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Abstract

We propose a complexity measure for black-and-white (B/W) digital images, based on the

detection of typical length scales in the depicted motifs. Complexity is associated with diver-

sity in those length scales. In this sense, the proposed measure penalizes images where

typical scales are limited to small lengths, of a few pixels –as in an image where gray levels

are distributed at random– or to lengths similar to the image size –as when gray levels are

ordered into a simple, broad pattern. We introduce a complexity index which captures the

structural richness of images with a wide range of typical scales, and compare several

images with each other on the basis of this index. Since the index provides an objective

quantification of image complexity, it could be used as the counterpart of subjective visual

complexity in experimental perception research. As an application of the complexity index,

we build a “complexity map” for South-American topography, by analyzing a large B/W

image that represents terrain elevation data in the continent. Results show that the complex-

ity index is able to clearly reveal regions with intricate topographical features such as river

drainage networks and fjord-like coasts. Although, for the sake of concreteness, our com-

plexity measure is introduced for B/W images, the definition can be straightforwardly

extended to any object that admits a mathematical representation as a function of one or

more variables. Thus, the quantification of structural richness can be adapted to time signals

and distributions of various kinds.

Introduction

“Bacteria, for example, are probably no more complex than their ancestors 2000 million years

ago. The most that we can say is that some lineages have become more complex in the course of

time. Complexity is hard to define or to measure but there is surely some sense in which ele-

phants and oak trees are more complex than bacteria, and bacteria than the first replicating

molecules.” (John Maynard Smith and Eörs Szathmáry, 1995 [1]).

“The term ‘mark’ derives from its earliest use in phonology. The marked member is rela-
tively complex in relation to the unmarked. Thus in our previously cited example, the nasal
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vowel is more complex acoustically than its oral counterpart in that it involves nasal resonances

in addition to the oral resonances of oral vowels.” (Joseph Greenberg, 1980 [2]).

“. . .as was already mentioned, attractors in dissipative chaos are generally not points, not

lines, but are more complex, and their complex geometrical nature is expressed by the fact that

they are fractals.” (Ilya Prigogine, 1990 [3]).

Although coming from three disparate areas of scientific knowledge, all of the above texts –

authored by very influential scholars of the last few decades, with emphases added by us–

implicitly address the possibility of comparing complexity between entities of a given class:

organisms, in the case of Maynard Smith and Szathmáry; phonemes, in the case of Greenberg;

and geometrical objects, in the case of Prigogine. A prerequisite for comparing complexity of

different objects, in turn, is to possess a way to assert how complex an object is. In the scientific

literature, complexity measures began to be systematically addressed during the 1980s, when

the theory of complex systems was acquiring sufficient consistency as to become a fruitful

background for interdisciplinary research [4].

A plausible measure of complexity is given by the information needed to specify the struc-

ture, the state, or the evolution of the object under study. This notion is particularly adapted to

systems for which an entropy can be defined, as in the case of probability measures, symbolic

sequences, and a large class of physical systems, among others. In fact, entropy is a straightfor-

ward statistical quantification of the difficulty of ascertaining the specific features being

described [5]. Information and entropy, in turn, are closely related to the concepts of algorith-

mic (Kolmogorov) complexity [6] and data compressibility [7], which are routinely used in

computer science to gauge the intricacy of problems in fields such as communication, infor-

mation flow, and decision making [8].

By definition, however, entropy quantifies disorder. As a consequence, any complexity

measure purely based on entropy estimations will generally assign higher values to features

with larger proportions of random ingredients. This direct connection between complexity

and randomness is unsatisfactory in many contexts [9]. Within statistical approaches, specifi-

cally, the analysis often becomes less involved when the degree of randomness grows. For

instance, the statistical-mechanical description of a gas is much simpler than that of a liquid,

despite the fact that molecular motions are less disordered in the latter than in the former. In

such cases, randomness corresponds to lower complexity. From a broader perspective, thus,

complexity measures are expected to capture the subtle balance between order and disorder –

flexibility and organization, diversity and systematicity– that distinguishes, for instance, living

beings from inanimate matter [10]. This point of view was first put forward by Weaver in 1948

[11], and extensively discussed in quantitative terms from the 1980s. It was early adopted to

measure complexity in computational algorithms, from an information-theoretical perspective

[12], as well as in thermodynamic states of physical systems, where the notions of order and

disorder admit a well-defined quantification [13, 14]. Similar approaches were soon applied to

all kinds of natural and artificial objects, ranging from dynamical and out-of-equilibrium sys-

tems [15, 16], to hierarchical structures [17], cellular automata and Boolean networks [18],

glassy systems [19], and many others.

In this contribution, we propose a complexity measure which, in principle, could be applied

to any entity that admits a mathematical representation as a function defined over a bounded

domain of arbitrary dimensionality. This wide class spans such disparate objects as a time

series obtained from an experimental measurement, the instantaneous distribution of particles

in a volume of gas, or the terrain elevation in a given region of the Earth. For the sake of con-

creteness, however, this complexity measure is not introduced in abstracto, but with reference

to a specific application, namely, quantifying the complexity of black-and-white (B/W) digital

images. In fact, B/W images can be conceived as a distribution of gray levels over a two-
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dimensional –typically, rectangular– domain, and therefore provide an opportune illustration

of the present proposal. Much along the ideas outlined in the previous paragraph, our com-

plexity measure aims to quantify the distance to both order and disorder. In the case of B/W

images, these two extremes can be respectively conceived as the pictorial representation of a

simple pattern, with typical lengths of the order of the image size, and a completely random

distribution of grays, where the only detectable structures are occasional small-scale regulari-

ties caused by local aleatory fluctuations. Complexity, in contrast, is expected to take its largest

values for images with a wealth of structural details, at many length scales.

It is worth mentioning that quantifying image complexity is a crucial step in the exploration

of high-level cognitive functions related to human visual perception, such as aesthetic appraisal

[20, 21]. Discerning between objective and subjective complexity is necessary for the correct

assessment of the stimulus-response connection up to the highest stages of our brain’s visual

pathway [20, 22]. The choice of B/W images to illustrate our complexity measure, therefore, is

also motivated by its possible applications to visual perception research.

Our approach is based on an automated procedure that, analyzing a B/W image at different

resolution levels, is able to identify the typical length scales of the depicted motifs. These

structural scales are then integrated into a single index that quantifies complexity, by direct

comparison with the extreme cases of fully ordered and disordered images. Several images are

compared with each other on the basis of this complexity index, an application to the analysis

of complexity in topographic data is presented, and a variety of aspects and possible extensions

of the approach are discussed.

Results

Detecting typical scales in a black-and-white digital image

For the present purposes, a black-and-white (B/W) digital image is conceived as a rectangular

array of pixels, where each pixel is characterized by its gray level. Assuming the standard gray-

level resolution of 8 bits per pixel, the gray level of each pixel is an integer number which varies

between 0 and 255. Our quantification of complexity is based on the analysis of local variations

of the gray level for a series of versions of the same image at successively decreasing spatial

resolutions. Details are given in the Methods section. For each spatial resolution, we measure

the variance of the gray level inside small domains at different points on the image, and then

average the obtained variances over the whole image. The resulting mean variance V is

assigned to a scale S, given in pixels, which depends on the resolution and on the size of the

domains where the variance is computed. The scale S defines the typical length, measured on

the original image, over which the gray-level variance is being calculated. As the resolution is

changed, the scale varies, and a value of the mean variance for each scale, V (S), is determined.

The above described procedure is a variant of a method proposed in the frame of the so-

called scale-space theory [23] to detect characteristic scales in an image. According to this for-

mulation, for an image portraying a pattern with a well defined typical length, the gray-level

mean variance V (S) attains a maximum at a scale which is directly related to that length [24].

In the Methods section we outline a mathematical proof of this fact. Semiquantitatively, it is

clear that, for scales much smaller than the typical length of image patterns, the mean variance

will be small. In turn, for values of S much larger than the typical lengths, successive resolution

reductions would have smoothed out the image structure, and V (S) will again be small. Higher

values of the mean variance are expected for intermediate scales, around the typical length of

the depicted patterns.

As an illustration, Fig 1 shows the gray-level mean variance V as a function of the scale S,

measured in pixels, for the three images shown in the leftmost column. The images, which are
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all 360 × 540 pixels in size (aspect ratio 2: 3), portray smoothed chessboard-like patterns, with

different offsets with respect to the edges. From top to bottom, the side of the square cells in

each image are 6, 18, and 54 pixels. In the plot, dots stand for the computed mean variances,

and curves are B-spline interpolations included for clarity. In the three cases, V (S) attains its

maximum at a value of S which closely coincides with the side of the cells, as shown by the ver-

tical dashed lines. These examples demonstrate that, as predicted by scale-space theory, the

position of the maxima provides an excellent estimate of the typical length scale of the patterns

depicted in the images. This prediction will here be used as the basic hypothesis to detect struc-

ture in complex images.

Images with several typical scales

Take now the two 360 × 540 images in the leftmost column of Fig 2. The upper one is a mosaic

combining six 180 × 180 patches taken from the three images of Fig 1. Full squares in Fig 2

stand for its mean variance. For comparison, the plot also includes the data already shown in

Fig 1 for the chessboard-like images with cells of size 6 pixels (empty circles) and 54 pixels

(empty squares). For the new image, the mean variance exhibits three local maxima, at posi-

tions coinciding with the maxima for the images of Fig 1. Clearly, V (S) is capturing the combi-

nation of scales present in the new image and, at the same time, displays a much broader

shape.

The other image in Fig 2 is Leonardo da Vinci’s Mona Lisa, a portrait painted at the begin-

ning of the sixteenth century. The corresponding mean variance is shown in the plot as full

Fig 1. The gray-level mean variance V as a function of the scale S, measured in pixels, for the three 360 × 540 images shown to the left (circles:

Upper image; triangles: Middle image; squares: Lower image). Curves are B-spline approximations for log V as a function of log S. Vertical dashed

lines stand at the values of S coinciding with the side of the square cells in each image. The slanted segment has slope +2, representing the algebraic

functional relation V (S)/ S2 in the log-log plot. The B/W images in this figure are the author’s work. They are available as S1 File.

https://doi.org/10.1371/journal.pone.0207879.g001
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circles. Overall, its profile is much smoother than for the upper image. On the average, more-

over, the slope is substantially lower than for the chessboard-like images. According to the

above interpretation for the upper image, V (S) must be incorporating contributions of typical

lengths at various scales S. Inspection of Mona Lisa’s portrait, taking into account details both

in the main subject (face, hair, dress) and in the richly structured background landscape, quali-

tatively supports the assertion that many typical lengths are adding to V (S). Indeed, in the

360 × 540 resolution of the original image, pictorial elements span scales from a few pixels to

large portions of the canvas. As advanced in the Introduction, it is this structural richness what

we aim to associate with complexity in an image. A criterion to quantify image complexity

may therefore arise from a measure of the flatness of V (S): contributions coming from many

scales should tend to produce a more horizontal profile for the gray-level mean variance.

To further explore this idea, and in order to perform a more consistent comparison

between different images, let us analyze a set of images that not only coincide in size –as in the

cases shown in Figs 1 and 2– but which are formed by exactly the same collection of pixels, i.e.

with coincident distributions of grays. Different profiles for V (S) can thus be purely attributed

to the specific way in which the same pixels are positioned over each image [21]. In the follow-

ing, the Mona Lisa image of Fig 2 is taken as the source of the pixel collection.

Consider first two rearrangements of the Mona Lisa pixels whose complexity –according to

the concepts discussed in the Introduction– should reach the lowest values. One is an image

where pixels are redistributed at random. In the other image, pixels are orderly arranged by

their brightness from the upper-left corner (darkest gray) to the lower-right corner (brightest

gray). Both are shown in the left column of Fig 3. In the random image, apart from local

Fig 2. As in Fig 1, for the two 360 × 540 images shown to the left (full squares: Upper image; full circles: Lower image). Empty symbols correspond

to the same data shown in Fig 1, for the uppermost and lowermost images in its left column. The B/W images in this figure are either the author’s work

or copyright-free material in the public domain, downloaded from http://commons.wikimedia.org. They are available as S1 File.

https://doi.org/10.1371/journal.pone.0207879.g002
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fluctuations, no discernible structure is present. In the ordered image, the only apparent struc-

ture is the ramp from darker to lighter grays, spanning the whole image width. The main panel

shows V (S) for the two images (full symbols), and for Mona Lisa (empty circles). We see that

the variance of the random image closely follows an algebraic decay of exponent −2, namely,

V (S)/ S−2. For the ordered image, the dependence is also approximately algebraic, V (S)/ Sγ,
with a positive exponent very close to 2 for S≲ 20 pixels, and a lower exponent (γ� 1.4) for

larger scales. Both profiles are significantly steeper, in either direction, than for the Mona Lisa

image.

As a matter of fact, it is possible to give a simple analytical argument showing that the vari-

ance of a random image should depend on the scale as V (S)/ S−2. Similarly, under rather gen-

eral conditions, the ordered gray distribution should have a variance close to V (S)/ S2. These

arguments are outlined in the Methods section. Note that the functional relation V (S)/ S2 is

also present in the data shown in Fig 1 for the small-S range. At the shortest scales, in fact, the

images considered in Fig 1 and the ordered rearrangement of Mona Lisa are statistically very

similar, with smoothly varying shades of gray.

Thus, for a given collection of pixels, the slopes −2 and 2 in the log-log plot of V (S) turn

out to be a compact characterization of the functional relations between mean variance and

scale for the extreme cases of fully random and fully ordered images, which we aim to associate

with the lowest complexity values. This suggests that a quantification of complexity may result

from a suitably defined distance between a given variance profile and the functional relations

characterized by the two slopes, assigning larger complexity values to flatter profiles. Using

Fig 3. As in Fig 1, for the two 360 × 540 images shown to the left, both obtained as rearrangements of the pixels in the Mona Lisa image of Fig 2

(full squares: Upper image—Random rearrangement; full circles: Lower image—Ordered rearrangement). Empty circles correspond to the Mona

Lisa data, also shown in Fig 2. The slanted segments have slope −2 and +2, respectively representing the algebraic functional relations V (S)/ S−2 and

V (S)/ S2 in the log-log plot. The B/W images in this figure are the author’s work. They are available as S1 File.

https://doi.org/10.1371/journal.pone.0207879.g003
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this idea, in the Methods section we define an index Q which quantifies the degree of complex-

ity of a B/W image, and thus makes it possible to compare images with each other.

Before reporting the results of computing the complexity index Q, let us explore how the

gray-level mean variance behaves for a few other rearrangements of the Mona Lisa pixels. To

generate these rearrangements, we choose a reference image of the same size as Mona Lisa,

and use it as a “mold” to redistribute the pixels, as follows. We rank the pixels in the reference

image and in Mona Lisa by their gray level –for instance, from brightest to darkest. The relative

ranking of pixels with identical gray level in each image is irrelevant to the procedure. Then,

we replace each pixel in the reference image by the pixel with the same rank in Mona Lisa. The

resulting image is a rearrangement of the Mona Lisa pixels with the same semblance as the ref-

erence image (see the examples in Fig 4).

The upper-left panel of Fig 4 shows the result of the variance analysis for a rearrangement

of the Mona Lisa pixels using as a reference image a self-portrait by Vincent van Gogh, painted

in the 1880’s. Full symbols in the plot represent V (S) for the van Gogh image (shown in the

inset), while empty circles correspond to the original Mona Lisa image, already shown in Figs

2 and 3. Comparing with Mona Lisa, the substantially larger values of V (S) for small S (≲ 20

pixels) in the van Gogh portrait are to be ascribed to the clearly visible paintbrush strokes,

Fig 4. As in Fig 1, for four rearrangements of the Mona Lisa pixels. In each panel, full and empty symbols respectively correspond to the image

shown in the inset and to the 360 × 540 Mona Lisa image. Upper-left: Vincent van Gogh’s “Self-Portrait with Grey Felt Hat”. Upper-right: A

photograph of a fish school. Lower-left: Urban landscape in New York city. Lower-right: A forest landscape. The B/W images in this figure are either the

author’s work or copyright-free material in the public domain, downloaded from http://commons.wikimedia.org. They are available as S1 File.

https://doi.org/10.1371/journal.pone.0207879.g004
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characteristic of the Impressionist artist’s style, which add a rich small-scale structure to the

image. In sharp contrast, Mona Lisa is a paramount example of Leonardo’s sfumato style,

where the purposely blended adjacent surfaces make the brushstrokes indiscernible. The abun-

dant small-scale details of the van Gogh image thus result in a flatter profile for V (S).

The other examples shown in Fig 4 take as reference images three photographs of the real

world. In the three cases, the aspect ratio is rotated 90˚ with respect to Mona Lisa but, within

our methodology, this does not affect the comparison. The upper-right image shows a fish

school. Since the salient feature in this photograph is the repeated shape of individual fish, not

unexpectedly, V (S) shows a maximum at S� 25 pixels, which broadly coincides with the typi-

cal length of a fish on the image. The lower-left image portrays an urban landscape which, due

to perspective effects, exhibits details of many sizes. The resulting profile for V (S) is, as in the

case of van Gogh’s self-portrait, significantly flatter than for Mona Lisa. An even flatter profile

is obtained for the lower-right photograph, a forest landscape dominated by foliage of varied

brightness. The wealth of details at all scales –in particular, in the distribution of light and

shadows– determines that the mean variance is virtually independent of scale.

Table 1 shows the complexity index Q obtained for the Mona Lisa image and all the rear-

rangements considered in Figs 3 and 4, ordered by increasing values of Q. By definition (see

Methods), the numerical value of the complexity index is restricted to the interval [0, 1]. Larger

values correspond to images with flatter variance profiles. Overall, the resulting ordering of

these images seems to agree with an intuitive notion of complexity which captures structural

richness at different scales.

Application: A complexity map for South-American topography

As an application of the quantification of complexity in B/W digital images, we have studied

the distribution of the complexity index Q over a large image representing the topography of

South America. As a source, we used the “Topography” digital mosaic from NASA’s Visible

Earth (Blue Marble) collection –a gray-scale representation of elevation data obtained by

space-based radars all over our planet [25]. We combined the two 10800 × 10800 tiles which

cover the South-American continent, cropped the combination using a 2: 3 aspect ratio frame,

and rescaled the resulting image to a final size of 2560 × 3540 pixels. The 2560 × 3540 image

can be divided into 40 × 60 = 2400 non-overlapping sub-images of 64 × 64 pixels. For each one

of these sub-images, we have calculated the index Q, following the same procedure as above.

Moreover, to test the consistency of the results, we have repeated the analysis with 32 × 32 sub-

images (9600 in number), obtaining –up to variations associated with the different size of the

sub-images– a fully compatible distribution for the complexity index.

Table 1. Complexity index for various B/W images.

Image Complexity index Q

Random 0.063

Ordered 0.283

Fish school 0.754

Mona Lisa 0.764

van Gogh’s self-portrait 0.971

Urban landscape 0.978

Forest landscape 0.991

The complexity index Q for the Mona Lisa image of Fig 2, and all the rearrangements considered in Figs 3 and 4,

ordered by increasing values of Q.

https://doi.org/10.1371/journal.pone.0207879.t001
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The central panel of Fig 5 shows a contour plot of the distribution of the index Q over the

topography image of South America, constructed from the grid of results obtained for the

2400 sub-images. Darker and brighter shades respectively stand for larger and lower values of

Q. The small square frame in the upper-left corner shows the relative size of each 64 × 64 sub-

image. The four larger frames scattered over the plot correspond to 256 × 256 sectors. The

inset connected to each frame shows the respective sector of the original image, with its con-

trast enhanced for better visibility.

At first sight, it may come as a surprise that the largest zone with high values of Q spreads

out over the Amazonian forest –a very flat region, mainly within Brazil, in the upper-central

part of the map– while, except at the southern end, Q is comparatively small on the mountain-

ous Andean area, along the western coast. We must bear in mind, however, that the index Q is

designed to detect multiplicity in structural scales, rather than just variability in the gray levels.

To elucidate this point, it is useful to inspect some selected spots of the Q distribution and the

corresponding sectors of the original image.

Fig 5. Central panel: A complexity map of the South-American topography. Darker and brighter shades

respectively correspond to larger and lower values of the complexity index Q. The insets A to D display selected

sectors, 256 × 256 pixels in size, of the original B/W image, which codes terrain elevations as gray levels. The small

square in the upper-left corner shows the relative size of the 64 × 64 sub-images used to determine Q all over the

original image. The original B/W image is copyright-free material (https://visibleearth.nasa.gov/useterms.php) from

NASA Visible Earth collection, downloaded from https://visibleearth.nasa.gov/view.php?id=73934 [25]. The cropped

South-America image is available as S1 File.

https://doi.org/10.1371/journal.pone.0207879.g005
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Inset A shows a 256 × 256 sector in south-central Brazil, where Q attains a relatively large

value as compared with the surroundings. The spot turns out to coincide with the uppermost

basin of Paraná River, the second longest in South America. The intricate network of a multi-

tude of tributaries, converging to increasingly larger streams, translates into a wealth of details

at many scales. Indeed, river drainage networks are one of the best-known examples of real-

world fractals [26]. The self-similar nature of these geomorphological features, whose forms

copy each other at different typical lengths, is consistent with a large value of Q. Note that the

large-Q broad arc surrounding the Amazonian region covers the upper drainage basin of the

other two large South-American rivers, Amazon and Orinoco.

Another spot of large Q occurs on the southernmost Pacific coast in Chile (inset B). The

extremely labyrinthine coastline, formed by myriads of fjords, has also been carved by a drain-

age system –in this case, of glaciers from the Southern Patagonian Icefields– and shares the

self-similar geometry of river networks. Coastlines, in fact, are another classical example of

natural fractals [27]. In the zone shown by inset B, drainage occurs also eastward, into the Pata-

gonian steppe, where the complexity index decreases rapidly in the direction of the Atlantic

Ocean.

At the other extreme, the largest region of low-Q values covers most of central Argentina.

Inset C shows that this zone is not free of topographical features. In fact, it spans a substantial

part of the Sierras Pampeanas ranges, which attain heights above 6000 meters a.s.l. However,

apart from a few small drainage networks in the east, the topography does not possess suffi-

cient diversity in length scales as to contribute to a large complexity index.

Finally, inset D shows a region of intermediate values of Q, coinciding with the Puna pla-

teau and comprising many high peaks, visible as bright dots. Complexity decreases westward,

where topography becomes less intricate at the Atacama desert. Also eastward, beyond a zone

with several small drainage systems, smaller complexity indexes unveil the connection with the

ample low-Q region to the south. These examples illustrate a concrete use of quantifying image

complexity, in this case, revealing nontrivial geometrical features of topographical traits.

Methods and mathematical proofs

In this section, we first describe the two main procedures used to quantify complexity in a B/

W digital image, namely, the measurement of the gray-level mean variance as a function of the

scale, V (S), and the definition and computation of the complexity index Q. Then, we outline

mathematical proofs for the connection between the maximum of V (S) and the typical scale of

a periodic pattern, and for the algebraic dependence of V (S) for random and ordered images.

Gray-level mean variance as a function of scale

For a given original B/W image of N ×M pixels in size, we obtained different versions of the

image with reduced resolution, using a standard resizing algorithm. In practice, we employed

the ImageResize built-in function of Mathematica, choosing for resampling a nearest-neighbor

symmetric interpolation kernel [28]. Each resolution was defined by a reduced image size of

N0 ×M0 pixels, with N0/M0 = N/M so that the aspect ratio was preserved. For the 360 × 540

images shown in Figs 1 to 4 (N/M = 2/3), we chose a series of 33 values of N0, given by the set

{360, 328, 300, 272, 248, 224, 204, 188, 168, 156, 140, 128, 116, 108, 96, 88, 80, 72, 68, 64, 60, 56,

52, 48, 44, 40, 36, 28, 24, 20, 16, 12, 8}. For the 64 × 64 sub-images of the South-American

topography image (N/M = 1), the values of N0 were {64, 56, 48, 40, 32, 24, 16, 8}.

At each resolution, we divided the N0 ×M0 image into non-overlapping boxes of size L × L.

To avoid cropping, L was chosen among the common divisors of N0 and M0 (effectively, as

explained below, we always took L = 2). For each box b, we calculated the sample variance of
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the gray level gi for the pixels i inside the box:

Vb ¼
1

L2 � 1

X

i in b
ðgi � �gbÞ

2
; ð1Þ

with

�g b ¼
1

L2

X

i in b
gi ð2Þ

the mean value of gi over the box. The gray-level mean variance V was computed as the average

of Vb over the N0M0/L2 boxes:

V ¼
L2

N 0M0

X

b
Vb: ð3Þ

This value of V was assigned to a scale S such that the L × L box in the reduced image corre-

sponded to an S × S box in the original image, namely,

S ¼
LN
N 0
¼

LM
M0

: ð4Þ

For the above quoted values of N0 and L, the scale S varied between Smin = 2 for N0 = 360 and

Smax = 90 for N0 = 8.

As far as the boxes over which the gray-level variance is calculated are not too large as com-

pared with the whole image, the choice of the size L is in principle arbitrary. However, we veri-

fied that –as may have been expected– the smaller the value of L, the sharper the definition of

typical scales in the plot of V as a function of S. For instance, the maxima in V (S) for the

images considered in Fig 1 were better defined for small L. For larger L, the maxima persisted,

but became flatter. In view of this observation, we used L = 2 all along our study.

Note that the steps of resolution change and variance computation cannot be interchanged

with each other, or aggregated into a single step where the variance is calculated over increas-

ingly large boxes, without altering the result for V (S). In fact, the variance is a nonlinear func-

tion of the gray levels, while resolution reduction is, essentially, a linear average of grays. The

separation of the two stages is crucial to the identification of typical scales with the values of S
at which V (S) attains its maxima [24].

The chessboard-like images of Figs 1 and 2, as well as the random and ordered versions of

Mona Lisa (Fig 3) were produced by ourselves. The other images are processed versions of

copyright-free images downloaded from the public domain in the World-Wide Web or of

photographs taken by ourselves. The original images were cropped, color-desaturated, and

changed in brightness and color to suit the present purposes. The analyzed images are available

as S1 File, in compressed format.

Complexity index for B/W images

As discussed in the Results section, complexity can be quantified by the degree of flatness in

the profile of the gray-scale mean variance as a function of the scale which, for each scale, is

measured by the derivative dV/dS. We have seen that the values of both V and S can span wide

intervals, which makes the log-log graphical representation used in Figs 1 to 4 more suitable to

encompass the results of the computation of V (S). Accordingly, the quantification of the flat-

ness of the variance as a function of the scale is better achieved using the logarithmic variables

v = log V and s = log S, through the derivative dv/ds = (S/V)dV/dS. Note that dv/ds, which
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measures the slope of V (S) at each point in the log-log plot, does not depend on the selected

logarithm base, as long as it is the same for v and s.
Taking into account that the slopes ±2 are close to the profiles associated with images of –

arguably– minimal complexity (see Fig 2), the quantity qðsÞ ¼ 1 � 1

4
ðdv=dsÞ2 can be proposed

as a measure of the contribution of each scale to the complexity of the image under analysis.

Namely, the flatter the variance profile at s, the smaller the derivative dv/ds, and the larger q(s).
Conversely, the closer dv/ds to ±2, the smaller q(s). In principle, moreover, it would be possible

that q(s) attains negative values, in the case where the variance profile becomes so steep that

(dv/ds)2 > 4. In the following, we disregard these contributions of “negative complexity”. To

aggregate the information provided by the function q(s) into a single complexity index, we

define

Q ¼
1

smax � smin

Z smax

smin

1 �
1

4

dv
ds

� �2
" #

þ

ds; ð5Þ

as the integral of q(s) over s, between the limits given by the minimal and maximal scales used

in the analysis of the image in question, smin and smax. Integration intervals where q(s) may be

negative are excluded using the ramp function: [x]+ = x if x� 0, and [x]+ = 0 otherwise. The

prefactor (smax − smin)−1 restricts the complexity index to the interval [0, 1] and, at the same

time, makes Q independent of the logarithm base used to define s. The complexity index

would reach its maximal value, Q = 1, for an image with equal variance at all scales, for which

V (S) has a perfectly flat profile. At the other end, Q would be zero for profiles with slopes

equal to or steeper than ±2 for all S.

Note that the index Q is invariant under a linear transformation of the gray level,

g 0i ¼ agi þ b, with α and β constants. The additive constant β, in fact, is irrelevant to the cal-

culation of the sample variance Vb in Eq (1) as it cancels in the difference between the gray

level g 0i and its average �g 0b. The prefactor α, in turn, affects the variance: V 0b ¼ a
2Vb, and thus

V0(S) = α2V (S). However, this prefactor disappears when we take logarithms and differenti-

ate with respect to s:

dv0

ds
¼

d
ds

logV 0 ¼
d
ds
ð2 logaþ logVÞ ¼

d
ds

logV ¼
dv
ds
: ð6Þ

The above linear transformation amounts to change the image contrast and brightness [29].

Hence, leaving aside truncation effects due to the fact that the gray level is an integer number

between 0 and 255, the complexity index does not depend on the degree of contrast and

brightness of the image. This independence is further commented on in the Discussion

section.

Naturally, as explained in the previous subsection, the procedure employed here to com-

pute V (S) yields the variance for several discrete values of the scale only. The examples pre-

sented in Figs 1 to 4, moreover, clearly show that V can display moderate irregular fluctuations

between neighboring values of S. In practice, thus, calculation of the integral that defines the

complexity index Q in Eq (5) requires to conventionally introduce some kind of interpolation

for the computed values of V (S). In the results reported in Table 1 we have used B-spline

unclamped piecewise interpolations of maximal degree, plotted in the figures as curves. For

the South-American topography sub-images, where the number of values of S was consider-

ably smaller, we employed instead a third-degree polynomial interpolation.
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Mathematical model for the mean variance of a periodic pattern

In the following, by means of a simple one-dimensional model, we show that the mean vari-

ance of a pattern with a well-defined typical length exhibits a maximum at a scale which is

directly related to that length. The model is inspired in a similar argument given in the frame-

work of scale-space theory [24]. Let g(x) = g0 + g1 cos(2πx/λ) model the gray-level distribution

along a continuous coordinate x. Clearly, g(x) represents a periodic pattern of wavelength λ –a

kind of one-dimensional proxy of the chessboard-like images of Fig 1. For convenience in the

calculations, we assume that the unit of measure on x is equivalent to one pixel.

In the context of this model, the procedure of resolution reduction applied in the main

text –which is realized by resizing of the image, from N ×M to N0 ×M0– can be represented as

an averaging of g(x) over a length γ = N/N0, plus a rescaling by a factor γ in the coordinate x.

The new gray-level distribution is

ggðxÞ ¼
Z

Kgðy � gxÞgðyÞ dy; ð7Þ

where Kγ(y) is the averaging kernel. Using the Gaussian kernel Kγ(y) = (2πγ2)−1/2 exp(−y2/2γ2),

and neglecting boundary effects, we get gγ(x) = g0 + g1 exp(−2π2 γ2/λ2) cos(2πγx/λ).

Once gγ(x) has been obtained, we compute its variance over an interval of length L
and average the variance over the coordinate x, getting the mean variance

Vg ¼ p
2g2L2g2

1
expð� 4p2g2=l

2
Þ=6l

2
. To obtain this result, we have assumed that L� λ, i.e.

that the averaging length is small as compared with the typical length of the original pattern.

Taking into account Eq (4), we have S = γL. Replacing γ = S/L in the above result for Vγ, we

get

VðSÞ ¼
p2

6

S
l

� �2

g2

1
exp �

4p2S2

L2l
2

� �

: ð8Þ

This form of the mean variance as a function of the scale has a maximum at S = Lλ/2π. The

position of the maximum, therefore, is directly proportional to the typical length λ of the

original pattern g(x).

It is interesting to mention that this calculation can be easily extended to the case where the

analyzed signal is a linear combination of periodic functions, such as g(x) = g0 + g1 cos(2πx/λ1) +

g2 cos(2πx/λ2) + � � � (although the algebra becomes considerably more tedious!). When the peri-

ods of the combined functions are mutually incommensurate, the signal is quasiperiodic. It can

be proven that, if the length L is much shorter than λ1, λ2, . . . and the mean variance is com-

puted over a sufficiently long interval over the variable x, much longer than λ1, λ2, . . ., contribu-

tions to V (S) coming from the products of two different terms in g(x) –which interfere with

each other– will be negligible as compared with the contributions coming from the square of

each single term –which reinforce themselves. As a consequence, V (S) will be approximately

given by a sum of terms involving each individual periodic function. If the periods are suffi-

ciently separated from each other, different contributions will be revealed as different maxima

in V (S). The procedure in this case mimics harmonic analysis, not unlike a Fourier transform.

Mean variance for random and ordered images

The algebraic relation between mean variance and scale for a random image, V (S)/ S−2, is a

direct consequence of the fact that resizing the original image from N ×M to N0 ×M0 effec-

tively conveys an average of the original gray level gi over (N/N0)2 pixels. If the variance of gi in

the original random image is s2
g , averaging gi over (N/N0)2 produces new random variables g 0i
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with a lower variance, s2
g0 ¼ ðN=N

0Þ
� 2
s2
g ¼ L2s2

gS
� 2; cf. Eq (4). This is an immediate byproduct

of the well-known Central Limit Theorem. Due to the overall homogeneity of the random

image, when the local variances, calculated over L × L boxes, are averaged to obtain the mean

variance, the same relation holds: Vg0 = L2VgS−2. Thus, for a given value of L, the mean variance

decays proportionally to the inverse squared scale, S−2.

For an ordered image as in Fig 3, the main contribution to the gray-level variance comes

from the variation of brightness along a single direction –in the case of the figure, the horizon-

tal direction. Thus, the gray-level distribution is essentially one-dimensional, much as in the

model considered in the preceding subsection. Suppose that, at a given resolution, the gray-

level distribution along the direction of main variation is linear, so that g 0i varies at constant

rate between its minimal and maximal values, g 0min and g 0max. If the image size along that direc-

tion is N0, the gray-level profile at that resolution can be represented by the linear function

g 0ðxÞ ¼ g 0min þ
g 0max � g 0min

N 0
x; ð9Þ

with x varying from 0 to N0. The variance of g0(x) over a length L along the variable x is

s2
g0 ¼

L2

12

g 0max � g 0min

N 0

� �2

�
S2

12

gmax � gmin

N

� �2

; ð10Þ

cf. Eq (4). Note that s2
g0 is independent of x, so that the mean variance is Vg0 ¼ s

2
g0 and, there-

fore, Vg0 / S2. To obtain the above dependence of s2
g0 on S, we have assumed that the extreme

gray-level values are maintained by image resizing: g 0max;min � gmax;min. This is expected to be the

case, at least, for moderate resolution reductions of the ordered image. Moreover, since resolu-

tion reductions are performed keeping the aspect ratio constant, the proportionality s2
g0 / S2

also holds if, in the direction of main brightness variation, the size of the image is M0 instead

of N0.
For any given image –for instance, Mona Lisa– an ordered rearrangement of its pixels will

generally not produce a linear gray-level profile as assumed above. However, on the average,

the profile slope along the direction of main brightness variation will always be given by

ðg 0max � g 0minÞ=N
0 (or with M0 instead of N0). Therefore, by virtue of Eq (4), a sufficiently smooth

profile will produce a mean variance approximately proportional to S2, as shown to happen for

Mona Lisa in Fig 3.

Discussion

We have proposed a complexity measure for black-and-white (B/W) digital images, on the

basis of a quantification of the structural richness –as given by the diversity of typical length

scales– in the depicted motifs. The results of this quantification are condensed in a single

quantity, the complexity index, essentially defined as a distance to two extreme cases associated

with minimal complexity: fully random and fully ordered distributions of gray levels. This defi-

nition of complexity as the distance to both order and disorder –which is aimed at capturing

the balance between organization and diversity that we intuitively associate with complex sys-

tems [9, 10]– is implicit in other complexity measures. In out-of-equilibrium physical systems,

for instance, complexity is quantified combining entropy, which increases as the system

approaches equilibrium, with the degree of nonequilibrium, which grows in the opposite

direction [16].

Our quantification of complexity conceives a B/W image as a distribution of gray levels

over a rectangular two-dimensional domain. The complexity index is obtained through a series
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of mathematical operations applied to that distribution. These operations can in principle be

applied to any distribution that admits a representation as a mathematical function over a suit-

ably defined domain of arbitrary dimensionality. The complexity index could therefore be cal-

culated for a broad variety of objects, within which the B/W images considered here are just a

specific class, chosen for its convenience in the illustration of the method. The construction of

a “complexity map” for South-American topography, although here performed on an image

representation of the elevation data, is an example of such applications. It is worth pointing

out that scale-space theory [23], on which we base the detection of typical scales in an image,

has also been applied to time (auditory) signals [30] –namely, distributions defined over the

one-dimensional temporal domain– and recently extended to deal with spatio-temporal

(video, 2 + 1 dimensional) signals [31]. This opens wide perspectives for the use of the com-

plexity index in connection with perception phenomena [20, 21]. In particular, whether the

present complexity quantification bears a positive correlation with perceived complexity in

images and other sensory signals should be decided on the basis of experimental research.

The complexity index Q defined here is but one way to integrate the information obtained

from the detection of typical length scales. Our specific definition has mathematical properties

that may be desirable in certain contexts, but that could be conveniently relaxed if necessary.

In particular, recall that –as shown in the Methods section– Q is invariant under a linear trans-

formation of gray levels, which amounts to changing the contrast and brightness of the image.

In other words, up to rounding and saturation effects due to the discreteness of gray levels, our

quantification assigns the same complexity to a given set of depicted motifs, independently of

the degrees of contrast and brightness with which they are shown on the image. This indepen-

dence sounds reasonable for an objective measure of structural intricacy, but it is not necessar-

ily convenient from a perceptual viewpoint, where –particularly– contrast can affect visual

complexity [20, 22, 32]. A dependence of the complexity index on contrast can be easily incor-

porated by weighting the contribution of each length scale with the gray-level mean variance,

which is directly affected by contrast changes or, equivalently, using the variance instead of its

logarithm in the definition of Q, Eq (5).

On the other hand, the effects of gray-level discreteness cannot be overlooked if contrast is

decreased to such extreme that structural details in the image disappear because they collapse

onto the same gray value. In this situation, increasingly larger portions of the image will have

very similar gray levels, locally resembling the ordered image which, in our analysis, we have

associated with one of the low-complexity extreme cases. This will translate into a decrease of

Q, indicating a reduction of the image complexity. Note that, in the limit where the contrast

has been reduced to such extent that the image becomes entirely monochromatic, the com-

plexity index calculated as in Eq (5) is ill-defined. In fact, in this pathological case, the average

variance is identically zero at all scales, and its logarithm –whose evaluation is necessary to

compute Q– is undetermined.

Similar considerations regard the fact that the complexity index has been defined in such a

way that it never exceeds the value Qmax = 1. This has been achieved by normalizing the contri-

butions to complexity coming from different length scales by the ratio of maximal and mini-

mal scales, which in turn depends on the image size. Such normalization has been useful in

our comparison of images of the same size –the several rearrangements of Mona Lisa, and the

sub-images of the South-American topography map– but, again, it might be not desirable in

certain contexts. Is it reasonable, from a perceptual viewpoint, that image complexity has an

upper bound? What happens with perceived visual complexity when images grow in size, in

such a way that they can incorporate more and more details? To what extent can these details

be cognitively grasped as elements of the same pictorial object? These questions call for further
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research, relating our proposed objective quantification of complexity to subjective assess-

ments coming from empirical results.

Supporting information

S1 File. Compressed file containing the images analyzed in this work.
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