This Issue is Dedicated to
Professor Pedro Joseph-Nathan
on the Occasion of his 65th Birthday

ISSN 1934-578X (printed); ISSN 1555-9475 (online)
www.naturalproduct.us
INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation). Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2007 subscription price: US$1,395 (Print, ISSN# 1934-578X); US$1,095 (Web edition, ISSN# 1555-9475); US$1,795 (Print + single site online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Seasonal Phytochemical Variation and Antifungal Evaluation of Different Parts of *Epidendrum mosenii*

Patricia Walter Rosa	extsuperscript{a}, Marina da Silva Machado	extsuperscript{a}, Rivaldo Niero	extsuperscript{a}, Susana Zacchino	extsuperscript{b}, Maria de los Ángeles Gette	extsuperscript{b}, Franco Delle Monache	extsuperscript{a} and Valdir Cechinel Filho	extsuperscript{a,*}

	extsuperscript{a}Núcleo de Investigações Químico-Farmacêuticas (NIQFAR) e Programa de Mestrado em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), 88.302-202, Itajaí, SC, Brazil

	extsuperscript{b}Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacêuticas, Universidad Nacional de Rosario, Rosario, Argentina

cechinel@univali.br

Received: September 5th, 2007; Accepted: November 19th, 2007

This paper is dedicated to Professor P. Joseph-Nathan for his 65th birthday.

Epidendrum mosenii is a Brazilian medicinal plant, traditionally used to treat infections and pains. This study reports on the chemical composition and microbiological properties of different parts and in different seasons of this plant. Results demonstrate that 4,3',5'-trihydroxy-3-methoxy-dihydrostilbene (1), 4,5-dihydroxy-3,3-dimethoxy-dihydrostilbene (2) and pholidotin (3) were mainly present in the roots in all seasons, and the yield of mass extract increased their recovery in other parts, such as the stem and leaves for compounds (2) and (3), in summer and winter, respectively. The antifungal results indicate that compounds (1) and (2) have interesting activity against *Cryptococcus neoformans*, *Microsporum gypseum*, *Trychophyton rubrum* and *Trychophyton mentagrophytes* with MIC values between 62.5 and 125 µg/mL. Taken together, these results strongly suggest that the antifungal properties of *E. mosenii* are related, at least in part, to the presence of dihydrostilbenes 1 and 2, and this is useful for quality control of phytopreparations based on this plant, justifying the popular use of this plant to treat infections.

Keywords: *Epidendrum mosenii*, antifungal activity, seasonal variation, dihydrostilbenes.

Epidendrum mosenii Rchb (Orchidaceae), known as “orquidea-da-praia”, occurs frequently in the south of Brazil, where it is used for ornamental purposes and also in folk medicine, to treat a variety of disorders, including infections and pain [1]. Phytochemical and biological investigations of the *Epidendrum* genus are rare. However, studies conducted with the chloroform-methanol extract of *E. rigidum* inhibited radicle growth of *Amaranthus hypochondriacus*. Bioassay-guided fractionation of this extract furnished three phytotoxins, the stilbenes gigantol, batatasin III and 2,3-dimethoxy-9,10-dihydrophenanthrene-4,7-diol, together with some known flavonoids and triterpenoids [2]. Previous studies carried out in our laboratories with *E. mosenii* have demonstrated interesting biological properties, particularly antinociceptive effects in mice, related to the presence of steroids and triterpenes [3-5].

We have also previously reported that the methanolic extract of this plant significantly lowered the blood glucose of alloxan-induced diabetic rats, but it was not effective in inhibiting the contractile response elicited by acetylcholine on Guinea-pig ileum and rat duodenum [6,7]. The importance of this plant from both the phytochemical and medicinal points of view led us to deepen the study of its chemical composition and its biological properties.

In a previous preliminary study, some extracts and a fraction containing a mixture of dihydrostilbenes from *E. mosenii* exhibited antifungal activity [5], and we report here the antifungal properties of these
compounds against a panel of human opportunistic pathogenic fungi and the seasonal variation of the active compounds in the different parts of *E. mosenii* using HPLC analyses.

DCM extracts of different parts of *E. mosenii* were analyzed by HPLC in order to quantify the amount of 4,3',5'-trihydroxy-3-methoxy-dihydrostilbene (1), 4,5-dihydroxy-3,3-dimethoxy-dihydrostilbene (2), and pholidotin (3) in each extract, since compounds 1 and 2 exhibited antifungal action and compound 3 is one of the main antinociceptive agents of this plant [4]. A typical chromatogram showed retention times of 28.6, 31.0 and 35.9 (±1) minutes for compounds 1, 2 and 3, respectively.

The compound concentrations were determined using the mean area values and the linear regression obtained throughout the calibration curve for each standard compound. Good linearity was obtained for all the compounds, with \(r^2 \) values of 0.997 (1), 0.999 (2) and 0.978 (3), respectively. The amounts (1-3) were calculated in different seasons based on the yield (in mg) of extract from 100 g of dried plant part examined (Figures 1-3).

We have determined the MIC of compounds 1 and 2, previously obtained from *E. mosenii* stems, against several opportunistic pathogenic fungi. The antifungal evaluations of these compounds showed that both compounds exert antifungal properties, especially against dermatophytes. As can be seen in Table 2, both compounds were effective against *C. neoformans*, *M. gypseum*, *T. rubrum* and *T. mentagrophytes*, with MIC values between 62.5 – 125.0 \(\mu \)g/mL.

In summary, our results add important information regarding the seasonal variation of the most important compounds related to the biological properties of *E. mosenii*. In the case of its antifungal properties, we determined that the roots in autumn possess a high concentration of stilbenes 1 and 2, both compounds responsible for the antifungal properties. In turn, the stem possesses a good concentration of stilbene 2, but not of 1, except in winter. Regarding the steroidal compound 3, which is responsible for the antinociceptive properties, it is present in the highest amounts in roots in all seasons, but mainly in winter. In contrast, the leaves possess a high concentration of 3, similar to that observed in the roots, but only in summer. These findings add important data for the rational use of this plant in traditional medicine and open new avenues for continuing its study, which will be of a great profit for the Brazilian population health care.

Figure 1: Concentrations of 1 in different parts and seasons of *E. mosenii* (mg/100g dried plant).

Figure 2: Concentrations of 2 in different parts and seasons (mg/100g of dried plant).

Figure 3: Concentrations of 3 in different parts and seasons (mg/100g of dried plant).
Experimental

Plant material: Different parts (leaves, stems, roots and flowers) of *E. mosenii* were collected at Canto do Morcego, Itajai, Santa Catarina State, Brazil, during different seasons, from May 2002 to February 2003. The material was authenticated by Prof. Dr Ademir Reis (Herbário Barbosa Rodrigues (HBR), Itajai, SC) and a voucher specimen was deposited in the same herbarium under number VC Filho 003.

Preparation of the samples: The different parts of the plant (10 g each) were separately extracted three times, with dichloromethane (200 mL) at room temperature. After evaporation of solvent under reduced pressure, the extracts were dried in vacuum with P₂O₅. Pure 4,3′,5′-trihydroxy-3-methoxy-dihydrostilbene (1), 4,5-dihydroxy-3,3-dimethoxy-dihydrostilbene (2) and pholidotin (24-methylene-cycloartanyl-p-hydroxy-cis-cinnamate) (3), were obtained from stems of *E. mosenii*, as previously described [1,8].

Chromatographic conditions: The HPLC system employed consisted of Waters model equipment consisting of a pump 600-F, a 20 μL manual injection loop (Rheodyne 7725i), followed by a line degasser (AF) and equipped with a UV-Vis detector (PDA 2996). A C₁₈ column (Phenomenex, 25 cm, 4.6 mm i. d.; 0.5 μm film thickness and 100 A) was used, at room temperature. The solvent system used was a gradient-mixture of acetonitrile/buffer phosphate (o-phosphoric acid 0.05%, pH 3.5) from 2:98 v/v until 15:85 v/v, with a flow rate of 0.7 mL/min. The chromatograms were examined at a wavelength range of 200-400 nm. The HPLC grade solvents used were filtered (0.2 μm, Schleicher & Schuell) and degassed by sonication before use. All the extracts were analyzed in triplicate. The sample (10 mg/mL) in methanol/water mixture (20:80) was filtered through a 0.45 μm membrane filter (Millex, Millipore) and directly injected using a 100 μL Hamilton syringe.

Quantitative analysis: The quantification of 4,3′,5′-trihydroxy-3-methoxy-dihydrostilbene (1), 4,5-dihydroxy-3,3-dimethoxy-dihydrostilbene (2) and pholidotin (3) was performed throughout the external calibration method. The standard compounds were previously obtained from *E. mosenii* according to Oliveira (1999). The purity (99%) and authenticity were characterized by melting-point determinations and spectroscopic techniques, including, IR, ¹H NMR and ¹³C NMR. The calibration curves were constructed using the conditions described above, with standard samples within the concentration range: 6.6 – 0.12 mg/mL for compound 1, 4.0 – 0.05 mg / mL for compound 2 and 5.0 - 0.88 mg/mL for compound 3. The wavelength use for quantification of compounds 1, 2 and 3 were 223.0, 228.0 and 255.0 nm, respectively. These were diluted in methanol: water (20:80) and then 20 μL was manually injected, in triplicate. The peaks belonging to compounds 1, 2, and 3 were identified by comparison with the retention times and absorbance of standard solutions injected under the same conditions. The calibration curves were obtained by linear regression of mean areas integrated using Empower Pro software.

Antifungal assays: For antifungal evaluation, standardized strains from the American Type Culture Collection (ATCC), Rockville, MD, USA, and Centro de Referencia en Micología CEREMIC (C), Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531-(2000)-Rosario, Argentina were used: Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763, Cryptococcus neoformans ATCC 32264, Aspergillus flavus ATCC 9170, A. fumigatus ATTC26934, A. niger ATCC 9029, Trichophyton rubrum C110, T. mentagrophytes ATCC 9972, and Microsporum gypseum C115. Strains were grown on Sabouraud-chloramphenicol agar slants for 48 h at 30°C, maintained on slopes of Sabouraud-dextrose agar (SDA, Oxoid) and subcultured every 15 days to prevent pleomorphic transformations. Inoculate of cell or spore

Table 2: Antifungal activity of compounds 1 and 2 from *E. mosenii* against fungi, expressed as minimum inhibitory concentration (μg/mL).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Ca</th>
<th>Ct</th>
<th>Sc</th>
<th>Cn</th>
<th>A1</th>
<th>Afl</th>
<th>An</th>
<th>Mg</th>
<th>Tr</th>
<th>Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>125</td>
<td>>250</td>
<td>>250</td>
<td>125</td>
<td>62.5</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>2</td>
<td>>250</td>
<td>>250</td>
<td>>250</td>
<td>125</td>
<td>>250</td>
<td>>250</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

1 = 4,3′,5′-trihydroxy-3-methoxy-dihydrostilbene; 2 = 4,5-dihydroxy-3,3-dimethoxy-dihydrostilbene; Ca = Candida albicans; Ct = Candida tropicalis, Sc = Saccharomyces cerevisiae, Cn = Cryptococcus neoformans, Afl = Aspergillus fumigatus and Aspergillus niger, Mg = Microsporum gypseum, Tr = Trychophyton rubrum, Tm = Trychophyton mentagrophytes.
suspensions were obtained according to reported procedures and adjusted to 1-5 x10^3 cells/spores with colony forming units (CFU) /mL (NCCLS).

Antifungal susceptibility testing: The Minimum Inhibitory Concentration (MIC) of each extract or compound was determined using broth micro dilution techniques according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI, formerly National Committee for Clinical Laboratory and Standards, NCCLS) for yeasts (M27-A2) and for filamentous fungi (M 38 A). MIC values were determined in RPMI-1640 (Sigma, St Louis, Mo, USA), buffered to pH 7.0 with MOPS. Microtiter trays were incubated at 35°C for yeasts and hialohyphomycetes and at 28-30°C for dermatophyte strains, in a moist, dark chamber. The MICs were recorded visually at 48 h for yeasts, and at an interval according to the control fungal growth, for the rest of the fungi.

For the assay, stock solutions of pure compounds were diluted twice with RPMI from 250 – 0.98 μg/mL (final volume = 100 μL) obtaining a final DMSO concentration of ≤ 1%. A volume of 100 μL of inoculum suspension was added to each well, with the exception of the sterility control, in which sterile water was added instead. Ketoconazole, Terbinafine, and Amphotericin B were used as positive controls. Endpoints were defined as the lowest concentration of drug resulting in total inhibition (MIC_{100}) of visual growth, compared with the control wells containing no antifungal growth.

Acknowledgments - The authors are grateful to FAPESC-SC-SC, CYTED/RIBIOFAR RT 0284 and CNpq/Brazil for their financial support. MAG acknowledges CONICET for the fellowship. SZ thanks ANPCyT PICT R 260 for financial support.

References

Searching for Natural Bioactive Compounds in Four *Baccharis* species from Bolivia
Marcelo Dávila, Ingrid Loayza, Daniel Lorenzo and Eduardo Dellacassa

In vitro Antiprotozoal Activity and Chemical Composition of *Ambrosia tenuifolia* and *A. scabra* Essential Oils
Valeria P. Sülsen, Silvia I. Cazorla, Fernanda M. Frank, Paola M. R. Di Leo Lira, Claudia A. Anesini, David GutierrezYapu, Alberto GiménezTurba, Arnaldo L. Bandoni, Emilio L. Malchiodi, Liliana V. Muschietti and Virginia S. Martino

Composition and Antioxidant activity of Essential Oils of *Lippia origanoides* H.B.K. grown in Colombia
Elena Stashenko, Carlos Ruiz, Amner Muñoz, Martha Castañeda and Jairo Martínez

Review /Account

Germacrone: Occurrence, Synthesis, Chemical Transformations and Biological Properties
Alejandro F. Barrero, M. Mar Herrador, Pilar Arteaga and Julieta V. Catalán

Terpenoids in Grapes and Wines: Origin and Micrometabolism during the Vinification Process
Francisco M. Carrau, Eduardo Boido and Eduardo Dellacassa

Toxic Chemical Compounds of the Solanaceae
Alicia B. Pomilio, Elvira M. Falzoni and Arturo A. Vitale

Synthesis of Marine Indole Alkaloids from *Flustra foliacea*
Martha S. Morales-Ríos and Oscar R. Suárez-Castillo

Monoaminergic, Ion Channel and Enzyme Inhibitory Activities of Natural Aporphines, their Analogues and Derivatives
Bruce K. Cassels and Marcelo Asencio
Screening Study of Potential Lead Compounds for Natural Product Based Fungicides from Juniperus lucayana
Yarelis Ortíz Nuñez, Iraida Spengler Salabarria, Isidro G. Collado and Rosario Hernández-Galán

Inhibitory Activity of α,β-Unsaturated Lactones on Histamine Release from Rat Peritoneal Mast Cells
Alicia B. Penissi, María I. Rudolph, Mariano E. Vera, María L. Mariani, Juan P. Cenial, Carlos E. Tonn, Oscar S. Giordano and Ramón S. Piés

Reactivity of Several Reactive Oxygen Species (ROS) with the Sesquiterpene Cacalol
Manuel Jiménez-Estrada, Ricardo Reyes-Chilpa, Arturo Navarro-Ocaña and Daniel Arrieta-Báez

Ring Contraction of Gummiferolic Acid, a Diterpene Isolated from Margotia gummifera, Leading to Atisagibberellins
Josefa Anaya, Juan José Fernández, Manuel Grande, Justo Martíñez and Pascual Torres

A Convenient Synthesis of the Central Core of Helioporins, seco-Pseudopterosins and Pseudopterosins via BCA-Annulation Sequence
Gema Esteban, Rocío Rincón, Aurelio G. Csáký and Joaquín Plumet

Role of Prostaglandins, Nitric oxide, Sulphhydrals and Capsaicin-sensitive Neurons in Gastroprotection of Stigmasterol and β-Sitosterol
María Elena Sánchez-Mendoza, Jesús Arrieta and Andrés Navarrete

New Guanidine Alkaloids from the Leaves of Verbesina peraffinis
Reinaldo S. Compagnone, Jhorman Bermudez, Glorymar Ibáñez, Beth Diaz, Maria R. Garrido, Anita Israel and Alírica I. Suárez

Aporphine Alkaloids from Guatteria stenopetala (Annonaceae)
Maria Rodríguez, Elsy Bastidas, Mildred Rodríguez, Edgar Lucena, Aníbal Castillo and Masahisa Hasegawa

Effects of Simple and Angular Chromones on Tumor Cell Respiration
Ramiro Araya-Maturana, Jorge Heredia-Moya, Oscar Donoso-Tauda, Mario Vera, Jorge Toledo Hernández, Mario Pavi, Hernán Pessoa-Mahana, Boris Weiss-López and Jorge Ferreira

Effect on Hantavirus Replication of Resins from Heliotropium species and Other Selected Compounds
René Torres Gaona, Héctor Galeno Araya and Brenda Modak Canobra

Total Synthesis of 5-(5-Ethenyl-2-Methoxyphenyl)-3-Furancarboxaldehyde and Related Compounds
Leticia León–Galeana and Luis Ángel Maldonado G.

Seasonal Phytochemical Variation and Antifungal Evaluation of Different Parts of Epidendrum mosenii
Patrícia Walter Rosa, Marina da Silva Machado, Rivaldo Niero, Susana Zacchino, Maria de los Ángeles Gette, Franco Delle Monache and Valdir Cechinel Filho

Acyl Sucroses from Salpichroa origanifolia
Carmelo Dutra, María Verónica Cesio, Patrick Moyna and Horacio Heinzen

Influence of N-Deacetylation Conditions on Chitosan Production from α-Chitin
Gemma Galed, Erika Diaz, Francisco M. Goycoolea and Angeles Heras

Continued inside back cover