensed prescribing
is an extended practice to approach certain patient popula-
tions. The omics era (genomics, transcriptomics, proteo-
mics, metabolomics) provides new tools to guide such
practices in a rational, informed manner.

● New opportunities for individual or stratified drug repur-
posing will possibly emerge once data from genome-wide
association studies and genetic profiling are integrated to
in silico-aided drug repurposing.
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