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Highlights 

 Kinetics indicates pesticide followed pseudo‐second‐order model on both adsorbent.  

 Adsorption capacity decreases with the increase of temperature, pH and ionic strength.  

 Adsorption capacity at 293 K is 391.65 mg∙g‐1 on CAT and 185.07 mg∙g‐1 on CARBOPAL.  

 Data adapt Langmuir on CAT and Guggenheim–Anderson–de Boer isotherm on CARBOPAL.  

 Flat bentazon is major stabilized and trapped through π‐π dispersive interactions.  

Abstract 
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Removal of the bentazon by adsorption on two different types of activated carbon was 

investigated under various experimental conditions.Kinetics of adsorption is followed and 

the adsorption isotherms of the pesticide are determined. The effects of the changes in pH, 

ionic strength and temperature are analyzed. Computational simulation was employed to 

analyze the geometry and the energy of pesticide absorption on activated carbon. 

Concentration of bentazon decreases while increase all the variables, from the same initial 

concentration. Experimental data for equilibrium was analyzed by three models: Langmuir, 

Freundlich and Guggenheim–Anderson–de Boer isotherms. Pseudo-first and pseudo-

second-order kinetics are tested with the experimental data, and pseudo-second-order 

kinetics was the best for the adsorption of bentazon by CAT and CARBOPAL with 

coefficients of correlation R2 = 0.9996 and R2 = 0.9993, respectively. The results indicated 

that both CAT and CARBOPAL are very effective for the adsorption of bentazon from 

aqueous solutions, but CAT carbon has the greater capacity. 

Keywords  

bentazon, carbonaceous adsorbents, adsorption, isotherm model, computational simulation 

1. Introduction 

The rapid technological progresses have resulted in a huge amount of wastewater from 

industrial processes that need to be removed before discharge into the environment. 

Inorganic and organic pollutants dissolved in aqueous solutions are hazardous because of 

their toxicity, even at low concentrations. The global increase of polluted waters seriously 

threatens human health and the environment. Regulatory agencies have determined 

maximum allowable concentration of the contaminants in drinking water to overcome the 

problem. Clean water is one of the most important issues worldwide because of continuing 

economic development and the steady increase in the global population. However, clean 

water resources are decreasing every day, because of contamination with pollutants 

including organic chemicals. Since the mid-twentieth century, there has been growing 

concern about the care of the environment, which has led to the establishment of rigid limits 

on specific contaminants that affect health. Likewise, the increase in the number of habitants 

of the planet has caused an imperative need to produce more quantity and quality of food 

resources for future generations. For decades, tons of biologically active substances, 

synthesized for use in agriculture, industry, medicine, etc., have been dumped into the 

environment inadequately. Together with the problem of water pollution, there is a shortage 

of this non-renewable resource due to climate change and the increasing desertification that 

the planet is suffering. 
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Bentazon (3-isopropyl -(1H)-2,1,3-benzothiadiazin -4(3H)-one-2,2-dioxide, Fig.1) is the 

active compound in BASAGRAN®, registered trademark by BASF, in aqueous solution at 

48 and 60%. It is one of the most commonly used herbicides in agriculture and gardening. 

Bentazon is a broad-spectrum post-emergence herbicide belonging to the chemical group 

of benzothiadiazinones used for the selective control of broadleaf weeds, in alfalfa, rice, pea, 

onion, asparagus, flax, maize, peanut, potatoes, beans, soybeans, sorghum, fruit trees and 

other crops. Being a contact herbicide, it affects the parts of the plant where it is applied. It 

acts by contact on the herbs of the broad leaf (dicotyledons) and some non-rhizomatous 

cyperaceae, absorbed by the foliage and very weakly translocated from it. To a lesser extent, 

the roots absorb it, in this case, it translates acroptically into the xylem. In all cases it is 

rapidly metabolized, conjugated and incorporated as natural components of the plant. It 

prevents the photos in Hill's reaction. The selectivity appears by the detoxifying action 

produced by a conjugation with glucose, the characteristic action of herbicide tolerant plants. 

The results are appreciated within the week following the application. It is absorbed by 

leaves and has a short herbicidal effect, inhibiting the transfer of electrons during 

photosynthesis causing oxidative stress by accumulation of the photosynthetic electrons in 

the PSII system [1]. Its selectivity is based on the ability of crop plants to rapidly metabolize 

bentazon to 6-OH- and 8-OH- bentazon interacting these with the synthesized sugars [2]. 

Bentazon is stable to hydrolysis and is very mobile in soil therefore it has the potential to 

contaminate surface water. On floor, under aerobic conditions, it is persistence and still short 

with a half-life of 4 to 49 days. Bentazon (technical) is only slightly soluble in water and is 

poorly volatile [3]but sodium bentazon, the form that is commercially available, is much more 

soluble. The accumulation causes the appearance of an important amount of highly reactive 

radical species, stories such as chlorophyll and oxygen alone, causing this stress. It is one 

of the most used herbicides in agriculture and gardening. It is resistant to hydrolysis and is 

not susceptible to abiotic degradation. The concern for human health is still very high so the 

monitoring of bentazon in the environment is constant, to avoid risks of contagion and to 

evaluate its potential carcinogenic effects. Residual amounts of bentazon have been 

monitored in water, soil, honey, plants, fruits and vegetables [4]. In addition, it has been 

reported as the disease affects health for animal living beings [5]. 

This pesticide can produce harmful effects in aquatic environments, being dangerous to the 

environment because it is highly mobile, with high potential for displacement in the soil and 

with great capacity to reach groundwater. The use of bentazon, a post-emergence herbicide, 

has become very popular for the control of weeds and broadleaf crops since 2003, following 
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the banning of atrazine in the EU. The application of this pesticide is carried out from both 

the ground and the air. Bentazon is classified, according to the World Health Organization 

(WHO) as a class III herbicide and its maximum concentration of bentazon admitted by the 

(WHO) in drinking water is 30μg·L-1[6]. The mixture of herbs with other herbicides, such as 

Clorimuron, 2,4-DB, Imazaquin and Flumiclorac, cause their toxicity much greater sea for 

birds and fish, reaching a category II. WHO toxicological studies have shown that this 

pesticide has chronic toxicity. Although its degradation is relatively fast, bentazon and its 

metabolites are contaminants. It is harmful if swallowed or absorbed through the skin and 

causes irritation to eyes. Therefore, the removal of bentazon from water is necessary and 

the development of effective and inexpensive techniques for their removal has generated 

increased research interests in recent years. Among various water purification and recycling 

technologies [7-9], adsorption is one of the most efficient methods for removal of pollutants 

from water [10,11]. 

Different materials such as activated carbon, silica, titanium dioxide, alumina, and various 

nanomaterials such as nanometal oxides and carbon nanotubes are applied as adsorbent 

for removal of contaminants from aqueous solutions [12,13]. Activated carbon is very 

efficient in removing a variety of pesticides from surface and groundwater due to its high 

superficial area, large porous, good adsorption capacity, high thermal stability, good 

mechanical strength, fast kinetic, and versatility for removal of a broad type of inorganic and 

organic pollutants dissolved in aqueous media [14,15].Sorption to solid phases is a key 

process for the environmental fate of potentially toxic and bio accumulative pollutants. 

Adsorption is a simple, easy and economical method for removing substances from aqueous 

media and soils. 

In this work, we use two different types of activated carbon, CAT and CARBOPAL, as low-

cost adsorbent for the removal of pesticide from aqueous solutions. In literature has not 

been reported the use of these kind of activated carbon as adsorbents of any kind of 

pollutants. So, are novel substances with potential applications such as decontamination of 

surface and groundwater. Therefore, the purpose of this work is to evaluate the adsorption 

potential of CAT and CARBOPAL activated carbon for bentazonpesticide. 

2. Materials and methods  
2.1 Adsorbate 

Technical grade bentazon of 99.9% purity was supplied by Sigma-Aldrich. The molecular 

structure of this pesticide is shown in Figure 1, with its acid-base equilibrium. A prior keto-

enoltautomeric equilibrium explains this acid-base balance, generating a readily ionizable 
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species. The pKa of this species is 3.30. Figure 2 shows absorption spectrum of this 

substance in aqueous solution. Figure 3 shows speciation diagram of this molecule.  

2.2 Adsorbents 

Two types of commercial activated carbon were used, each one with different physical and 

chemical properties. Activated carbon were Hydrogen Sulfide CAT-Ox 4mm pellet Activated 

Carbon (UMI 2000) and CARBOPALMB 4S (Donau). Adsorbents were ground to the 

required particle size, 500–355 µm. First, they were washed with boiling water, to remove 

impurities in the inner pores and it was dried in oven at 110 °C for 24 h.Adsorbents names 

will be CAT and CARBOPAL, respectively, now on.Both carbonaceous materials used in the 

experiments were characterized to detail their surface and morphological chemical 

properties. 

2.2.1 Adsorbents characterization 
Figure 4 is an example of activated carbon surface studied, with acid and basic groups.The 

surface charges depend on the pH of the solution and the surface characteristics of the 

carbon. A negative charge results from the dissociation of acidic surface oxygen complexes 

such as carboxyl groups, phenolics, lactones and anhydrides. These surface acid sites are 

Bröwsted type. The origin of the positive surface charge and hence the basicity of the 

activated carbon is more uncertain because in carbon without nitrogenous functionalities, 

such as pyrroles, pyridines and amides, it may be due to basic surface oxygen complexes 

such as quinones, chromenes or due to the existence of rich regions in free delocalized π 

electrons from the nucleophilic zones of the polyatomic condensed ring.The textural 

characterization of the adsorbents was carried out by N2 adsorption–desorption isotherms 

in automated adsorption equipment (Micromeritics ASAP 2020) at 77 K. The method of 

Barrett, Joyner and Halenda (BJH) is a method for calculating pore size distributions from 

experimental isotherms using the Kelvin model of pore filling. This model assumes that the 

pores are of slot type. It applies only to the mesopore and small macropore size range 

[16].For the specific study of micropores, the t-plot method was used [17]. FTIR spectrum of 

the solid was recorded by a ThermoNicolet FTIR spectrophotometer at the range of 400–

4000 cm-1with KBr as support. The zero-charge point (pHPZC) is the pH value necessary for 

the net surface charge of the material is equal to zero. In this case, the zero point was 

determined using the mass titration method, according to ASTM D3838-05 (Standard Test 

Method for pH of Activated Carbon), based on measuring the pH as a function of the mass 

concentration of the solid [18-20]. To this end, samples of the dried activated carbon ranging 

from 0.1 to 1.0 g were placed in a flask. Then, 40 mL of previously boiled distilled water were 



  7

added. The system was boiled, during 15 min approximately. After this time, the system was 

disassembled and immediately, collecting the filtrate and measuring the pH at 50 ± 5°C. 

Finally, pH values were plotted as a function of the mass percentage, and the point of zero 

charge was determined by extrapolation to zero mass percentage. 

Also, Boehm titration was performed, which is widely used for determination of acidic and 

basic surface groups of activated carbon [21]. Two bases were used for this purpose: NaOH 

and NaHCO3. It is assumed that NaHCO3 neutralizes only carboxyl groups while NaOH 

neutralizes carboxylic acids, phenols, lactones and carbonyls. HCl was used for neutralizing 

basic groups. 0.1000 g of carbon was placed in a 100 mL Erlenmeyer. 100 mL of 0.0563 

MHCl solution was added. The system was kept under constant stirring for 24 h. After this 

time, the mixture was filtered and 20 mL of each solution was taken. They were titrated with 

0.0539 MNaOH using phenolphthalein as pH indicator. For acidic groups, two 

measurements were made following the same procedure, using 0.0539M NaOH, and 0.0500 

M NaHCO3, and methyl orange as pH indicator. A blank experiment was also performed in 

order to verify the pH value of charcoal dispersion in distilled water. 

Scanning electron microscopy (SEM) allows the study of the morphology of a solid surface 

by the incidence of an electron beam on it. The Scan Electronic Microscope (SEM) analyzes 

was performed on a JEOL JSM 6400 microscope, equipped with a thermionic cathode 

electron gun with tungsten filament and 25 kV detector. Samples are supported on brass 

discs by graphite tape, ensuring that they have been adequately dewatered prior to analysis. 

Thermogravimetric (TG) analysis allows to determinate some functional groups on the 

surface of both materials. It is one of the techniques that makes use of temperature as a 

factor to be modified, and is based on the measurement of the mass variation of a sample 

when the sample is subjected to a temperature program in a controlled atmosphere. When 

a material is heated or cooled, its structure and chemical composition undergoes changes: 

fusion, solidification, crystallization, oxidation, decomposition, transition, expansion, 

sintering, etc. These transformations can be measured, studied and analyzed by measuring 

the variation of different properties of matter as a function of temperature. The 

thermogravimetric analyzes were carried out under inert conditions (nitrogen flow of 50 

ml·min-1) and with a heating rate of 10 ° C min-1 to 1000 ° C. These analyzes were performed 

on a Seiko Exstar 6000 TGA / DTA 6200 thermobalance. 

2.3 Sorption kinetics 

For kinetic studies, 0.0020 g of adsorbent was contacted with 50 mL of 50 mg·L-1 of bentazon 

solutionin a thermostat system at 200 rpm and 293 K. At predetermined time intervals, the 
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adsorbent was allowed settled and 4 mL of solution was removed by filtered through 22 µm 

nylon filters, and their absorbance was measured by using UV spectrophotometer model at 

252 nm. The amount of bentazon adsorbed qt (mg·g-1), at time t (min), was calculated by 

Equation 1:  

    
 

V
W

CC
q

to
t


 [1] 

where C0 and Ct (mg·L-1) are the initial concentrations of bentazon and the bentazon 

concentration at time t, respectively; V(L) is the volume of the solution and W (g)is the used 

mass of dry adsorbent. A blank test of each system was also performed to verify that no 

adsorption occurred at the surface of the glass material. 

2.4 Adsorption experiment 

Discontinuous adsorption studies (batch process) were carried out by adding a fixed amount 

of activated carbon (0.0020 gr) into 25 mL Erlenmeyer flasks containing 20 mL of different 

initial concentrations (5–40 mg·L-1) of bentazon solution in aqueous solutions of NaCl0.01 

M for each experiment. Distilled water was used to prepare all solutions and no buffer 

solutions were used to avoid possible formation of precipitates or competition with the solute 

in the adsorption equilibrium. The adsorption experiments were carried out at temperature 

and agitation controlled in a thermostat system at 200 rpm for 24 h. The initial and 

equilibrium bentazon concentrations were determined by absorbance measurement using 

double beam UV-vis spectrophotometer at 252 nm. It was then computed using standard 

calibration curve. The maximum capacity adsorption, qe (mg·g-1), was calculated by 

Equation 2: 

 
W

VCC
q
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e


 [2] 

where Co and Ce (mg·L-1) are the liquid-phase concentrations of pesticide at initial and at 

equilibrium, respectively, V (L) is the volume of the solution and W (g) is the mass of the 

used dry adsorbent. Each assay was performed in duplicate. 

2.4.1 pH effect 

The importance of pH is related to the strong adsorption of the hydronium and hydroxyl ions, 

which compete with the solutes in the adsorption. In turn, the pH directly influences the net 

surface charge of the different materials and the degree of dissociation of the adsorbates by 
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modifying and controlling the electrostatic interactions between the two. A solution whose 

pH is lower than pHPCC (zero loading point) or pHPIE (isoelectric point) the surface will have 

positive charge; while a higher pH, the surface will have negative charge. The effect of pH 

does not follow a trend that can only be determined by knowing the structure of the solute, 

ie increasing or decreasing this value may increase or decrease the adsorptive capacity of 

a material. There are studies where both effects have been analyzed. To evaluate this factor, 

equilibrium isotherm was performing at four pH values (3.3, 5, 7 and 8) with the same 

pesticide concentration (5-50 mg·L-1) and adsorbent dosage (0.0020 g). 

2.4.2 Ionic strength effect 

Ionic strength is the other key factor that controls electrostatic interactions. Thus, these 

attractive or repulsive interactions can be reduced by the presence of ions in solution. This 

is due to a screen effect produced by the salt added on the surface loads. Therefore, when 

the electrostatic interaction between the surface and the adsorbent is repulsive, an increase 

in the ionic strength will increase the adsorption. On the contrary, when the electrostatic 

interactions are attractive, an increase in the ionic strength will decrease the adsorption [22]. 

Equilibrium isotherms were performed by changing the ionic strength of aqueous solutions 

by increasing concentrations of NaCl as support electrolyte. Ionic strength was maintained 

at 0.01 M, 0.30 M and 1.00 M, with the same initial concentrations (5-50 mg·L-1) and fixed 

adsorbent dosage (0.0020 g). 

2.4.3 Temperature effect 

The temperature was modified to calculate thermodynamic parameters, such as enthalpy 

change ∆H, entropy change ∆S and free energy of adsorption∆G. Experiments were carried 

out under the same conditions, using the same initial concentrations (5-50 mg·L-1) and fixed 

adsorbent dosage (0.0020 g) at three different water bath temperatures of 293 K, 325 K and 

341 K. 

2.4.4 Computational studies 

As the basic quantum chemical approach, we selected the density functional theory (DFT). 

This is one of the most efficient tools of quantum chemistry that enables one to calculate 

structural and energetic properties of relatively large systems. In this work, DFT calculations 

were performed using the Vienna Ab-initio Simulation Package [23, 24] including the 

dispersion interaction via Grimme's –D2 correction [25]. In this code plane wave basis sets 

are used to solve the Kohn–Sham equations. The electron projector augmented wave 

(PAW) method was used and the generalized gradient approximation (GGA) with the 
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Perdew–Burke–Ernzerhof (PBE) functional was utilized [26-31]. The fixed convergence of 

the plane-wave expansion was found with cut-off energy of 400 eV. A set of 3×3×1 

Monkhorst-Pack k-points was used to sample the Brillouin Zone [32]. The ground state was 

found by a Methfessel-Paxton smearing of 0.2eV [33].  We have modeled the activated 

carbon slab. The atomic structure is similar to that of graphite consisting of three graphene 

layers arranged in a regular hexagonal pattern. In graphitic crystalline regions, the layers 

are stacked parallel to one another in a regular fashion. The atoms within a plane are 

covalently bonded (C-C bond length of 1.42Å) with sp2 hybridization, while the interaction 

between the sheets occurs through relatively weak van der Waals forces, giving rise to a 

space between two graphene layers in graphite of about 3.35 Å [34]. During relaxation, the 

bottom layer of the slab are kept fixed in bulk positions to represent the semi-infinite bulk 

beneath the surface while the others was fully relaxed together with the pesticide molecule.  

The adsorption energy (Eads) was calculated as the difference between the energy of the 

adsorbed molecule and the sum of the free surface and the isolated molecule energies. A 

negative adsorption energy value indicates an exothermic chemisorption process. When 

analyzing the possible structures of the molecule adsorption complexes, we have selected 

diverse initial arrangements of the adsorbate molecule on the surface to ensure that we 

identified the lowest energy adsorbate/substrate structure. Here we present and discuss the 

most stable geometries obtained. 

3. Results and discussion 

3.1 Adsorbents characterization 

3.1.1 Textural characterization 

Table1 summarizes the pore diameter and surface area data for both CAT and CARBOPAL 

adsorbents. Specific surface and pore size was measured by BET method of N2 adsorption 

isotherm. Results are shown in Figure 5 and Figure 6.It can be seen that CAT and 

CARBOPAL adsorbents are very different. The surface area and volume monolayer of 

CARBOPAL was found to be much higher than CAT activated carbon. The total pore volume 

is calculated from the amount of N2 adsorbed at P / P0 = 0.95, while the micropore volume 

is calculated by the Dubinin-Radushkevich method. The mesopore volume is also obtained 

from the N2 adsorption isotherm in the range of relative pressures P/P0: from 0.40 to 0.95 

assuming the molar volume of liquid nitrogen is 35 cm3·mol-1. In the case of the medium 

pore size, they can be obtained from the Barrette-Joynere-Hanlenda method (BJH). 
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The value of CBET is related to the degree of microporosity of the materials, where an 

increase in this value implies an increase in the degree of microporosity of the solids. There 

is no linear proportionality between the CBET and SBET values as can be seen in Table 1. In 

the case of CAT, whose value is much higher than CARBOPAL, it implies a high degree of 

microporosity in relation to the other materials. This can also be verified by the slope of its 

adsorption isotherm N2. Also, the value of CBET is related to the degree of interaction between 

adsorbate-adsorbent, where again an increase of this value implies that the interactions are 

stronger. That is, the more carbon microporous are those that have more interaction with 

the adsorbates and greater capacities of adsorption. 

3.1.2 Boehm titration method 

Table 2 summarizes the concentration obtained for acid and basic groups. CAT adsorbent 

present basic properties, while CARBOPAL has a surface with acidic characteristic. 

3.1.3 Point of Zero Charge (pHPCC) 

Table 2 shows these values. We could determinate that each adsorbent has different 

properties. CAT has Point of Zero Charge t equal to 7.46, which causes its properties to be 

fundamentally basic, while the CARBOPAL has a value of 4.76, being therefore more acidic. 

This difference of values is fundamental to analyze the interactions that are generated 

between each of the adsorbents and bentazon. This difference of values is fundamental to 

analyze the interactions generated between each of the adsorbents and bentazone, whose 

pKa value is 3.3. If the pH of the solution exceeds 4.76, both the bentazone molecule and 

the CARBOPAL surface will be negatively charged, whereas if the pH is higher than 7.46, 

the CAT will have a mostly negative charge. 

 

3.1.4 FT-IR spectroscopy 

Figure 7 shows the infrared spectra spectra of CAT and CARBOPAL commercial coals and 

Figure 8 shows FT-IR spectrum spectra for each material, respectively. Some differences 

can be seen in the curves, although both spectra are similar due to the carbonaceous nature 

of the adsorbents. In both cases a high intensity band is obtained at 3400-3500 cm-1, 

corresponding to hydroxyl groups and adsorbed water. In the case of CARBOPAL spectrum, 

this value is more intense, reason why it is possible to suppose that concentration of OH 

groups in this activated carbon is greater. Also, in the range of 1000 to 1260 cm-1 a 

pronounced peak is observed in both spectrums, indicative of C-O vibrations due to 

carboxilyc acid, alcohols and esters. 
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Unlike what is observed in the CAT spectrum, in CARBOPAL spectrum detects vibrations 

at 1600-1610 cm-1 and the band observed at 1461 cm-1 is attributed to the presence of 

carboxyl groups.(COOH). With the value mentioned in the previous range (1000-1260 cm-

1),CARBOPAL has a greater number of functional groups of acid type, which explains the 

lower value of zero charge point, compared to the value of CAT (4,76 and 7,46, 

respectively).At 1453 cm-1, in the case of CARBOPAL, a small band due to the distortion of 

CH3 is observed. At 1600 cm-1there are not very pronounced bands due to C=C bond. At 

low values, between 800 and 950cm-1, are the vibrations of C-H in the aromatic ring appears 

in both spectrums. Peaks at aproximately 1582-1585 cm-1 were obtained in both materials 

indicating the C=O streching vibration of lactone and carbonyl groups 

The bands found at 2850-2920 cm-1 in both spectra are characteristic of the presence of 

aliphatic groups. These peaks are not very intense, but are representative in this type of 

materials. 

 

3.1.5 SEM microscopy 

The morphological characterization of commercial coals has been performed. From Figure 

9 we can confirm that a uniform structure is not observed for either of the carbonaceous 

materials. 

 

3.1.6 Thermogravimetric analysis 

This technique allows us to determine the functional groups, Figure 10 show the results. 

From Figure 10 a), the curve of the first derivative (shown in black) shows different 

depressions, which allow to explain the conformation of the starting material. In the 

temperature range between 80 and 100 ° C, the mass loss due to dehydration of the 

material, characteristic of all the solids studied by this technique, is detected. The loss of 

water is very significant. The temperatures at which CO and CO 2 species appear vary 

greatly depending on the type of carbon used, oxidation conditions and methods of analysis. 

Throughout the temperature range, reaching approximately 900 ° C, the mass losses are 

minimal, so that conclusions can be drawn on the composition of the material, where CAT 

does not present a great diversity of functional groups. Between 900 and 1000 ° C, a slight 

loss of mass is detected, due to the decomposition of quinones and carboxylic acids. 
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From Figure 10 b), as in the case of the CAT curve, CARBOPAL analysis shows a 

pronounced mass loss due to water molecules in the range of 80 to 100 ° C. It can also be 

postulated that surface oxygen structures are stable at temperatures below 200 ° C. Unlike 

the first TG and DTG, there is also a deep depression in the range between 600 and 850 ° 

C. The loss of mass at this temperature, giving rise to CO2, is then due to the decomposition 

of carboxyl, anhydrous and lactone groups. This is in agreement with the studies of the zero 

load point, where CARBOPAL presents a more acidic character than CAT. 

 

3.2 Sorption kinetics 

Kinetics of bentazon adsorption on both adsorbents was investigated by two models: the 

Lagergren pseudo-first-order model and the pseudo-second-order model [35-40].Figure11 

shows the adsorption kinetics ofbentazon onto CAT and CARBOPAL. We can see that the 

values obtained for the experimental adsorption capacity (qe
exp) are 526.3157 mg·g-1 and 

325.161 mg·g-1 for CAT and CARBOPAL, respectively. 

Lagergren proposed a method for adsorption analysis which isknown as the pseudo-first-

order kinetic (Equation 3): 

t
k

qqq ete
303.2

log)log(
1

 [3] 

where qe(mg·g-1)and qt(mg·g-1)are the bentazon adsorbed at equilibrium and t time 

respectively, and k1 (min-1)is the adsorption rate constant of the pseudo-first-order. The 

linear plot of log (qe-qt) versus t gives k1 as the slope and log qe as the intercept, as shown 

in Figure14. 

The pseudo-second-order kinetic model can be represented by Equation 4: 

 

e

e

t q

t

kq

t

q


2
2

1
[4] 

 

where k2 (g·(mg·min)-1) is the second-order adsorption rate constant. The linear plot of t/qt 

versus t gives (1·qe
-1) as the slope and (1·(k2qe

2)-1) as the intercept. Figure12 shows the 

linear plot on both adsorbents. 
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Results show that carbon CAT has the highest adsorption capacity at the equilibrium time 

of 120 minutes, while for carbon CARBOPAL presents much lower adsorption capacity at 

the equilibrium time of 50 minutes under the same system and this is correlated with k2 

values conditions (see Figures 12-14 and Table 3). Using both adsorbents, the model that 

best represents the kinetic process is the pseudo–second-order model. Due to the 

mesoporous characteristics of these two carbonaceous materials, the times of equilibrium 

reached are very credited, which makes them very good adsorbents. 

1(%)
exp

exp

2



























 


N

q
q

qq cal

 [5] 

3.2.1 Validity of kinetic model 

Two different kinetics models were employed to understand the adsorption process. To 

compare fitting of the model, kinetic model was verified by the normalized standard deviation 

∆q(%) [41], which is defined as Equation 5: 

 

where qcal(mg·g-1) and qexp (mg·g-1) are the calculated and experimental adsorption capacity 

respectively, and N is the number of points. The lower the value of ∆q the better the model 

fits. Table 4 summarizes these values. 

It can be see that the pseudo-second-order kinetic model yielded the lower ∆q values. This 

is in agreement withobtained R2 values and it proves that the adsorption of bentazon onto 

CAT and CARBOPAL could be best described by the pseudo-second-order kinetic model, 

which is based on the equilibrium chemical adsorption. 

 

3.3 pH effect 

The effect of pH on bentazon adsorption was studied under identical conditions using 25 

mg·L-1 of initial concentration and pH 3–11 at 293 K for both adsorbent. Bentazon adsorption 

significantly changes over the studied pH range. The maximum adsorption capacity (qe) 

decreases with increasing pH as shown in Figure15. The qe decreases from 198.146 to 

45mg·g-1 for an increase in pH from 3.5 to 10 on CAT, and from 73.205 to 4.545 mg·g-1 on 



  15

CARBOPAL. The same trend was obtained analyzing the adsorption isotherm at pH 3.5, 5, 

7 and 8 from aqueous solution. 

The behavior clearly suggests that adsorption of bentazon on both coals was dominated by 

the interaction between pesticide and adsorbent surface. This is opposed to the idea that 

materials with higher specific surface are those that have greater adsorptivity. At 5-10pH 

range, both CARBOPAL adsorbent (acidic surface with pHPZC= 4.78) and bentazon (pKa= 

3.30) are negatively charged. Therefore, adsorption capacity is lower due to repulsive 

electrostatic interactions, as it is expected. On CAT, at pH range of 6-8 and 10-11, 

adsorptivity maintain almost constant, but decrease athigher pH values.It was found that the 

optimum pH is 3.3 for both adsorbent (natural pH).Results are like other studies, where the 

optimum pH for bentazon adsorption on other class of activated charcoal was the same [42] 

and similar results were obtained for other classes of substances usingdifferent adsorbents, 

where the increase in pH decreases adsorption [43-48]. 

 

3.4 Ionic strength effect 

The effect of ionic strength on bentazon adsorption was studied at pH 5.3 on CAT where 

adsorbent and bentazon were oppositely charged (pHPZC = 7.46 and pKa = 3.3) and pH = 

2.6 on CARBOPAL where pesticide and activated carbon were equally charged (pHPZC = 

4.76). This situation can be confirmed with speciation diagram at Figure 3, where more than 

99 % of bentazon is presented in anionic form. Theoretically, when the electrostatic forces 

between the adsorbent surface and adsorbate ions were attractive, as in this system, an 

increase in ionic strength will decrease the adsorption capacity. When the electrostatic 

attraction is repulsive, an increase in ionic strength will increase adsorption. We performed 

the isotherms with three different NaCl solution concentrations: 0.01 M, 0.30 M and 1.00 M. 

All experiments were made under the same temperature (293 K) and adsorbent dosage 

(2.0mg) of CAT and CARBOPAL, respectively. The effect of ionic strength is shown in 

Figures 16. 

For both adsorbents, the increase of ionic strength causes a decrease in the maximum 

adsorption capacity. The increase on NaCl concentration produces an increase in the 

repulsive interactions between adsorbate and adsorbent due to the deprotonation of 

bentazon and the increased negative charge density on activated carbon surface. 
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3.5 Temperature effect 

The temperature is a key factor affecting the adsorption process. Adsorption capacity 

decreases when increase the temperature. Carbon CAT reaches the maximum adsorption 

capacity at 391.65 mg·g-1(293 K) and 196 mg·g-1(341 K).On CARBOPAL, adsorption 

capacity decreases from 185.07 mg·g-1 at 293 K to 73 mg·g-1 at 341 K. These results are 

shown in Figure 17respectively. We have concluded that bentazon adsorption on both coals 

conduce an exothermic process. Similar results are found by Sadasivam et al and Netpradit 

et al considering different adsorbate-adsorbent systems [49-53]. 

On the other hand, the free energy (∆G°) can be related with the equilibrium constant KD (L 

mol-1). The values of enthalpy (∆H°) and entropy (∆S°) for the adsorption process were 

calculated, using the following Equations 6-8: 

ººº STHG  [6] 

eqKRTG lnº  [7] 

R

S

RT

H
Keq

ºº
ln





 [8] 

In our experiment, the following method achieved adsorption equilibrium constants: as the 

bentazon concentration decreases, Keq values are obtained by plotting a straight line of 

ln(qe·Ce
-1) vs qe based on a minimum square analysis and with extrapolation of qe to 0. The 

intersection of the horizontal axis gives the value of Keq. A Van’t Hoff plot of ln Ke as a function 

of (1·T-1) yields to a straight line. ∆H° and ∆S° parameters were calculated from the slope 

and intercept of the plot, respectively. It is assumed that adsorption occurs in multilayers on 

CARBOPAL. From which the value of maximum adsorption capacity (qe) is obtained from 

the first plateau. Results can be seen in Table 5.The negative ∆G° values indicate that 

process is thermodynamically spontaneous. The negative value of ∆H° indicates that the 

nature of adsorption process is exothermic. This is also supported by the decrease in value 

of adsorbed capacity of the sorbent with the increase in temperature. The positive value of 

∆S° shows the increased randomness at the solid/solution interface during the adsorption 

process. 

 

3.6 Equilibrium modeling 
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Experimental data was tested to describe the experimental results with Langmuir, Freundlich 

and Guggenheim–Anderson–de Boer isotherm [54]. 

The Langmuir isotherm sorption monolayer assumes a surface containing finite active sites. 

Once one of these sites is occupied by a molecule is not possible that it interacts with other 

molecules. Langmuir isotherm has a hyperbolic dependence given by Equation 9: 

eeq

eeqm
e

CK

CKQ
q



1

[9] 

where Qm is the maximum adsorption layer per unit mass of sorbent, KL is the equilibrium 

constant for sorption reaction. Langmuir model is derived from a number of assumptions:  

 All active sites have equal affinity for the sorbate 

 Sorption is limited to a monolayer 

 The number of sorbed species cannot exceed the number of active sites, it 

corresponds to the stoichiometry 1:1 

Plazinski [55] shows that the Langmuir isotherm can be described from the equilibrium 

constant for the sorption sites with only occupation. The essential characteristics of the 

Langmuir isotherm can be expressed in terms of a dimensionless constant separation factor 

RL that is given by Equation 10: 

mL
L

QK
R



1

1
[10] 

where Qm is the highest initial concentration of adsorbate (mgL-1), and KL (Lmg-1) is the 

Langmuir constant. The value of RL indicates the shape of the isotherm to be either 

unfavorable (RL>1), linear (RL=1), favorable (0<RL<1), or irreversible (RL=0). The RL values 

between 0 and 1 indicate favorable adsorption. 

Freundlich model assumes a heterogeneous adsorption, with active sites of the adsorbents 

which exhibit affinity sorbate distribution. Higher affinity sites are the first to be occupied. 

The model can be expressed by Equation 11: 

Ce FnFe Kq
1

 [11] 

where KFis the constant related to adsorption capacity and nF is a parameter related to 

sorption intensity. 
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Guggenheim–Anderson–de Boer (GAB) model [56] (Equation 12) is frequently used in the 

fitting of experimental multilayer isotherms: 

 

])(1)[1( 212

1

ee

em
e

CKKCK

CKQ
q


 [12] 

where Qm (mg·g-1) is the maximum adsorption capacity on the first monolayer, K1 and 

K2(L·mg-1) are the equilibrium constants for the first and the second monolayer, respectively. 

In order to simplify the calculation of the equilibrium, the formation of only two monolayers 

has been supposed. Results can be seen in Figure 18 and Figure 19 for each material. 

In the case of CAT, GAB model was not analyzed because the formation of multilayers is 

not supposed. On CARBOPAL, model parameters and R2 values presented in Table 6 

indicate that GAB model showed the best correlation with experimental adsorption data. The 

shape of the curves on CARBOPAL indicates multilayer formation. The fraction of the CAT 

surface that is occupied by pesticide molecules (θ) can be calculated from the amount of 

pesticide adsorbed and the surface area occupied by one pesticide molecule (σ) using the 

Equation 13 [57]: 

BETS

QmN 10
20




 [13] 

where θ represents the fraction of the surface that is occupied by pesticide molecules at 

saturation; Qm (mol·g-1) is the amount of bentazon adsorbed at saturation, as obtained from 

the Langmuir model; σ (Å2·molecule-1) is the surface area occupied by one molecule; N is 

the Avogadro’s number (6.022 x 1023); SBET is the specific surface area of the adsorbent 

(946 m2·g-1). McClellan and Harnsberger have proposed an empirical relationship, Equation 

14 that may be used for the estimation of σ for organic molecules adsorbed on activated 

carbon [57]: 

)(10
)
3
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16
091.1
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x


  [14] 

where Mw is the molar mass of the adsorbed molecule (g·mol-1); δis the adsorbate density 

(g·cm-3) and N is Avogadro’s number. Table 7 resumes the results. 
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3.7 Comparing with other carbonaceous materials 

Adsorption capacity obtained for both materials was compared with other carbon 

adsorbents. Ayranci et al [58] analyzed adsorption equilibrium of bentazon on a different 

type of activated carbon, with a much larger specific surface area (named as 

Spectracarb2225, having a specific area of 2500m2 g-1). Adsorption capacity of this material 

achieved 100 mg·gr-1, value much lower than those obtained for the materials used in our 

work. Salman, Njoku and Hameed also analyzed bentazonremotion onto banana stalk 

activated carbon [59]. In this work the authors achieved the lowest adsorption capacity: 80 

mg·gr-1. Omri et al [42] also studied bentazon adsorption on carbon prepared from 

Lawsoniainermis wood. In this work, the adsorption capacity achieved slightly exceeded the 

120 mg·gr-1 at 293 K, also very lower to the values obtained with the CAT and CARBOPAL 

adsorbents. Omri et al also studied the effect of temperature, and the values are also much 

lower (between 100 and 70 mg·gr-1). Salman et al also studied bentazon adsorption [60], 

and they achieved only 104,2 mg·g-1 at 303 K. This allows us to affirm that the materials 

studied in our work are superior as adsorbents for the removal of bentazon. 

 

3.8 Computational results 

 

It is known that dissociation of the bentazon molecule is affected by pH changes. Bentazon 

exists predominantly in anionic form under pH conditions near neutrality while the neutral 

molecule is the main specie in solution at low pH.  The adsorption of both neutral and ionized 

forms of bentazon adsorbed on activated carbon model was studied by the VASP. DFT 

method is an efficient tool of quantum chemistry to calculate structural and energetic 

properties of large systems. The different on adsorption can be explained in terms of the 

pesticide structure and the surface behavior. At a given pH, the carbon surface and the 

adsorbate species may coexist in a complex system, resulting in some different adsorption 

schemes. In order to study the optimum adsorption geometry and the associated minimum 

energy, different initial adsorption geometries have been selected. Figure 20 shows the 

adsorption geometries for neutral bentazon, similar geometries were selected to study the 

adsorption of the ionized form of bentazon.  
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Given the aromatic structure, dispersion forces should be predictable between the π electron 

density of graphene layer on the activated carbon and the aromatic ring of the adsorbate. 

On the other hand, some specific localized interactions take also place from the polar groups 

of bentazon (i.e., carbonyl, sulfoxide -group). The decrease in the amount adsorbed at 

higher pH when anionic form predominant in solution is suggested by the weaker 

interactions of carbon surface with deprotonated bentazon than with its neutral form (the 

adsorption energies can be seen in Table 8). As pH is increased, the extent of dissociation 

of bentazon molecules is increased and the molecules become more negatively charged. 

The adsorption facility is reduced because carbon layer repels the bentazon anions reducing 

its contact to the carbon surface. It results in increased repulsion between molecule and 

surface leading to decrease in equilibrium adsorption (see Table 8). On the other hand, it is 

understandable to presume that bentazon is major stabilized and mainly trapped through π-

π dispersive interactions with the aromatic ring moving toward to the carbon surface; it is 

confirmed by our DFT calculations that present the bentazon flat adsorption geometry as 

the most stable (see Table 8). 

 

4. Conclusions 

Adsorption equilibrium and kinetics of the bentazon pesticide on two different classes of 

activated carbon, CAT and CARBOPAL, was studied. Kinetics indicated that pesticide 

followed pseudo-second-order model on both adsorbent. Adsorption capacity decreases 

with the increase of temperature, pH and ionic strength variables. The adsorption capacity 

at 293 K was determined as 391.65 mg·g-1 and 185.07 mg·g-1 on CAT and CARBOPAL, 

respectively. Multilayers were formed on CARBOPAL, where the first layer has the strongest 

interactions. Experimental data adapt to Langmuir model on CAT and Guggenheim–

Anderson–de Boer isotherm models on CARBOPAL. Adsorption of bentazon was found to 

be spontaneous at the temperatures under investigation (293-341 K) as indicated from the 

negative values of Gibbs free energy. Computational simulation shows that the possible 

interactions between the carbon surface and bentazon would be either dispersive 

interactions or electrostatic repulsion. As repulsion between molecule and surface is 

increased, the equilibrium adsorption energy leads to decrease. In general, bentazon is 

major stabilized and mainly trapped through π-π dispersive interactions when it is flat 

adsorbed on carbon surface. All these results show the efficiency of CAT and CARBOPAL 
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as potential materials for remediation of contaminated waters and ground waters with 

bentazon herbicide. 
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Table 1. Physical properties of CAT and CARBOPAL. 

Properties CAT CARBOPAL 
BET surface area (m2·g-1) 983 1588 

Average pore diameter (nm) 1 >0.8 
Volume monolayer (mmol·g-1) 9.89 14.72 

 

   



Fig. 1: Chemical structure of bentazon 

Figure 1
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Fig.2: Absorbance spectrum of bentazon in aqueous solution 

Figure 2
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Fig. 3: speciation diagram of bentazon 

Figure 3
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Fig.4: Representation of the surface of activated charcoal. 

Figure 4
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(a) 

Fig 3: N2 adsorption-desorption isotherm of (a) CARBOPAL and (b) CAT 

(b) 

(b) 

(b) 

Fig. 5: N2 adsorption-desorption isotherm of (a) CAT and CARBOPAL (b). 

Figure 5
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     Fig. 6: Pore size distribution of (a) CAT and CARBOPAL (b). 

Figure 6

http://eeslive.elsevier.com/apsusc/download.aspx?id=2352706&guid=93fb75c3-a026-4b51-b293-22c68f5c295a&scheme=1


Fig 7: infrared spectra of CAT (pink line) and CARBOPAL (red line) commercial coals 

Figure 7
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Fig.8: FT-IR of CAT (black line) and CARBOPAL (red line) 

Figure 8
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      (a) 

      (b) 

 Fig.9: SEM images of CAT (a) and (b) CARBOPAL 

Figure 9

http://eeslive.elsevier.com/apsusc/download.aspx?id=2352709&guid=9d01046d-d982-49a7-ac46-abd5b5be08aa&scheme=1


0 200 400 600 800 1000

25

26

27

28

29

30

31

32

 TG

 DTG

Temperature (°C)

m
a

s
s
 (

m
g

)

-0,07

-0,06

-0,05

-0,04

-0,03

-0,02

-0,01

0,00

0,01

D
e

riv
a

tiv
e

 w
e

ig
h

t (%
·°C

-1)

 (a) 

0 200 400 600 800 1000

-0,030

-0,025

-0,020

-0,015

-0,010

-0,005

0,000

0,005

 DTG

 TG

Temperature (°C)

D
e

ri
v
a

ti
v
e

 w
e

ig
h

t 
(%

·°
C

-1
)

18

19

20

21

22

23

24

m
a

s
s
 (m

g
)

       (b) 

Fig. 10: TG and DTG spectrum of CAT (a) and CARBOPAL (b) 

Figure 10
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Fig.11: Adsorption kinetics of bentazon onto CAT and CARBOPAL 
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Fig.12: Pseudo-first-order kinetic for bentazonadsorption on CAT and CARBOPAL. 
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Fig.13: Pseudo-second-order kinetic for adsorption of bentazon on CAT and CARBOPAL.
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Fig.14. Effect of pH on equilibrium uptake of bentazon on CAT and CARBOPAL 
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        Fig.15: Isotherm on CAT (a) and CARBOPAL (b) at different pH 
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Fig.16: Adsorption isotherm on CAT (a) and CARBOPAL (b) with different ionic strength 
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Fig.17: Adsorption isotherm on CAT (a) and CARBOPAL (b) at different temperatures: black dotes is at 298 K, 

red dotes at 325 K and blue dotes is at 341 K 
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Fig.18: Adsorption isotherm modelling on CAT. Blue line represents Freundlich model and the red line 

represents the model of Langmuir 
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Fig.19: Adsorption isotherm modelling on CARBOPAL. Blue line represents Freundlich model, the red line 

represents the model of Langmuir and green is GAB model 
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http://eeslive.elsevier.com/apsusc/download.aspx?id=2352719&guid=82465792-35e6-43cb-b605-a7f885cd60da&scheme=1


Fig. 20: Adsorption geometries for neutral Bentazon on activated carbon surface 

Figure 20
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Table 2. Adsorbents chemical properties. 

Adsorbents 
pH point of 
zero charge 

[Carboxyl group] [Phenolic group] [Basic group] 

CAT 7.46 2.721 mmol·g-1 7.781 mmol·g-1 2.441 mmol·g-1 

CARBOPAL 4.78 1.312 mmol·g-1 7.922 mmol·g-1 7.832 mmol·g-1 
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Table 3. Kinetic model parameters for adsorption of bentazon onto CAT and CARBOPAL. 
 

Kinetic model 
CAT CARBOPAL 

Parameter Value Parameter Value 

 
Pseudo-first-order 

k1(min-1) 
qe

cal 

R2 

0.0368 
126.037 
0.9778 

k1(min-1) 
qe

cal 

R2 

0.0541 
12.977 
0.9329 

 
Pseudo-second-order 

k2 (g·mg-1·min-1) 
qe(mg·g-1) 

R2 

4.862x10-4 
263.157 
0.9993 

k2(g·mg-1·min-1) 
qe(mg·g-1) 

R2 

0.0063 
38.461 
0.9996 
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Table 4. Normalized standard deviation for kinetics models. 

Kinetic model 
Adsorbent 

CAT CARBOPAL 

Pseudo-first-order ∆q = 0.1989 ∆q =0.3867 

Pseudo-second-order ∆q =0.0287 ∆q =0.3440 

 

   



  28

Table 5. Summarized thermodynamics parameters calculated. 

Adsorbent T (K) ∆H (kJ·mol-1) ∆S (kJ·K-1·mol-1) ∆G (kJ·mol-1) 

CAT 
293 -6.471 3.536x10-3 -7.524 
325 - - -7.595 
341 - - -7.641 

CARBOPAL 
293 -15.672 1.045x10-2 -18.734 
325 - - -19.069 
341 - - -19.236 
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Table 6. Resume values obtained for isotherm modelling for both activated carbons. 

Isotherm model 

CAT CARBOPAL 

Parameter Value Parameter Value 

 
Langmuir 

Qm(mg·g-1) 
KL(L·mg-1) 

RL 
R2 

720.544 
0.0285 
0.0464 
0.9955 

Qm(mg·g-1) 
KL (L·mg-1) 

RL 
R2 

716.5946 
0.0494 
0.0152 
0.8388 

 
Freundlich 

KF (mg·g-1) 
nF 
R2 

45.4356 
1.7525 
0.9840 

KF (mg·g-1) 
nF 
R2 

89.858 
2.22 

0.9082 
 

Guggenheim–Anderson–de 
Boer 

Qm(mg·g-1) 
K1 (L·mg-1) 
K2(L·mg-1) 

R2 

- 
- 
- 
- 

Qm(mg·g-1) 
K1 (L·mg-1) 
K2 (L·mg-1) 

R2 

185.07 
3.515 

0.0216 
0.9230 
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Table 7. Values of σ and θ for adsorbed bentazon. 

Material (Å2·molecule-1) Qm (mg·g-1) SBET(mg·g-1) 

CAT 43.715 391.655 946 0.436 
CARBOPAL 43.715 185.07 1588 1.278 
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Table 8. Adsorption energies for neutral and ionized forms of bentazon on activated carbon. 

Geometry 
(Fig. 20) 

Neutral Bentazon 
(eV) 

Ionized Bentazon 
(eV) 

A -0.45 -0.30 
B -0.64 -0.59 
C -0.90 -0.87 
D -1.39 -1.03 
E -1.23 -0.71 

 

 


