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Abstract  This work considers the problem of 
automatically controlling the glucose level in Insulin 
Dependent Diabetes Mellitus (IDDM) patients. The 
objective is to include several important and practi-
cal issues in the design: model uncertainty, time var-
iations, nonlinearities, measurement noise, actuator 
delay and saturation, and real-time implementation. 
These are fundamental issues to be solved in a device 
implementing this control. A simulator of the well 
known Sorensen 19-th state model has been built. It 
has been found that this compartmental model alt-
hough nolinear, is almost Linear Time Invariant 
(LTI) in practice. To this end, a robust H  control-
ler is designed and tested against the simulator in 
order to check all the previous practical issues. 
Keywords  Diabetes control, robust control, H

control.

I. INTRODUCTION 
Under normal conditions, blood glucose concentration 
should be in the interval of [60,120] mg/dL (DCCT, 
1993). The body regulates this concentration by means 
of glucagon and insulin, both pancreatic endocrine hor-
mones secreted from  and  cells respectively. The ab-
sence of insulin released by the pancreas is called Insu-
lin dependent Diabetes Mellitus (IDDM) and produces a 
higher glucose level in the blood (hyperglycaemia). The 
consequences of this fact can be atherosclerosis, reti-
nopathy, etc. The excess of insulin on the other hand, 
may produce a lower value of glucose (hypoglycaemia) 
which may produce diabetic coma or even death. Meals 
and exercise tend respectively to increase and decrease 
blood glucose levels. It is very important to maintain 
glucose levels between the previously mentioned 
bounds. Therefore, diabetic patients need external injec-
tions of insulin according to their actual conditions in 
order to regulate their glucose level. This is particularly 
painful in children with IDDM which may need several 
insulin shots a day, plus regular glucose measurements 
which may involve finger picks. Instead, type II diabe-
tes is generally produced in the long term and has to do 
with patient’s aging, which may not even need external 
insulin provision.  

Glucose-Insulin dynamics has been extensively stud-
ied. A few models based upon ordinary differential 
equations (ODE) can be used, for simulation or control 
system design purposes (Makroglou et al., 2006). As 
controller design is concerned, solutions are frequently 
based upon either Bergman’s 3rd. order model (Fisher,
1991; Cocha et al., 2009; Makroglou et al., 2006), or 
Sorensen’s 19th. order model (Sorensen, 1985). Both 

models are nonlinear and suitable for design purposes.  
The control system design for this process has been 

approached in different ways using both models (see 
Kovács et al., 2009; Chee and Fernando, 2007; Bondía 
et al., 2010; for a survey). Solutions go from 
semiclosed-loop solutions (Fisher, 1991) and simplified 
PID control to heuristic fuzzy-logic procedures or par-
ametric-programming (Dua et al., 2006). The aforemen-
tioned models, present significant sources of uncertainty 
that are worth considering systematically. Robust Con-
trol Theory (Ruiz-Velázquez et al., 2004; Parker et al., 
2000) has been applied to this problem, centered on the 
uncertainty issue. Also a Linear Parameter Varying 
(LPV) model has been derived in Kovács and Kulcsár 
(2007) based on Sorensen’s model and again an H
LTI controller has been designed for it in Kovács et al. 
(2008, 2011). In addition, due to the nature of the dy-
namics in both standard models, nonlinear control de-
sign methods have also been applied (Cocha et al., 
2009; Kovács et al., 2008) but with no clear robustness 
guarantees. In previous works by one of the authors of 
this paper (Sánchez Peña and Ghersin, 2010; Sánchez 
Peña et al., 2011) both, LPV and Unfalsified control 
(UC) where tested for this problem. Based on the latter, 
attention should be paid to all of the following issues: 

Model uncertainty.  
Time-varying and/or nonlinear phenomena.  
Time delays, actuator saturation, measurement noise.  
Real-time implementation.  
In several works, these items have been considered 

separately or simultaneously (Parker et al., 2000; Dua et 
al., 2006; Kovatchev et al., 2009; Ruiz-Velázquez et al., 
2004; Kovács et al., 2011; Willinska et al., 2010). In 
Sánchez Peña et al. (2011), they have all been consid-
ered simultaneously over the simplified Bergman’s 3rd. 
order model (Makroglou et al., 2006; Fisher, 1991). The 
objective of the present work is to continue the one in 
Sánchez Peña et al. (2011), but based on Sorensen’s 
19th order model. This last model is not only more 
elaborated than the first one, but also was created with a 
different objective. The purpose of Bergman’s model 
was to generate minimal mathematical dynamics capa-
ble of explaining variations in individual response to a 
single input (IVGTT: Intravenous Glucose Tolerance 
Test). On the other hand, Sorensen intended to develop 
a generalized physiologic model yielding predictions of 
mean normal response over a wide variety of inputs 
(Sorensen, 1985). In order to take into account the prac-
tical issues listed above, a model simulator has been 
constructed and the following observation has been 
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made: the model can be considered LTI for all practical 
purposes. Hence, a robust H  controller has been de-
signed and tested. As a byproduct, several errors in most 
of the Sorensen’s model literature have been found.

The paper is organized as follows. Some brief back-
ground material on Sorensen’s model and the errors 
found in the literature are pointed out in Section II. The 
weight selection and controller design is performed in 
Section III. Simulations illustrating the controller per-
formance over the nonlinear simulator and all practical 
issues mentioned previously are presented in section IV. 
Final conclusions are drawn in section V.  

II. SORENSEN’S MODEL 
Sorensen’s mathematical model is an explanatory phy-
siological mechanism of the glucose metabolism in the 
human body. It is the model to choose because of its so-
phistication and predictive capability, given the statisti-
cal value of its parameters. In general lines, it divides 
the body in six compartments: 1) brain, representing the 
central nervous system; 2) heart and lungs; 3) liver; 4) 
gut; 5) kidneys and 6) muscular skeleton and adipose 
tissue (peripheral). In addition, each compartment is 
composed of three spaces: 1) blood capillary, fed by the 
arterial blood and evacuated by the venous one; 2) inter-
stitial and 3) intracellular. Nevertheless, as shown in 
Fig. 1, where the glucose model scheme is represented, 
the number of spaces can be reduced to two or one, de-
pending on the permeability of the membranes in each 
compartment.   

In Sorensen’s formulation three models participate: 
glucose, insulin and glucagon. In order to obtain a 
mathematical representation, a mass balance is per-
formed in each physiological compartment. As a conse-
quence, twelve nonlinear ordinary differential equations 
are obtained for the glucose (three associated to non di-
mensional variables) and glucagon dynamics and seven 
linear ones for the insulin. It is important to note that the 
linearity in the insulin model is due to the fact that Dia-
betes type I is considered. This assumption not only in-
duces linearity, but also the decoupling with the other 
dynamics. Nonlinearity of the glucose and glucagon 
models arise due to the fact that metabolic rates are suit-
ably represented by hyperbolic tangent functions. 
Therefore, the sigmoidal nonlinearity commonly ob-
served in biological data correlations, can be depicted 
(Sorensen, 1985).  

The equations for glucose dynamics are: 
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Figure 1: Sorensen’s model glucose schematic. 
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Equations for insulin dynamics:  
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and the remaining four equations of Sorensen’s model: 
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The i parameters which appear in the equations are as 
follow: BU=70, RBCU=10, SU=20, PIR=0,  
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The indices and the model variable notation in the 
above equations are the same used in Parker et al. 
(2000) and Kovács et al. (2011).  
Indices:

A: hepatic artery  
B: brain 
BU: brain uptake  
C: capillary space  
G: glucose  
H: heart and lungs  
HGP: hepatic glucose production  
HGU: hepatic glucose uptake  
I: insulin 
IHGP: insulin effect on HGP  
IHGU: insulin effect on HGU  
IVI: intravenous insulin infusion  
K: kidney
KC: kidney clearance
KE: kidney excretion 
L: liver  
LC: liver clearance 
N: glucagon  
NHGP: glucagon effect on HGP
P: periphery(muscle/adipose tissue)
PC: peripheral clearance
PGU: peripheral glucose uptake
PIR: pancreatic insulin release
PNC: pancreatic glucagon clearance
PNR: pancreatic glucagon release (normalized)
RBCU: red blood cell uptake
S: gut (stomach/intestine)
SIA: insulin absorption into blood stream from subcuta-
neous depot
SU: gut uptake
T: tissue space 

Model variables notations: 
A: auxiliary equation state (dimensionless)  
B: fractional clearance (I, dimensionless; N, L/min)
G: glucose concentration (mg/dL)
I: insulin concentration (mU/L)
N: glucagon concentration (normalized, dimensionless)
Q: vascular plasma flow rate (L/min)
q: vascular blood flow rate (dL/min)
T: transcapillary diffusion time constant (min)
V: volume (L)
v: volume (dL)

: metabolic source or sink rate (mg/min or mU/min) 

A close analysis of the equations in Sorensen (1985) 
points out several inconsistencies with respect to the 
models presented in previous works. For example, in 
Kovács and Kulcsár (2007), Eqn. (4), variable AIHGU is
confused with AIHGP, there are no parenthesis in Eq. (3) 
and there are numerical differences in Eq. (7). Also in 
Eq. (5) the denominator should read T

P
I

P VT  instead of 
)(1 T

P
I

PVT . These last three errors are present also in 
Parker et al. (2000).  In Ruiz-Velázquez et al. (2004), in 
Eq. (2) instead of VP

C we find VP
T, which erroneously 

does not allow the simplification of this equation. Alt-
hough all of these errors can always be interpreted as 
misspellings, there is a common error in all these works 
with respect to Eq. (6). The variable which should be 
there is not IK

C, but IH
C instead. This error already ap-

pears in the original work (Sorensen, 1985) in the sec-
tion where the whole model is presented (pages 213-
222), but the correct variable can be identified through 
the analysis of page 134 over KC, which references 
Chamberlain and Stimmer (1967). The latter can be also 
ratified by the programming instructions of the model in 
page 535 of Sorensen (1985). 

III. CONTROLLER DESIGN  
The model has two inputs meal (meal disturbance) and 

IVI (insulin infusion) and one output GT
P (glucose con-

centration in the interstitial space-peripheral). The line-
arization is performed by gridding IVI from 0 to 35 
mU/min, assuming no disturbance ( meal=0 mg/min), 
which moves the steady state value of GT

P from 183 to 
46 mg/dl respectively. The Bode plots of this grid are 
represented in Fig. 2. The normoglycaemic condition 
which defines the nominal model is associated to a con-
centration of GT

P 87 mg/dl, produced when the insulin 
infusion is 22 mU/min. The similarities between the dif-
ferent plots denote their low level of nonlinearity, which 
allows to represent the nominal system as a LTI model, 
which can be reduced from 19 to 6 states with no major 
impact (see Fig. 3). The modeling error is covered by 
additive uncertainty (G-Gr). The difference between all 
previous curves and the reduced order nominal model is 
represented in Fig. 4. There, the uncertainty weight 
W (s) covers all additive errors at all frequencies. Note 
that this model order reduction is based on a balanced 
and truncated state-space realization of the LTI original 
model, whose precision is measured in terms of its 
Hankel singular values. It is a numerical method which 
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has no connection whatsoever with the reduced nonline-
ar dynamical model presented in Bergman (2003). The 
latter has reduced nonlinear dynamics but with a physio-
logical interpretation, as explained in section I.  

A brief explanation of the analysis and design meth-
odology follows (see Zhou et al., 1996; Sánchez Peña 
and Sznaier, 1998). The set  

1,WGG rG
known as the additive uncertainty model set, represents 
the physical phenomena. This dynamical description, 
instead of a single model, may include nonlinearities, 

Figure 2: Bode plots for different linearization points.

Figure 3: Reduced order vs. Nominal model.

Figure 4: Additive uncertainty and uncertainty weight.

Figure 5: Standard feedback loop.

high order unknown phenomena and time delays. Here 
Gr(s) is the reduced-order nominal model and W (s) rep-
resents the variation of model uncertainty with frequen-
cy. Nominal performance (NP) is defined as the 
weighted tracking error of the nominal model Gr(s)
measured in terms of its signal energy, for all perturba-
tions d in a set measured accordingly (see Fig. 5):  

1allfor 
222 dz  (8) 

Robust stability (RS) is the (internal) stability1 of all 
possible closed loops which combine a single controller 
K(s) with all elements of set G.  Finally Robust perfor-
mance (RP) is defined as the validity of condition (8) 
for all elements of set G. Standard Robust control re-
sults guarantee that these conditions are equivalent to: 

1)()(1 sSsWNP p
 (9) 

1)()()(1 sSsKsWRS  (10) 

1)(1 jTRP zd
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where S(s)=(I+GK)-1 is the sensitivity function, (.) is 
the structured singular value, Tzd(s) the transfer matrix 
between d and z=[z1   z2]T in Fig. 5 and  is a scalable 
variable. A sufficient condition to guarantee RP is the so 
called mixed-sensitivity condition, which can be used 
for controller design: 

)()()(
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The performance weight Wp(s) is selected in order to 
have a small steady state tracking error to follow the 
reference, almost like an integrator. The reference is 
based on the response of an average normal patient to a 
disturbance of 100 g of glucose at t=0. This response 
can be represented as the impulse response of a second 
order system (Ruiz-Velázquez et al., 2004):  
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with K=3900, wn=0.02 and =0.7. 
The design is performed via the H  optimal control 

method using Linear Matrix Inequality (LMI) optimiza-
tion and considering the following performance and un-
certainty weights, respectively: 
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The controller designed has order 10, and is reduced 
to order 8 also based on a balanced truncated method. 
The optimal performance/robustness value is =0.9038.
Robust stability and performance and Nominal perfor-
mance necessary and sufficient conditions are repre-
sented in Fig. 7, based on equations (9)–(11). 
1
Internal stability of a closed loop interconnection is equivalent to the 

input/output (I/O) stability of all possible I/O transfer functions in the 
loop.
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Figure 6: Meal perturbation. 

Figure 7: Performance and robustness analysis. 

Concerning the practical limitation of the insulin 
pumps of 100 mU/min, W  can also be considered as a 
weight to bound the control signal. As illustrated in sec-
tion IV, no further adjustments where necessary in order 
to limit the insulin injection to the previous bound. 

IV. SIMULATIONS 
For the simulations, a meal disturbance which contains 
100 g carbohydrate is considered and the gut absorption 
model presented in Lehmann and Deutsch (1992) is 
used. This model assumes that gastric emptying is a 
trapezoidal time limited signal with a maximum of 360 
mg/min, which inputs a first order filter 1/(60s+1), in 
order to represent the intestinal absorption. This results 
in signal meal illustrated by Fig. 6. In addition, noise 
was included as random errors in the measurement of 
the glucose concentration, with a band limited value of 
5 mg/dl. The time response of the closed-loop system 
with measurement noise, injected insulin levels bounded 
by 100 mU/min, the meal disturbance of 100 g of glu-
cose and delays (both in the insulin injection and glu-
cose measurements) due to the subcutaneous– intrave-
nous differences, can be seen in Fig. 8. 

The control action (insulin injection) plotted in Fig. 
9, shows that there was no saturation of the pump, 
which tends to a steady state value of 22 mU/min. This 
is due to the fact that the reference steady state is ap-
proximately 87 mg/dl. A fact that was also considered 
when simulating was that the reference is related to the 
blood concentration while the output is the interstitial 
glucose concentration.  Therefore, a 5 min. delay was 
added to the reference in order to assimilate this behav-
ior. This value was taken from the computed delay in 
these two values in Sorensen’s model. 

Figure 8: Reference and actual time responses. 

Figure 9: Insulin control. 

To close, it can be noted that the output is main-
tained between normal limits, although there is a hyper-
glycaemia peak. Nevertheless, the latter is considerably 
lower than 180 mg/dl and even lower, under similar 
analysis conditions, to the results obtained in Ruiz-
Velázquez et al. (2004) and Sánchez Peña et al. (2011). 
In fact the difference between the reference and the ac-
tual output is below 13 mg/dl. 

V. CONCLUSIONS AND FURTHER RESEARCH 
A detailed version of the Sorensen model has been pre-
sented, and a few errors have been detailed which ap-
pear in the previous literature. The fact that this model 
can be considered as LTI for practical purposes has 
been pointed out. As a consequence, a reduced order 
nominal model has been obtained and its difference with 
several linearization points has been covered by additive 
uncertainty. An H  optimal controller has been de-
signed which achieves the robustness and performance 
analysis. A closed-loop simulation has been presented, 
considering the existing delays due to the interstitial-
intravenous differences and measurement noise. The 8th 
order controller may be easy to achieve in a future real-
time implementation. 

This procedure proves useful for the Sorensen aver-
age patient, but most probably for large intra- and inter-
patient variations, a more elaborated controller-
nonlinear and/or time-varying, should be used. 
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