
Relational Mathematics for Relative Correctness
⋆

Jules Desharnais1, Nafi Diallo2, Wided Ghardallou3, Marcelo F. Frias4, Ali
Jaoua5, and Ali Mili2

1 Université Laval, Quebec City, Canada
2 New Jersey Institute of Technology, Newark, NJ, USA

3 University of Tunis El Manar, Tunis, Tunisia
4 Instituto Tecnológico de Buenos Aires (ITBA), and CONICET, Argentina

5 Qatar University, Qatar
jules.desharnais@ift.ulaval.ca, ncd8@njit.edu,

wided.ghardallou@gmail.com, mfrias@itba.edu.ar, jaoua@qu.edu.qa,

ali.mili@njit.edu

Abstract. In earlier work, we had presented a definition of software
fault as being any feature of a program that admits a substitution that
would make the program more-correct. This definition requires, in turn,
that we define the concept of relative correctness, i.e., what it means
for a program to be more-correct than another with respect to a given
specification. In this paper we broaden our earlier definition to encom-
pass non-deterministic programs, or non-deterministic representations of
programs; also, we study the mathematical properties of the new defini-
tion, most notably its relation to the refinement ordering, as well as its
algebraic properties with respect to the refinement lattice.

Keywords

Absolute correctness, relative correctness, refinement ordering, refinement lat-
tice, faults, fault removal.

1 Introduction

1.1 What is a Program Fault?

Our work stems from trying to define what is a software fault; usually we char-
acterize a fault at some location in a program as a feature of the program that
differs from what we believe it should be at that location. But this characteriza-
tion presumes that we know with great precision and great certainty what the
program ought to be doing at every location throughout its source code. Needless
to say, such a presumption is unrealistic, since it is difficult in general to have a

⋆ Acknowledgement: This publication was made possible by a grant from the Qatar
National Research Fund, NPRP04-1109-1-174. Its contents are solely the responsi-
bility of the authors and do not necessarily represent the official views of the QNRF.

precise, complete, vetted specification of the overall software product, much less
a specification of every small part thereof. Also, it is very common to find cases
where the same faulty behavior of the program can be traced back to more than
one possible feature, involving more than one location in the source code. In [8]
we had defined a fault in a software product as any feature (be it a lexical token,
a statement, a condition, a contiguous block, a set of non-contiguous statements,
etc) that admits a substitute that would make the program strictly more-correct,
in a sense to be defined. Such a definition, once we decide what it means to be
more-correct, has the advantage that it does not depend on a detailed knowledge
of the design of the software product, and that it characterizes faults without
making any assumption about whether other parts of the program are, or are
not, correct. It is worth noting that this definition of a fault, like any definition
we could think of, is based on an implicit level of granularity of the program; this
level of granularity corresponds to the degree of precision with which we want
to isolate faults. At one extreme in the scale of granularity, we could consider
lexical tokens; at the opposite extreme, we could consider the whole program
as a monolith; most programmers think of faults at the granularity level of an
assignment statement or equivalent syntactic units.

1.2 Deterministic and Non-deterministic Programs

In [2] we briefly discuss the properties of relative correctness, and its implica-
tions for software engineering processes, such as software testing, software repair,
software faultiness analysis and in [3] we discuss the implication of relative cor-
rectness for software design. In all of our discussions in [2, 3, 8], we consider
deterministic programs. In this paper we wish to lift the hypothesis of deter-
minacy, and define relative correctness in the broader context of possibly non-
deterministic programs. One may want to ask: why do we need to define relative
correctness for non-deterministic programs if most programming languages of
interest are deterministic? There are several reasons why we may want to do so:

– We may want to apply the concept of relative correctness, not only to fin-
ished software products, but also to partially defined intermediate designs
(as appear in a stepwise refinement process).

– Non-determinacy is a convenient tool to model deterministic programs whose
detailed behavior is difficult to capture, unknown, or irrelevant to a particular
analysis.

– We may want to reason about the relative correctness of programs without
having to compute their functions is all their minute details.

As an illustration, we consider the space S defined by the following declarations:

a: array [1..N] of itemtype; x: itemtype;
low, high: 0..N+1; found: boolean;

where itemtype is some data type that represents an ordered set, and we con-
sider the following specification R and program P:

R = {(s, s′)|found′ = (∃i : 1 ≤ i ≤ N : x = a[i])},

2

P: {low=2; high=N; found=false;
while (low<=high)

{indextype m=(low+high)/2;
if (x<a[m]) {high=m-1;}
else if (x>a[m]) {low=m+1;}

else {found=true; low=m+1; high=m-1;}}}

We would like to think of the statement low=2 as a fault, and that replacing
this statement by low=1 would produce a more-correct program; but to prove
these claims using the original definition of relative correctness, we would have
to compute the function of this program, i.e. determine the final values of all
the program variables as a function of the initial values. But computing the
final values of variables low and high is at the same time very difficult (as they
depend on the position of x with respect to the array cells) and rather irrelevant
(as they play an auxiliary role with respect to the function of the program).
The interest of non-deterministic relations is that they enable us to focus on
relevant functional aspects of a program, at the exclusion of complex and/or
uninteresting details.

In section 2 we introduce some relational definitions and notations, which
we use in section 3 to introduce a definition of relative correctness for non-
deterministic programs; and in sections 4 and 5 we explore the properties of
relative correctness, most notably its relation to the refinement ordering (section
4) and its relation to the refinement lattice (section 5). Finally, in section 6 we
summarize our findings, compare them to related work, and sketch directions
for future research.

2 Mathematics for Program Analysis

2.1 Relational Notations

In this section, we introduce some elements of relational mathematics that we
use in the remainder of the paper to carry out our discussions. We assume the
reader familiar with relational algebra, and we generally adhere to the definitions
and notations of Brink et al. [1]. Dealing with programs, we represent sets us-
ing a programming-like notation, by introducing variable names and associated
data type (sets of values). For example, if we represent set S by the variable
declarations

x : X ; y : Y ; z : Z,
then S is the Cartesian product X × Y × Z. Elements of S are denoted in
lower case s, and are triplets of elements of X , Y , and Z. Given an element
s of S, we represent its X-component by x(s), its Y -component by y(s), and
its Z-component by z(s). When no risk of ambiguity exists, we may write x to
represent x(s), and x′ to represent x(s′), letting the references to s and s′ be
implicit.

A relation on S is a subset of the Cartesian product S × S; given a pair
(s, s′) in R, we say that s′ is an image of s by R. Special relations on S include

3

the universal relation L = S × S, the identity relation I = {(s, s′)|s′ = s},
and the empty relation φ = {}. Operations on relations (say, R and R′) include
the set theoretic operations of union (R ∪ R′), intersection (R ∩ R′), difference
(R \R′) and complement (R). They also include the relational product, denoted
by (R ◦ R′), or (RR′, for short) and defined by:

RR′ = {(s, s′)|∃s′′ : (s, s′′) ∈ R ∧ (s′′, s′) ∈ R′}.

The power of relation R is denoted by Rn, for a natural number n, and defined
by R0 = I, and for n > 0, Rn = R ◦ Rn−1. The reflexive transitive closure of
relation R is denoted by R∗ and defined by R∗ = {(s, s′)|∃n ≥ 0 : (s, s′) ∈ Rn}.
The converse of relation R is the relation denoted by R̂ and defined by

R̂ = {(s, s′)|(s′, s) ∈ R}.

Finally, the domain of a relation R is defined as the set dom(R) = {s|∃s′ :
(s, s′) ∈ R}, and the range of relation R is defined as the domain of R̂.

A relation R is said to be reflexive if and only if I ⊆ R, antisymmetric if and
only if (R∩ R̂) ⊆ I, asymmetric if and only if (R∩ R̂) = φ, and transitive if and
only if RR ⊆ R. A relation is said to be a partial ordering if and only if it is
reflexive, antisymmetric, and transitive. Also, a relation R is said to be total if
and only if I ⊆ RR̂, and a relation R is said to be deterministic (or: a function)
if and only if R̂R ⊆ I. In this paper we use a property to the effect that two
functions f and f ′ are identical if and only if f ⊆ f ′ and f ′L ⊆ fL. A relation R
is said to be a vector if and only if RL = R; a vector on space S is a relation of
the form R = A×S, for some subset A of S; we use vectors to represent subsets
of S, and we may by abuse of notation write s ∈ R to mean s ∈ A; in particular,
we use the product RL as a relational representation of the domain of R.

2.2 A Refinement Calculus

Throughout this paper, we interpret relations as program specifications or as
programs and we may use the same symbol to refer to a program and to the
relation that the program defines on its space. Given two relations R and R′,
we say that R′ refines R (abbrev: R′ ⊒ R) if and only if: RL ∩ R′L ∩ (R ∪
R′) = R, where L is the universal relation and concatenation of relation names
represents the product of the relations. We find that this condition is equivalent
to: RL ⊆ R′L ∧ RL ∩ R′ ⊆ R. We also find that the refinement relation is
reflexive, antisymmetric and transitive, and that it has lattice-like properties, in
the following sense:

– Any two relations R and R′ have a greatest lower bound, which we denote
by R ⊓ R′ and to which we refer as the meet of R and R′. Also, we find:
R ⊓ R′ = RL ∩ R′L ∩ (R ∪ R′).

– Given two relations R and R′, we define the join of R and R′ (denoted by
R - R′) as:

(RL ∩ R′) ∪ (R′L ∩ R) ∪ (R ∩ R′).

4

– Two relations R and R′ admit a least upper bound if and only if they satisfy
the condition RL∩R′L = (R∩R′)L, which we call the consistency condition.

– Any two relations that satisfy the consistency condition admit a least upper
bound, which is their join. In other words, we can always compute the join
of two relations, but it equals their least upper bound only if they meet the
consistency condition.

Let R and P be two relations on space S; we say that P (interpreted as a
possibly non-deterministic program) is correct with respect to R (interpreted as
a specification) if and only if P refines R. We have a proposition (due to [9]) to
the effect that if P is deterministic, then P is correct with respect to R if and
only if (R ∩ P)L = RL.

3 Relative Correctness of Non-Deterministic Programs

3.1 Background

In this section, we briefly summarize our main findings with regards to determin-
istic programs, so as to convey our expectations with respect to non-deterministic
programs. All our discussions about correctness, relative correctness, and faults,
refer to a relational specification, which we usually denote by R. We denote
candidate programs by P and P ′, and for the sake of convenience we make no
distinction between a program (as a syntactic representation) and the function
or relation that the program defines on its space. Given a program P and a spec-
ification R, we find that the domain of R ∩ P represents the set of initial states
for which P delivers an output that is considered correct with respect to R; we
refer to this set as the competence domain of P with respect to R. A (determin-
istic) program P ′ is said to be more-correct than a (deterministic) program P
with respect to specification R if and only if it has a larger competence domain;
we denote this by, P ′ ⊒R P . Then we define a fault f in a program P as any
feature of the program that admits a substitute that would make the program
strictly more-correct (i.e. yield a strictly larger competence domain). Among the
most salient properties we have found for the property of relative correctness,
we cite:

– Relative correctness is reflexive and transitive but not antisymmetric. Re-
flexivity and transitivity stem from the reflexivity and transitivity of set
inclusion, as it applies to competence domains. Relative correctness is not
antisymmetric because programs may have the same competence domain and
still be distinct, due to the non-determinacy of specifications. This property
holds for non-deterministic programs (and the non-deterministic version of
relative correctness), as we see in proposition 3.3.

– Relative correctness culminates in absolute correctness. A correct program
with respect to specification R is more-correct with respect to R than any
candidate program. Indeed, since we find (section 2.2) that a correct P sat-
isfies the condition dom(R ∩ P) = dom(R), then a correct program has a

5

maximal competence domain. This property holds for non-deterministic pro-
grams (and the non-deterministic version of relative correctness), as we see
in proposition 4.2.

– Relative correctness logically implies enhanced reliability. We find that if a
program is more-correct than another, then it is necessarily more reliable.
Indeed, if we measure reliability by the probability of successful execution
modulo some probability distribution θ of input states, then the probabil-
ity of successful execution of a program P modulo probability distribution
θ is the integral (or for discrete models, the sum) of θ over the compe-
tence domain of P ; clearly, the larger the competence domain the higher
the probability. We do not prove that this property survives the transition
to non-deterministic programs, though we suspect that it does, modulo an
angelic interpretation of competence domain (whereby a non deterministic
program is considered to behave correctly as soon as it provides at least one
correct outcome with respect to R).

– Relative Correctness and Refinement. One of the most interesting properties
we have found about relative correctness is its relationship to refinement.
In [8], we find that a program P ′ refines a program P if and only if P ′ is
more-correct than P with respect to any specification. Formally,

P ′ ⊒ P ⇔ (∀R : P ′ ⊒R P).

This property does not hold for non-deterministic programs (and the non-
deterministic version of relative correctness), but we have an interesting sub-
stitute in proposition 4.3.

3.2 Definitions

The purpose of this section is to define the concept of relative correctness for
arbitrary programs, that are not necessarily deterministic.

In seeking to generalize the property of relative correctness to non-deterministic
programs, we consider two requirements: first, the formula for non-deterministic
programs must be equivalent to the formula we already have for determinis-
tic programs when the programs are deterministic; second, we wish to preserve
the properties we have listed above, most notably the relation between relative
correctness and refinement. We submit the following definition.

Definition 3.1. We let R be a specification on set S and we let P and P ′ be
(possibly non-deterministic) programs on space S. We say that P ′ is more-correct
than P with respect to R (abbrev: P ′ ⊒R P) if and only if:

(R ∩ P)L ⊆ (R ∩ P ′)L ∧ (R ∩ P)L ∩ R ∩ P ′ ⊆ P.

Interpretation: P ′ is more-correct than P with respect to R if and only if it
has a (n equal or) larger competence domain, and for the elements in the com-
petence domain of P , program P ′ has (the same or) fewer images that violate R

6

than P does. Even though a more appropriate name for this relation is at-least-
as-correct-as, we use the shorter version more-correct-than. As an illustration,
we consider the set S = {0, 1, 2, 3, 4, 5, 6, 7} and we let R, P and P ′ be defined
as follows:

R = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4)
(4, 3), (4, 4), (4, 5), (5, 4), (5, 5), (5, 6), (6, 5), (6, 6), (6, 7), (7, 6), (7, 7)}

P = {(0, 2), (0, 3), (1, 3), (1, 4), (2, 0), (2, 1), (3, 1), (3, 2), (4, 2), (4, 3), (5, 3),
(5, 4), (6, 3), (6, 4), (7, 4), (7, 5)}

P ′ = {(0, 2), (0, 3), (1, 2), (1, 3), (2, 0), (2, 3), (3, 1), (3, 4), (4, 2), (4, 5), (5, 3),
(5, 6), (6, 4), (6, 7), (7, 4), (7, 5)}

From these definitions, we compute:
R ∩ P = {(2, 1), (3, 2), (4, 3), (5, 4)}, (R ∩ P)L = {2, 3, 4, 5}× S,
R ∩ P ′ = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)}
(R ∩ P ′)L = {1, 2, 3, 4, 5, 6}× S
(R ∩ P)L ∩ P ′ = {(2, 0), (2, 3), (3, 1), (3, 4), (4, 2), (4, 5), (5, 3), (5, 6)}
(R ∩ P)L ∩ R ∩ P ′ = {(2, 0), (3, 1), (4, 2), (5, 3)}

We leave it to the reader to check that the two clauses of Definition 3.1 are
satisfied. Figure 1 represents relations R, P and P ′ on space S. Program P ′ is
more-correct than program P with respect to R because it has a larger compe-
tence domain ({1, 2, 3, 4, 5, 6} vs. {2, 3, 4, 5}, highlighted in Figure 1) and because
on the competence domain of P , program P ′ generates no incorrect output unless
P also generates it.

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0
R

✲

✲

✲

✲

✲

✲

✲

✲

✘✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳③

P

✟✟✟✟✟✟✟✟✟✯
✟✟✟✟✟✟✟✟✟✯

✚
✚

✚
✚

✚
✚

✚
✚

✚❃

✚
✚

✚
✚

✚
✚

✚
✚

✚❃

✘✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✘✿

✟✟✟✟✟✟✟✟✟✯
✟✟✟✟✟✟✟✟✟✯
✟✟✟✟✟✟✟✟✟✯
✟✟✟✟✟✟✟✟✟✯

❩
❩

❩
❩

❩
❩

❩
❩

❩⑦

❩
❩

❩
❩

❩
❩

❩
❩

❩⑦

❍❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❍❥

P ′

✟✟✟✟✟✟✟✟✟✯
✟✟✟✟✟✟✟✟✟✯
✟✟✟✟✟✟✟✟✟✯
✟✟✟✟✟✟✟✟✟✯
✟✟✟✟✟✟✟✟✟✯
✟✟✟✟✟✟✟✟✟✯

✚
✚

✚
✚

✚
✚

✚
✚

✚❃

❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳③

❩
❩

❩
❩

❩
❩

❩
❩

❩⑦

❍❍❍❍❍❍❍❍❍❥
❍❍❍❍❍❍❍❍❍❥

✞

✝

☎

✆

✞

✝

☎

✆

Fig. 1. Relative Correctness for Non-Deterministic Programs: P ′ ⊒R P .

7

As a second illustration, we consider the binary search program introduced
above, and we capture its semantics by the following relation:

P = {(s, s′)|found′ = (∃i : 2 ≤ i ≤ N : x = a[i])}.

We let P ′ be the program obtained from P by replacing low=2 by low=1, and
we find:

P ′ = {(s, s′)|found′ = (∃i : 1 ≤ i ≤ N : x = a[i])}.

We find easily that P ′ is more-correct than P with respect to R (where R is the
search specification introduced in section 1.2): the first clause stems vacuously
from RL = P ′L and RL = L, and the second clause stems vacuously from
R = P ′ (whence R ∩ P ′ = φ).

3.3 Properties

The first property we want to check about this definition is that it generalizes
the definition given in [8], which provides that a deterministic program P ′ is
more-correct than a deterministic program P with respect to a specification R
if and only if (R ∩ P)L ⊆ (R ∩ P ′)L. We have the following proposition.

Proposition 3.2. Let R, P and P ′ be relations on S. If P ′ is deterministic
then the conditions (R∩P)L ⊆ (R∩P ′)L and P ′ ⊒R P are logically equivalent.

Proof. The condition P ′ ⊒R P clearly implies (R ∩ P)L ⊆ (R ∩ P ′)L, hence
we focus our attention on the reverse implication. We let P ′ be a function, we
assume that P and P ′ satisfy the condition (R ∩ P)L ⊆ (R ∩ P ′)L, and we aim
to prove the condition (R ∩ P)L ∩ P ∩ P ′ ⊆ P . We proceed as follows:

(R ∩ P)L ∩ R ∩ P ′ ⊆ P
⇐ {since (R ∩ P)L ⊆ (R ∩ P ′)L}

(R ∩ P ′)L ∩ R ∩ P ′ ⊆ P
⇐ {Boolean algebra}

(R ∩ P ′)L ∩ P ′ ⊆ R
⇐ {Dedekind}

(R ∩ P ′ ∩ P ′L)(L ∩ ̂(R ∩ P ′)P ′) ⊆ R
⇐ {Boolean algebra}

(R ∩ P ′) ̂(R ∩ P ′)P ′ ⊆ R
⇐ {Boolean algebra, monotonicity}

RP̂ ′P ′ ⊆ R
⇐ {P ′ is deterministic, hence P̂ ′P ′ ⊆ I}

R ⊆ R,
which is a tautology. qed

As we see, this proof assumes that P ′ is deterministic but imposes no con-
dition on P : indeed the second clause in the definition of relative correctness
imposes a condition restricting the possible incorrect behavior of P ′ on the com-
petence domain of P , where P ′ is known to behave correctly (since it has a

8

larger competence domain than P). Because P ′ is deterministic, it assigns only
one image to any element of the competence domain of P , which is known to be
a correct image; hence there is no scope for P ′ to associate an incorrect image.
So that if P ′ satisfies the first clause of the definition of relative correctness
and is deterministic, then it necessarily satisfies the second clause, regardless of
relation P .

Proposition 3.3. The relative correctness relation with respect to a given spec-
ification is reflexive and transitive.

Proof. Reflexivity is trivial. To prove transitivity, we consider relations R, P ,
P ′ and P ′′, and we assume that P ′ is more-correct than P with respect to R,
and that P ′′ is more-correct than P ′ with respect to R. The condition (R ∩
P)L ⊆ (R ∩P ′′)L stems readily from the hypothesis. We focus on the condition
(R ∩ P)L ∩ R ∩ P ′′ ⊆ P , which we prove as follows:

(R ∩ P)L ∩ R ∩ P ′′ ⊆ P
⇔ {Hypothesis: P ′ ⊒R P}

(R ∩ P)L ∩ (R ∩ P ′)L ∩ R ∩ P ′′ ⊆ P
⇔ {Hypothesis: P ′′ ⊒R P ′}

(R ∩ P)L ∩ (R ∩ P ′)L ∩ R ∩ P ′′ ∩ P ′ ⊆ P
⇐ {Boolean algebra}

(R ∩ P)L ∩ R ∩ P ′ ⊆ P,
which holds, by hypothesis. qed

Since ⊒R is reflexive and transitive, it is a preorder; we use this preorder to
define an equivalence relation, as follows:

Definition 3.4. Two relations P and P ′ are said to be equally correct with
respect to specification R (abbrev: P ≡R P ′) if and only if P ⊒R P ′ and P ′ ⊒R P .

For deterministic relations P and P ′, equal correctness simply means having the
same competence domain; the following proposition characterizes equal correct-
ness for arbitrary (not necessarily deterministic) relations.

Proposition 3.5. Let R, P and P ′ be arbitrary relations on space S. Then

(P ≡R P ′) ⇔ (R ∩ P)L = (R ∩ P ′)L ∧ (R ∩ P)L∩R ∩ P = (R ∩ P ′)L ∩R ∩ P ′.

Proof. From P ≡R P ′ we infer readily that P and P ′ have the same competence
domain with respect to R. Also, from (R ∩ P)L ∩ R ∩ P ′ ⊆ P and (R ∩ P)L =
(R ∩ P ′)L we infer:

(R ∩ P ′)L ∩ R ∩ P ′ ⊆ (R ∩ P)L ∩ R ∩ P.

By interchanging P and P ′ and combining the two results, we find:

(R ∩ P ′)L ∩ R ∩ P ′ = (R ∩ P)L ∩ R ∩ P.

9

The converse implication is trivial, if we replace equality by inclusion, and note
that an intersection is a subset of its terms. qed

Proposition 3.5 characterizes equivalence classes of relation ≡R as being re-
lations that share a common competence domain and a common set of incorrect
outputs with respect to specification R. The following proposition singles out a
representative element of each class, and shows that it is the least refined element
of the class.

Proposition 3.6. Let R and P be relations on space S. Then ρR(P) = (R ∩
P)L∩ (R∪P) is in the same equivalence class of ≡R as P . Furthermore, ρR(P)
is the least refined element of its equivalence class.

Proof. We check that P and ρR(P) are equally correct.
P ≡R ρR(P)

⇔ {Proposition 3.5}
(R ∩ P)L = (R ∩ (R ∩ P)L ∩ (R ∪ P))L∧
(R ∩ P)L ∩ R ∩ P = (R ∩ (R ∩ P)L ∩ (R ∪ P))L ∩ R ∩ (R ∩ P)L ∩ (R ∪ P)

⇔ {Relational identities}
(R ∩ P)L = (R ∩ P)L ∧ (R ∩ P)L ∩ R ∩ P = (R ∩ P)L ∩ R ∩ P

which is a tautology. As for proving that ρR(P) is the least refined element of
its class, we let P ′ be an element in the equivalence class of P , and we show that
P ′ refines ρR(P).

P ′ ≡R P
⇔ {Proposition 3.5}

(R ∩ P)L = (R ∩ P ′)L ∧ (R ∩ P)L ∩ R ∩ P = (R ∩ P ′)L ∩ R ∩ P ′

⇒ {Boolean algebra}
(R ∩ P)L = (R ∩ P ′)L ∧ (R ∩ P ′)L ∩ R ∩ P ′ ⊆ P

⇔ {Shunting}
(R ∩ P)L = (R ∩ P ′)L ∧ (R ∩ P ′)L ∩ P ′ ⊆ R ∪ P

⇒ {P and P ′ have the same competence domain}
(R ∩ P)L ⊆ P ′L ∧ (R ∩ P)L ∩ P ′ ⊆ (R ∩ P)L ∩ (R ∪ P)

⇔ {Substitution of ρR(R), ρR(P)L = (R ∩ P)L}
ρR(P)L ⊆ P ′L ∧ ρR(P)L ∩ P ′ ⊆ ρR(P)

⇔ {Definition of refinement}
P ′ ⊒ ρR(P). qed

It stems from this proposition that if P and P ′ are equally correct with
respect to some specification R, then ρR(P) and ρR(P ′) are identical. Figure 2
shows an example of a specification P , two equally correct programs with respect
to R, P and P ′, and the least refined relation of their shared equivalence class.
The reader may check that P and P ′ are both refinements of ρR(P) (=ρR(P ′)).

10

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

R

✲

✲

✲

✲

✲

✲

✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

P

✲

✲

✲

✲

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✟✯

✚
✚

✚
✚

✚
✚

✚✚❃

❍❍❍❍❍❍❍❍❥

❩
❩

❩
❩

❩
❩

❩❩⑦

P ′

❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❥

✲

✲

✲

✲

✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✿

✟✟✟✟✟✟✟✟✯

.
.

.
.

.
.

..✒

❍❍❍❍❍❍❍❍❥

❅
❅

❅
❅

❅
❅

❅❅❘

ρR(P) = ρR(P ′)

✲

✲

✲

✲

✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✿✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❥

✞

✝

☎

✆

✞

✝

☎

✆

✞

✝

☎

✆

Fig. 2. Equal Correctness of Non-Deterministic Programs: P ′ ≡R P .

4 Relative Correctness and Refinement

Because refinement plays a central role in the definition of (absolute) correct-
ness, it is legitimate to explore the relationship between refinement and relative
correctness; this is the subject of this section.

Proposition 4.1. Let R, P and P ′ be relations on set S. Then P ′ is more-
correct than P with respect to R if and only if ρR(P ′) refines ρR(P), i.e.

P ′ ⊒R P ⇔ ρR(P ′) ⊒ ρR(P).

Proof. We proceed by equivalences:
ρR(P ′) ⊒ ρR(P)

⇔ {Formula of refinement}
ρR(P)L ⊆ ρR(P ′)L ∧ ρR(P)L ∩ ρR(P ′) ⊆ ρR(P)

⇔ {Substitutions, and ρR(P)L = (R ∩ P)L}
(R∩P)L ⊆ (R∩P ′)L∧(R∩P)L∩(R∩P ′)L∩(R∪P ′) ⊆ (R∩P)L∩(R∪P)

⇔ {A ⊆ B ⇔ (A ∩ B = A)}
(R ∩ P)L ⊆ (R ∩ P ′)L ∧ (R ∩ P)L ∩ (R ∪ P ′) ⊆ (R ∩ P)L ∩ (R ∪ P)

⇔ {(A ∩ B ⊆ A ∩ C) ⇔ (A ∩ B ⊆ C)}
(R ∩ P)L ⊆ (R ∩ P ′)L ∧ (R ∩ P)L ∩ (R ∪ P ′) ⊆ R ∪ P

⇔ {Shunting, and Boolean algebra}

11

(R ∩ P)L ⊆ (R ∩ P ′)L ∧ (R ∩ P)L ∩ P ′ ∩ R ⊆ P
⇔ {Substitution}

P ′ ⊒R P . qed

The following proposition casts absolute correctness as the culmination of
relative correctness, in the sense that a correct program is more-correct than (or
as correct as) any candidate program.

Proposition 4.2. Let R be a specification on set S, and let P ′ be a relation
that represents a program on S. P ′ is correct with respect to R if and only if P ′

is more-correct with respect to R than any program P on S, i.e.

P ′ ⊒ R ⇔ (∀P : P ′ ⊒R P).

Proof. Proof of sufficiency: We assume that P ′ refines R and we let P be an
arbitrary relation on S. We must show that P ′ is more-correct than P with
respect to R, i.e. that

(R ∩ P)L ⊆ (R ∩ P ′)L ∧ (R ∩ P)L ∩ R ∩ P ′ ⊆ P.

We write:
(R ∩ P ′)L

⊇ {By hypothesis, P ′ ∩ RL ⊆ R}
(P ′ ∩ RL ∩ P ′)L

= {Relational identity}
RL ∩ P ′L

⊇ {Boolean algebra}
(R ∩ P ′)L.

On the other hand,
(R ∩ P)L ∩ R ∩ P ′

⊆ {Monotonicity}
RL ∩ P ′ ∩ R

⊆ {By hypothesis, P ′ ∩ RL ⊆ R}
R ∩ R

⊆ {Since R ∩ R = φ}
P .

Proof of Necessity: We assume that P ′ is more-correct than any relation P on
S with respect to specification R, and we write this property for P = R. This
yields:

(R ∩ R)L ⊆ (R ∩ P ′)L ∧ (R ∩ R)L ∩ R ∩ P ′ ⊆ R
⇔ {Simplification and Shunting}

RL ⊆ (R ∩ P ′)L ∧ RL ∩ P ′ ⊆ R ∪ R
⇒ {Monotonicity}

RL ⊆ P ′L ∧ RL ∩ P ′ ⊆ R
⇔ {Definition}

12

P ′ ⊒ P . qed

In [8], we find that for deterministic relations P and P ′, P ′ refines P if and
only if P ′ is more-correct than P with respect to any specification. This property
can be interpreted as follows: if P ′ refines P , then whatever P does, P ′ can do
as well or better; in particular, P ′ is more-correct than P with respect to any
specification R. In other words, the only way for P ′ to be more-correct than P
with respect to any specification R is for P ′ to merely refine P . When P and P ′

are not necessarily deterministic, we find that the condition (∀R : P ′ ⊒R P) is
too strong a sufficient condition for P ′ ⊒ P , and too strong a necessary condition.
We have the following proposition.

Proposition 4.3. Let P and P ′ be relations on set S. P ′ refines P if and only
if P ′ is more-correct than P with respect to specification P .

Proof. Proof of Sufficiency. From P ′ ⊒P P , we infer (P ∩P)L ⊆ (P ∩P ′)L and
(P ∩ P)L ∩ P ∩ P ′ ⊆ P , which implies PL ⊆ P ′L and PL ∩ P ′ ⊆ P .

Proof of Necessity. The condition (P ′ ⊒P P) can be written as:

PL ⊆ (P ∩ P ′)L ∧ PL ∩ P ∩ P ′ ⊆ P.

The second clause stems readily from the hypothesis, since P ′ ⊒ P implies
PL ∩ P ′ ⊆ P . As for the first clause, we prove it as follows:

PL ∩ P ′ ⊆ P
⇒ {Taking the intersection with P ′}

PL ∩ P ′ ⊆ P ∩ P ′

⇒ {Multiplying by L}
(PL ∩ P ′)L ⊆ (P ∩ P ′)L

⇒ {Relational identity}
PL ∩ P ′L ⊆ (P ∩ P ′)L

⇒ {Since PL ⊆ P ′L}
PL ⊆ (P ∩ P ′)L qed

In other words, according to this proposition, P ′ does not have to be more-
correct than P with respect to any specification; it suffices that it be more-correct
than P with respect to a single specification, namely P itself. The interpretation
of this proposition is quite straightforward: The property of P ′ to be more-
correct than P with respect to P can be interpreted to mean that P ′ beats P
at its own game; this sounds like a good characterization of refinement. The
following example disproves that P ′ ⊒ P logically implies (∀R : P ′ ⊒R P). We
take:

S = {0, 1}, R = {(0, 1)}, P = {(0, 0), (0, 1)}, P ′ = {(0, 0)}.

Indeed, P ′ clearly refines P . Yet P ′ is not more-correct than P with respect to
R, as we can check by observing that: (R ∩ P) = {(0, 1)}, hence (R ∩ P)L =
{(0, 0), (0, 1)} and (R∩P ′) = φ, hence (R∩P ′)L = φ. While (P ′ ⊒ P) does not

13

logically imply that P ′ is more-correct than P for any relation R, it does imply
than P ′ is more-correct than P with respect to a single relation, namely P .

Hence while in [8] we have found that for deterministic relations P and P ′,
P ′ ⊒ P is equivalent to (∀R : P ′ ⊒R P), Propositions 4.3 provides that for
relations P and P ′ that are not necessarily deterministic, P ′ ⊒ P is equivalent to
(P ′ ⊒P P). This means in particular that for deterministic P and P ′, (P ′ ⊒P P)
logically implies (∀R : P ′ ⊒R P). This is an intriguing property, but one that we
can understand intuitively: if we take two arbitrary programs P and P ′, then P ′

could conceivably be more-correct than P with respect to some specification, and
less-correct with respect to other specifications; but if P ′ is more-correct than
P with respect to P itself, then P ′ clearly dominates P , i.e. there is nothing P
could do that P ′ could not; this conveys the same idea of subsumption that we
associate with refinement.

To conclude this section, we consider the following question: Is it possible
that if P ′ is more-correct than P with respect to some relation R, then it is
more-correct than P with respect to any relation that R refines? Intuitively, it
sounds like it should since refinement reflects the strength of a specification; the
following example shows that this is not the case. We consider:

S = {0, 1, 2}, P = {(0, 0)}, P ′ = {(0, 2)}, R = {(0, 1)}, Q = {(0, 0), (0, 1)}.

We do have R ⊒ Q, and we do have P ′ ⊒R P since (R ∩ P)L = φ ⊆ (R ∩ P ′)L
and (R∩P)L∩R∩P ′ = φ ⊆ P . Yet, P ′ is not more-correct than P with respect
to Q, since (Q ∩ P)L = {(0, 0), (0, 1), (0, 2)} whereas (Q ∩ P ′)L = φ.

5 Relative Correctness and Refinement Lattice

In section 2.2 we have introduced some lattice-like operators including the least
upper bound and the greatest lower bound of two specifications; we have found
that when two specifications R and Q satisfy the consistency condition (RL ∩
QL = (R ∩ Q)L) then they admit a least upper bound. In this section we raise
the question whether (P ′ ⊒R P) and (P ′ ⊒Q P) logically imply (P ′ ⊒R$Q P),
where (R - Q) is the least upper bound (modulo the refinement ordering) of R
and Q. The following proposition gives a nuanced answer to this question.

Proposition 5.1. Let P and P ′ be two programs (relations) on space S and let
R and Q be two specifications on S. If P ′ is deterministic, and if it is more-
correct than P with respect to R and with respect to Q then it is more-correct
than P with respect to (R-Q), i.e. P̂ ′P ′ ⊆ I∧P ′ ⊒R P∧P ′ ⊒Q P ⇒ P ′ ⊒R$Q P.

Proof. We introduce a lemma that will be useful for our proof:

P̂P ⊆ I ∧ Q ⊆ P ⇒ (R ∩ P)L ∩ Q = R ∩ Q.

To this effect, we write:
(R ∩ P)L ∩ Q = R ∩ Q

⇔ {(R∩P)L∩Q ⊆ Q, R∩Q ⊆ (R∩P)L, R∩Q ⊆ Q, Q ⊆ P}

14

(R ∩ P)L ∩ Q ⊆ R
⇐ {Dedekind}

(R ∩ P ∩ QL)(L ∩ ̂(R ∩ P)Q) ⊆ R
⇐ {Hypothesis: Q ⊆ P , and monotonicity of the product}

(R ∩ P) ̂(R ∩ P)P ⊆ R
⇐ {Monotonicity of converse and product}

RP̂P ⊆ R
⇐ {Monotonicity of product}

P̂P ⊆ I
⇐ {Hypothesis: P̂P ⊆ I}

true.
Using this lemma, we now show that if P ′ is more-correct than P with respect to
R and with respect to Q, then it is more-correct than P with respect to (R-Q).
We write:

P ′ ⊒Q$R P
⇔ {Proposition 3.2}

((Q - R) ∩ P)L ⊆ ((Q - R) ∩ P ′)L
⇔ {Definition of -}

(((RL ∩ Q) ∪ (QL ∩ R) ∪ (R ∩ R)) ∩ P)L
⊆ (((RL ∩ Q) ∪ (QL ∩ R) ∪ (R ∩ R)) ∩ P ′)L

⇔ {Distributing L, Boolean algebra, and (PL ∩ Q)R = PL ∩
QR}

(RL ∩ (Q ∩ P)L) ∪ (QL ∩ (R ∩ P)L) ∪ (Q ∩ R ∩ P)L
⊆ (RL ∩ (Q ∩ P ′)L) ∪ (QL ∩ (R ∩ P ′)L) ∪ (Q ∩ R ∩ P ′)L

⇐ {Boolean algebra, hypotheses P ′ ⊒Q P and P ′ ⊒R P}
(Q ∩ R ∩ P)L ⊆ (Q ∩ R ∩ P ′)L

⇐ {For any relations A and B, (A ∩ B)L ⊆ AL ∩ BL}
(Q ∩ P)L ∩ (R ∩ P)L ⊆ (Q ∩ R ∩ P ′)L

⇐ {By hypothesis, (Q ∩ P)L ⊆ (Q ∩ P ′)L and (R ∩ P)L ⊆
(R ∩ P ′)L}

(Q ∩ P ′)L ∩ (R ∩ P ′)L ⊆ (Q ∩ R ∩ P ′)L
⇔ {Rewriting the first L as LL and factoring L}

((Q ∩ P ′)L ∩ (R ∩ P ′))L ⊆ (Q ∩ R ∩ P ′)L
⇐ {lemma, using P ′, (R ∩ P ′), Q for P, Q, R}

(Q ∩ R ∩ P ′)L ⊆ (Q ∩ R ∩ P ′)L
⇔ {Tautology}

true. qed

This result holds regardless of whether R and Q satisfy the consistency con-
dition: if R and Q do, then this result pertains for their least upper bound; if not,
then the result pertains for their join, which is not their least upper bound. To
prove that the condition of determinacy of P ′ is a necessary condition in propo-
sition 5.1, we consider the following (counter) example on set S = {0, 1, 2} where
P ′ is not deterministic, and we prove that then P ′ can be more-correct than P
with respect to two specifications without being more-correct with respect to

15

their join:
P = {(0, 0), (0, 1), (0, 2)}, P ′ = {(0, 1), (0, 2)},

R = {(0, 0), (0, 2)}, Q = {(0, 0), (0, 1)}.

Indeed, we find (P ∩R)L = (P ′∩R)L = {(0, 0), (0, 1), (0, 2)} and (R∩P)L∩R∩
P ′ = {(0, 1)}, which is a subset of P , hence P ′ ⊒R P . On the other hand, we find
(P ∩Q)L = (P ′ ∩Q)L = {(0, 0), (0, 1), (0, 2)} and (P ∩Q)L∩Q∩P ′ = {(0, 2)},
which is a subset of P , hence P ′ ⊒Q P . And yet, (R - Q) = {(0, 0)}, whence
(P ′ ∩ (R - Q)) = φ; therefore P ′ is not more-correct than P with respect to
(R - Q).

Whereas proposition 5.1 elucidates how relative correctness distributes over
the join, the following proposition explores the same property for the meet.

Proposition 5.2. If P ′ is more-correct than P with respect to R and with re-
spect to Q, then it is more-correct than P with respect to (R ⊓ Q).

Proof. P ′ ⊒R⊓Q P
⇔ {Definition of relative correctness}

((Q ⊓ R) ∩ P)L ⊆ ((Q ⊓ R) ∩ P ′)L ∧ ((Q ⊓ R) ∩ P ′)L ∩ (Q ⊓ R) ∩ P ′ ⊆ P
⇔ {Definition of meet}

(QL ∩ RL ∩ (Q ∪ R) ∩ P)L ⊆ (QL ∩ RL ∩ (Q ∪ R) ∩ P ′)L
∧(QL ∩ RL ∩ (Q ∪ R) ∩ P)L ∩ QL ∩ RL ∩ (Q ∪ R) ∩ P ′ ⊆ P

⇔ {Distribution, De Morgan}
(RL ∩ Q ∩ P)L ∪ (QL ∩ R ∩ P)L ⊆ (RL ∩ Q ∩ P ′)L ∪ (QL ∩ R ∩ P ′)L
∧(QL ∩ RL ∩ (Q ∪ R) ∩ P)L ∩ (QL ∪ RL ∪ (Q ∩ R)) ∩ P ′ ⊆ P

⇐ {Distribution, Boolean algebra}
(Q ∩ P)L ⊆ (Q ∩ P ′)L ∧ (R ∩ P)L ⊆ (R ∩ P ′)L
∧((Q ∩ P)L ∩ Q ∩ P ′) ∪ ((R ∩ P)L ∩ R ∩ P ′) ⊆ P

⇐ {Definition of relative correctness}
P ′ ⊒Q P ∧ P ′ ⊒R P . qed

6 Concluding Remarks

6.1 Summary

In [8] we have introduced the concept of relative correctness as it applies to
deterministic programs, and have used it to define the concept of a fault in a
program with respect to a specification. In this paper, we generalize the definition
of relative correctness to non-deterministic programs, on the grounds that very
often, even when we are dealing with deterministic programs, we may want to
reason about relative correctness without having to compute the functions of
candidate programs in all their minute detail. To this effect, we introduce a
definition, investigate its properties, and explore its relation to refinement as
well as its algebraic properties with respect to lattice operations.

16

6.2 Prospects

One of the broadest venues of research that this paper opens pertains to the
approximation of determinstic programs by non-deterministic relations. If we
approximate program P by relation Π and program P ′ by relation Π ′, what
relation must hold between P and Π , and between P ′ and Π ′, in order for a
conclusion we draw on Π and Π ′ to carry over to P and P ′. Interestingly, such
a relation must necessarily involve R, the specification against which we define
relative correctness. As an example, let P and P ′ be two programs on some space
S defined by two variables, say x and y, and let R be the following specification
on S:

R = {(s, s′)|y′ = f(y)},

for some function f . Clearly, we can reason about the relative correctness of P
and P ′ by considering abstractions thereof, say Π and Π ′, that focus exclusively
on variable y. We want to generalize this argument by characterizing the relation
that must hold between P , P ′, Π , Π ′ and R so that we can analyze Π and Π ′

and infer conclusions about the relative correctness of P and P ′ with respect to
R. This is currently under investigation.

6.3 Related Work

Several authors have introduced and studied concepts that are similar to rela-
tive correctness, and some refer to them by this exact name [4–7, 10, 11]. In [7]
Logozzo discusses a framework for ensuring that some semantic properties are
preserved by program transformation in the context of software maintenance. In
[4] Lahiri et al. present a technique for verifying the relative correctness of a pro-
gram with respect to a previous version, where they represent specifications by
means of executable assertions placed throughout the program, and they define
relative correctness by means of inclusion relations between sets of successful
traces and unsuccessful traces. Logozzo and Ball [6] take a similar approach
to Lahiri et al. in the sense that they represent specifications by a network of
executable assertions placed throughout the program, and they define relative
correctness in terms of successful traces and unsuccessful traces of candidate
programs; Logozzo and Ball distinguish between two categories of program fail-
ures, namely contract violations when functional requirements are violated and
run-time errors, when operational requirements are violated. In [10], Nguyen et
al. present an automated repair method based on symbolic execution, constraint
solving, and program synthesis; they call their method SemFix, on the grounds
that it performs program repair by means of semantic analysis. In [11], Weimer
et al. discuss an automated program repair method that takes as input a faulty
program, along with a set of positive tests (i.e. test data on which the program
is known to perform correctly) and a set of negative tests (i.e. test data on which
the program is known to fail) and returns a set of possible patches. In [5] Le
Goues et al. survey existing technology in automated program repair and identify
open research challenges; among the criteria for automated repair methods, they
cite applicability (extent of real-world relevance), scalability (ability to operate

17

effectively and efficiently for products of realistic size), generality (scope of ap-
plication domain, types of faults repaired), and credibility (extent of confidence
in the soundness of the repair tool).

Our work differs significantly from all these works in many ways:

– First, we use relational specifications that address the functional properties
of the program as a whole, and have no cognizance of intermediate assertions
that are expected to hold throughout the program; also, our relational spec-
ifications do not necessarily correspond to an abstraction of the assertions
used in trace-based program analysis, because the initial and final assertion
could be checking some local properties, whereas our specifications capture
global input/ output properties.

– Second, our definition of relative correctness involves competence domains
(for deterministic specifications) and the sets of states that candidate pro-
grams produce in violation of the specification (for non-deterministic pro-
grams).

– Third we conduct a detailed analysis of the relations between relative cor-
rectness and the property of refinement.

– Finally, we study how the property of relative correctness can be decomposed
using lattice operators on the reference specification.

Acknowledgements

The authors are very grateful to the anonymous reviewers for their valuable
feedback, which has greatly improved the form and content of this paper.

References

[1] Ch. Brink, W. Kahl, and G. Schmidt. Relational Methods in Computer Science.
Springer Verlag, January 1997.

[2] Nafi Diallo, Wided Ghardallou, and Ali Mili. Correctness and relative correctness.
In Proceedings, 37th International Conference on Software Engineering, Firenze,
Italy, May 20–22 2015.

[3] Nafi Diallo, Wided Ghardallou, and Ali Mili. Program derivation by correctness
enhancements. In Refinement 2015, Oslo, Norway, June 2015.

[4] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris Hawblitzel.
Differential assertion checking. In Proceedings, ESEC/ SIGSOFT FSE, pages
345–455, 2013.

[5] Claire LeGoues, Stephanie Forrest, and Westley Weimer. Current challenges in
automatic software repair. Software Quality Journal, 21(3):421–443, 2013.

[6] Francesco Logozzo and Thomas Ball. Modular and verified automatic program
repair. In Proceedings, OOPSLA, pages 133–146, 2012.

[7] Francesco Logozzo, Shuvendu Lahiri, Manual Faehndrich, and San Blackshear.
Verification modulo versions: Towards usable verification. In Proceedings, PLDI,
2014.

18

[8] Ali Mili, Marcelo Frias, and Ali Jaoua. On faults and faulty programs. In Peter
Hoefner, Peter Jipsen, Wolfram Kahl, and Martin Eric Mueller, editors, Proceed-
ings, RAMICS: 14th International Conference on Relational and Algebraic Meth-
ods in Computer Science, volume 8428 of Lecture Notes in Computer Science,
Marienstatt, Germany, April 28–May 1st 2014. Springer.

[9] H.D. Mills, V.R. Basili, J.D. Gannon, and D.R. Hamlet. Structured Programming:
A Mathematical Approach. Allyn and Bacon, Boston, Ma, 1986.

[10] Hoang Duong Thien Nguyen, DaWei Qi, Abhik Roychoudhury, and Satish Chan-
dra. Semfix: Program repair via semantic analysis. In Proceedings, ICSE, pages
772–781, 2013.

[11] Weimer W., Nguyen T., Le Goues C., and Forrest S. Automatically finding patches
using genetic programming. In Proceedings, ICSE 2009, pages 364–374, 2009.

19

