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For classical Markovian stochastic systems, past and future events become statistically independent
when conditioned to a given state at the present time. Memory non-Markovian effects break this
condition, inducing a nonvanishing conditional past-future correlation. Here, this classical memory
indicator is extended to a quantum regime, which provides an operational definition of quantum non-
Markovianity based on a minimal set of three time-ordered quantum system measurements and
postselection. The detection of memory effects through the measurement scheme is univocally related
to departures from Born-Markov and white noise approximations in quantum and classical environments,
respectively.
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The definition of Markovianity and non-Markovianity in
a quantum regime has changed in time. Given that the
physical essence of a classical (memoryless) Markov
approximation leads to a local-in-time evolution for a
probability density [1], accordingly a quantum Markovian
regime was originally associated to local-in-time (nonuni-
tary) densitymatrix evolutions [2,3].Hence, approximations
that guarantee this property, such as the well-known Born-
Markov and white noise approximations [2–5], were related
to quantum Markovianity. The underlying assumptions in
these approximations are a weak system-environment cou-
pling while the environment fluctuations define the minor
timescale of the problem. Consequently, departure from
these physical conditions was associated to a quantum non-
Markovian regime [3,6].
In the last years the previous paradigm changed dras-

tically. The more general local-in-time evolutions that
preserve the density matrix properties (usually known as
Lindblad equations) are established by the rigorous theory
of quantum dynamical semigroups [7]. General behavioral
properties of the system propagator and different quantum
information measures can be established in this context.
Thus, in the last years quantum non-Markovianity has been
defined by departures from these “canonical behaviors”
[8,9]. While strong progress have been made on this basis
[8–24], some undesirable aspects have emerged. For
example, in these novel approaches dynamical departures
from a Born-Markov approximation may be included in a
Markovian regime. This incongruence is present in almost
all proposals. On the other hand, in an incoherent limit, the
classical notion of Markovianity may not be recovered.
Given that quantum systems are intrinsically perturbed by
measurement processes, a lack of an equivalent operational
(measurement-based) definition is also usual.

The aim of this work is to introduce an alternative
approach to quantum non-Markovianity that surpasses all
previous drawbacks, which in turn is consistent with the
former (physical) notion of quantum Markovianity. The
proposal relies on postselection techniques [25] and
retrodicted quantum measurements [26,27], formalisms
that allow inferring the state of a quantum system in the
past. Thus, the present approach brings an active and
fundamental area of research [25–35] into contact with
the characterization of memory effects in open quantum
system dynamics.
A notable progress in the formulation of quantummemory

indicators consistent with classical non-Markovianity was
introduced in Ref. [36]. Based on the usual definition of
classical Markovianity in terms of conditional probability
distributions [1] an operational based “process tensor”
formalism defines quantum non-Markovianity. The main
theoretical component of the present approach is similar but
relies on an alternative and equivalent formulation of
classical Markovianity: the statistical independence of past
and future system events when conditioned to a given state at
the present time [37]. Hence, here a hierarchical set of
conditional past-future (CPF) correlations indicate departure
from a classical Markovian regime. The quantum extension
of this alternative formulation leads to an operational
definition of quantum non-Markovianity based on aminimal
set of three time-ordered successive measurements per-
formed solely on the quantum system. Postselection intro-
duces the conditional character of the quantummeasurement
scheme. Furthermore, a nonvanishing CPF correlation,
which has the same meaning and (average) structure as in
a classical regime, becomes a univocal indicator of depar-
tures from Born-Markov and white noise approximations in
quantum and classical environments respectively. Analytical
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solutions of relevant system-environment interactionmodels
support the formalism and conclusions.
Conditional past-future independence.—The observa-

tion of a classical stochastic system at three successive
times tx < ty < tz yields the outcomes x → y → z (see
Fig. 1). For a Markov process, the joint probability
distribution Pðz; y; xÞ of a particular sequence can be
written as Pðz; y; xÞ ¼ PðzjyÞPðyjxÞPðxÞ [1], where PðxÞ
is the probability of the first event and, in general, PðbjaÞ is
the conditional probability of b given a. From here and the
Bayes rule, the conditional probability Pðz; xjyÞ of future
(z) and past (x) events given the present state y is [37]

Pðz; xjyÞ ¼ PðzjyÞPðxjyÞ: ð1Þ
Thus, for a classical Markovian process past and future
events become statistically independent when conditioned
to a given (fixed) intermediate state. This property can be
corroborated through a conditional past-future correlation,
which is defined as

Cpf ≡ hOzOxiy − hOziyhOxiy; ð2Þ
where O is a quantity or property related to each system
state [1], Cpf ¼

P
zx½Pðz; xjyÞ − PðzjyÞPðxjyÞ�OzOx. In

here, indexes x and z run over all possible outcomes
occurring at times tx and tz, respectively. On the other
hand, the y index can be any fixed particular value from all
possible outcomes of the second observation. Markovian
processes lead to Cpf ¼ 0, whatever the conditional state y
is. Given that, in general, Pðz; xjyÞ ¼ Pðzjy; xÞPðxjyÞ, it
follows that non-Markovian effects break CPF independ-
ence and are present whenever Cpf ≠ 0. Higher conditional
objects are discussed below [Eq. (11)].
Markovianity of quantum measurements.—The previous

memory indicator can be extended to a quantum regime. In
a first step, it is shown that successive quantum measure-
ment processes fulfill CPF independence. Hence, a com-
pletely isolated quantum system is considered, whose own
evolution between measurements is disregarded. Three
consecutive generalized quantum measurements, which
in general are different and arbitrary, deliver the successive
random outcomes x → y → z. The corresponding meas-
urement operators [5] are x ↔ Ωx, y ↔ Ωy, z ↔ Ωz

(Fig. 1) and satisfy
P

xΩ
†
xΩx ¼

P
yΩ

†
yΩy ¼

P
zΩ

†
zΩz ¼ I,

where I is the identity matrix and the sum indexes run over
all possible outcomes at each stage.
CPF independence entails the calculation of Pðz; xjyÞ ¼

Pðzjy; xÞPðxjyÞ [Eq. (2)]. Given that x is in the past of y,
PðxjyÞ is a retrodicted quantum probability. Thus, it can be
written in terms of the measurement operator Ωx and the
“past quantum state” Ξ≡ ðρ0; EyÞ, where ρ0 is the initial

density matrix and Ey ≡ Ω†
yΩy is the effect operator

[27,32]. On the other hand, Pðzjy; xÞ is a standard pre-
dictive quantum probability. Hence,

Pðz; xjyÞ ¼ Tr½Ω†
zΩzρy�

Tr½EyΩxρ0Ω
†
x�P

x0Tr½EyΩx0ρ0Ω
†
x0 �

; ð3Þ

where the first and second factors correspond to Pðzjy; xÞ
and PðxjyÞ, respectively [38]. Furthermore, Tr½•� is the
trace operation, while ρy is the system state after the y
measurement. When the ymeasurement is a projective one,
Ωy ¼ jyihyj, being associated to an Hermitian operator
Oy ¼

P
yOyjyihyj, it follows ρy ¼ jyihyj. This state only

depends on the outcome y, while being independent of any
former outcome x. Thus, CPF independence is fulfilled
naturally [Eq. (1)]. Introducing a “causal break” [36] or
“preparation” [39], this property is also valid for non-
projective y measurements ½Ω†

yΩy ≠ Ωy� [38].
Quantum Markovian dynamics.—In general, the system

evolves between consecutive measurement events. Its
dynamics is defined as Markovian if, for arbitrary meas-
urement processes, it does not break CPF independence.
This condition is preserved when the system propagator
does not depend on past measurement outcomes. Pro-
pagator independence of future outcomes is guaranteed by
causality. Hence, from Eq. (3) the CPF probability reads

Pðz; xjyÞ ¼ TrðΩ†
zΩzE0½ρy�Þ

TrðEyE½Ωxρ0Ω
†
x�ÞP

x0TrðEyE½Ωx0ρ0Ω
†
x0 �Þ

; ð4Þ

where E ¼ Eðty; txÞ and E0 ¼ E0ðtz; tyÞ are the (measure-
ment independent) system density matrix propagators
between consecutive events (Fig. 1). The fulfillment of
condition (4) provides an explicit measurement-based cri-
teria for defining quantumMarkovianity, which similarly to
classical systems, leads to a vanishing CPF correlation (2).
In particular, a unitary dynamics is Markovian.
Quantum system-environment models.—Consider a

system (s) interacting with its environment (e), with total
Hamiltonian HT . The dynamics is sets by the propagator

Et ¼ expðtLseÞ; Lse½•� ¼ −i½HT; •�: ð5Þ

FIG. 1. Measurement scheme. At times tx < ty < tz an open
system is subjected to three measurement processes whose
random outcomes are x → y → z. A set of operators fΩxg,
fΩyg, and fΩzg define the measurement processes in a quantum
regime. E and E0 are the system propagators between consecutive
measurements.
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The system density matrix is ρt ¼ TreðEt½ρse0 �Þ, where ρse0 is
the initial system-environment state. For measurements that
only provide information about system observables, the
proposed scheme (Fig. 1) allows us to characterizing
departures of the system partial dynamics from a
Markovian regime. The probabilities calculus is almost
the same as for Eq. (4) [38]. In particular, after the second
measurement (y) the bipartite state ρse suffers the disruptive
transformation ρse → ρy ⊗ σyxe . Thus, the system and the
environment become uncorrelated. This property is always
granted by projective measurements. The system state ρy
does not depend on the past measurement outcome x, while
the marginal bath state σyxe does. It is given by

σyxe ¼ TrsðEyEt½Ωxρ
se
0 Ω

†
x�Þ

TrseðEyEt½Ωxρ
se
0 Ω

†
x�Þ

: ð6Þ

The CPF probability, similarly to Eq. (4), is [38]

Pðz; xjyÞ ¼ TrseðΩ†
zΩzEτ½ρy ⊗ σyxe �Þ

×
TrseðEyEt½Ωxρ

se
0 Ω

†
x�ÞP

x0TrseðEyEt½Ωx0ρ
se
0 Ω

†
x0 �Þ

; ð7Þ

where t≡ ty − tx and τ≡ tz − ty are the time intervals
between consecutive measurements. Given the dependence
of the environment state σyxe on the first measurement (x),
here CPF independence is broken in general. The properties
of this departure can be quantified with the CPF correlation
(2), Cpf → Cpfðt; τÞ, which can be obtained from the
previous expression and the system observables definition.
Born-Markov approximation.—A Markovian regime,

defined by the measurement-based condition (4), is
approached when the initial bipartite state is separable,
ρse0 ¼ ρ0 ⊗ σe, and for arbitrary time t,

Et½Ωxρ
se
0 Ω

†
x� ≃ ρ̃xðtÞ ⊗ σe; ð8Þ

where ρ̃xð0Þ ¼ Ωxρ0Ω
†
x. Indeed, under this approximation

the bath state is (approximately) unperturbed during
the total evolution, σyxe ≃ σe [see Eq. (6)], implying
Cpfðt; τÞ ≃ 0. Therefore, the CPF correlation measures
and quantifies departures with respect to the standard
Born-Markov approximation. In fact, the separability con-
straint (8) is valid when the conditions under which it
applies are fulfilled [4].
Classical environment fluctuations.—Instead of a unitary

bipartite evolution [Eq. (5)], the open system dynamics
may be described by a quantum Liouville operator LstðtÞ
modulated by classical noise fluctuations,

d
dt

ρstt ¼ −iLstðtÞ½ρstt �: ð9Þ

The system density operator ρt ¼ ρstt follows by averaging
over realizations of LstðtÞ [overbar symbol]. The CPF
probability can straightforwardly be written as

Pðz; xjyÞ ¼ Pstðz; xjyÞ; ð10Þ

where the classical average is restricted to the y outcome
and the “stochastic probability” Pstðz; xjyÞ follows from
Eq. (4) under the replacements E → exp½−i R t

0 dt
0Lstðt0Þ�

and E0 → exp½−i R tþτ
t dt0Lstðt0Þ�. Non-Markovian effects

are then related to the correlation between both intermedi-
ate propagators, while white fluctuations lead to a
Markovian dynamics [38]. The model (9) not only covers
the case of stochastic Hamiltonian evolutions [40] but also
quantum-classical hybrid arrangements [27,33] where, in
general, the incoherent and quantum systems may affect
each other [41].
CPF correlation properties.—Similarly to classical sys-

tems, a non-Markovian regime is defined by the condition
Cpfðt; τÞ≷0. In general Cpfðt; τÞ ≠ Cpfðτ; tÞ. From Eq. (6)
[and Eq. (10)] it follows limτ→0Cpfðt; τÞ ¼ 0 and
limt→0Cpfðt; τÞ ¼ 0, this last condition being only
valid when the system and the environment are uncorre-
lated at the initial time. If the environment fluctuations have
a finite correlation time τc [3], Cpfðt; τÞ ≃ 0 if t ≫ τc
or τ ≫ τc. Thus, limτ→∞Cpfðt; τÞ ¼ limt→∞Cpfðt; τÞ ¼
limt→∞Cpfðt; ctÞ ¼ 0, ∀ c > 0. In an experimental setup
Cpfðt; τÞ follows straightforwardly by performing a stat-
istical average with a postselected subensemble of realiza-
tions x → y0 → z, where y0 is the chosen conditional fixed
value. Contrarily to classical systems, the condition
Cpfðt; τÞ ≠ 0 may depends on the chosen measurement
observables. This reacher behavior in turn gives a deeper
characterization of memory effects in quantum systems.
Higher order CPF correlations.—The CPF correlation

(2) can be generalized by increasing the number of obser-
vations, x → y1 → y2 → � � � yn → z. An n-order CPF cor-
relation is defined as

CðnÞ
pf ¼

X
zx

½Pðz; xjyÞ − PðzjyÞPðxjyÞ�OzOx; ð11Þ

where y ≡ yn;…; y2; y1. Given that Pðz; xjyn � � � y1Þ ¼
Pðzjyn � � � y1; xÞPðxjyn � � � y1Þ, CðnÞ

pf is sensitive to memory
effects that may only appear in these higher conditional

objects. For example, it may happen that CðkÞ
pf ¼ 0∀ k < n

and CðnÞ
pf ≠ 0. Classical Markovian processes fulfill

CðnÞ
pf ¼ 0∀ n. Thus, higher order CPF correlations provide

an overall check of the definition of classical Markovianity
in terms of conditional probabilities. This property guar-
antees the consistence of the present formalism with

Ref. [36]. In fact, CðnÞ
pf can also be extended and calculated
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in a quantum regime [38] (previous expressions correspond
to n ¼ 1). Nevertheless, in contrast to classical systems,
given the degrees of freedom provided by the measurement
operators, for a wide class of quantum dynamics [Eqs. (5)

and (9)] it is expected that Cð1Þ
pf ≠ 0 [38]. Thus, memory

effects can be analyzed over the basis of a minimal three
quantum-measurements scheme (Fig. 1). The next results
support this conclusion.
Dephasing spin bath.—As a first example we consider a

paradigmatic model of decoherence [42–44]: a qubit
system interacting with an N-spin bath via the microscopic
interaction Hamiltonian

HT ¼ σẑ ⊗
XN
k¼1

gkσ
ðkÞ
ẑ : ð12Þ

Here, σẑ is the system Pauli matrix in the ẑ direction (Bloch
sphere) [45], whose eigenvectors are denoted as j�i. On the
other hand, σðkÞẑ is ẑ-Pauli matrix corresponding to the k
spin. Its eigenvectors are denoted by j↑ik and j↓ik. fgkg are
real coupling constants.
As is well known, the model (12) admits an exact

solution [42–44]. Assuming a separable pure initial con-
dition ρse0 ¼ jΨse

0 ihΨse
0 j, where

jΨse
0 i ¼ ðajþi þ bj−iÞ ⊗

XN
k¼1

ðαkj↑ik þ βkj↓ikÞ; ð13Þ

the system density matrix reads ρt ¼ jaj2jþihþj þ
jbj2j−ih−j þ ab�ctjþih−j þ a�bc�t j−ihþj. Its evolution
can then be written as

dρt
dt

¼ −i
2
ωðtÞ½σẑ; ρt� þ γðtÞ 1

2
ðσẑρtσẑ − ρtÞ; ð14Þ

where the time dependent frequency ωðtÞ and decay rate
γðtÞ follow from γðtÞ þ iωðtÞ ¼ −ð1=ctÞðd=dtÞct. The
system coherence behavior,

ct ¼
YN
k¼1

ðjαkj2eþi2gkt þ jβkj2e−i2gktÞ; ð15Þ

depends on the initial bath state and coupling constants.
Measurement scheme and CPF correlation.—In order to

check non-Markovian effects, the three measurements
(Fig. 1) are chosen as projective ones, being performed
in x̂ direction. The outcomes of each measurement are then
x ¼ �1, y ¼ �1, z ¼ �1, which in turn define the system
operators values in Eq. (2), Oz ¼ z and Ox ¼ x. The mea-
surement operators are fΩxg¼fΩyg¼fΩzg¼jx̂�ihx̂�j,
where jx̂�i ¼ ðjþi � j−iÞ= ffiffiffi

2
p

.
All calculations leading to the CPF probability (7) can be

performed in an exact way [46]. Assuming, for simplicity,
that the system begin in the state jþi ða ¼ 1; b ¼ 0Þ,

PðzxjyÞ ¼ 1

4
½1þ xyfðtÞ þ zyfðτÞ þ zxfðt; τÞ�; ð16Þ

where fðtÞ ¼ Re½ct� gives the coherence decay and
fðt; τÞ ¼ ½fðtþ τÞ þ fðt − τÞ�=2. From here, it follows
hOziy ¼ yfðτÞ, hOxiy ¼ yfðtÞ, and hOzOxiy ¼ fðt; τÞ.
The exact expression for the CPF correlation (2) then is

Cpfðt; τÞ ¼ fðt; τÞ − fðtÞfðτÞ; ð17Þ

which, due to the symmetries, here is independent of the
conditional value y ¼ �1.
A non-Markovian quantum dynamical semigroup.—

As is well known [43,44], the model (12) may lead to
Gaussian system decay behaviors. For example, taking
gk ¼ ð1= ffiffiffiffi

N
p Þg, αk ¼ βk ¼ 1=2, for N ≫ 1 it follows ct ≃

exp½−2ðgtÞ2� (behavior valid before the unitary recurrence
time). Thus, ωðtÞ ¼ 0 and γðtÞ ≃ 4g2t. This positive time-
dependent rate leads to a time-dependent Lindblad semi-
group [Eq. (14)] that in almost all proposed non-Markovian
measure schemes [8,9] is classified as a Markovian
evolution. In contrast, here due to strong departures from
condition (8), the CPF correlation does not vanish. In fact,
for N ≫ 1, it can be approximated as

Cpfðt; τÞ ≃
e−2g

2ðtþτÞ2 þ e−2g
2ðt−τÞ2

2
− e−2g

2ðt2þτ2Þ: ð18Þ

In Fig. 2 (left panels) we plot Cpfðt; τÞ, which is very
well fitted by the previous expression. The symmetry
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FIG. 2. Left panels: CPF correlation (17) for the spin bath
model (12), with coupling gk ¼ g=

ffiffiffiffi
N

p
. The parameters of the

initial condition (13) are a ¼ 1, b ¼ 0, αk ¼ βk ¼ 1=2, and
N ¼ 50. Right panels: CPF correlation for the stochastic
Hamiltonian model (19), with noise correlation ξtξt0 ¼
g2 exp½−jt − t0j=τc�. The system starts at the same initial con-
dition. The parameters are τcg ¼ 100. For τc → ∞, the left panels
are recovered.

PHYSICAL REVIEW LETTERS 121, 240401 (2018)

240401-4



Cpfðt; τÞ ¼ Cpfðτ; tÞ is a consequence of the chosen envi-
ronment initial conditions. Furthermore, for increasing
equal time intervals Cpfðt; tÞ ≃ 1=2. This property indicates
that the bath correlation does not decay (vanishes) in time
(infinite bath correlation time).
Stochastic Hamiltonian.—An alternative decoherence

model, which mimics the interaction with a spin bath
[47], is given by a stochastic Hamiltonian evolution

LstðtÞ½•� ¼ −iξt½σẑ; •�; ð19Þ

where ξt is a classical noise [Eq. (9)]. The density matrix
evolution is also defined by Eq. (14), where now

ct ¼ exp

�
−2i

Z
t

0

dt0ξðt0Þ
�
: ð20Þ

The CPF probability (10) can also be calculated in
an exact way [46]. It can be written as in Eq. (16),
where similarly fðtÞ ¼ Re½ct� [Eq. (20)] while fðt; τÞ ¼
Reðexp½−2i R t

0 dt
0ξðt0Þ�ÞReðexp½−2i R tþτ

t dt0ξðt0Þ�Þ.
Taking a Gaussian noise with ξt ¼ 0 and correlation

ξtξt0 ¼ g2 exp½−jt − t0j=τc�, Eq. (14) is defined with
ωðtÞ¼0 and γðtÞ¼4g2τcð1−e−t=τcÞ>0, providing a sec-
ond example of a non-Markovian time-dependent quantum
semigroup. In particular, in the limit τc → ∞, the same
Gaussian behavior is recovered, ct ¼ exp½−2ðgtÞ2�. Thus,
the CPF correlation is exactly given by Eq. (18) [left panels
in Fig. 2]. On the other hand, taking γw=2 ¼ g2τc as a
constant parameter, in the limit τc → 0, a Markovian
regime is achieved, Cpfðt; τÞ → 0, with ct ¼ exp½−2γwt�.
In Fig. 2 (right panels), we also plot Cpfðt; τÞ for a finite τc.
All expected characteristics corresponding to a finite bath
correlation time are developed.
Conclusions.—Similarly to classical systems, a quantum

(memoryless) Markovian regime was defined by the stat-
istical independence of past and future events when con-
ditioned to a present system state. Thus, a minimal set of
three time-ordered quantum measurements leads to an
operational (measurement-based) definition of quantum
non-Markovianity. Postselection gives the conditional char-
acter of the measurement scheme. Its associated CPF
correlation is a direct and univocal indicator of departures
from Born-Markov and white noise approximations.
The proposed scheme leads to a powerful theoretical and

experimental basis for the study of memory effects in open
quantum systems. Its capacity for characterizing the under-
lying physical origin of memory effects was established by
studying different dephasing mechanisms that admit an
exact treatment. The conditional character of the measure-
ment scheme opens an interesting way to describe quantum
memory effects by means of recent theoretical and exper-
imental advances in retrodicted quantum measurement
processes [25–35].
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Aguilar, O. Jiménez Farías, S. P. Walborn, P. H. Souto
Ribeiro, and M. C. de Oliveira, Non-Markovianity through
accessible information, Phys. Rev. Lett. 112, 210402
(2014).

[19] A. K. Rajagopal, A. R. Usha Devi, and R.W. Rendell,
Kraus representation of quantum evolution and fidelity as

PHYSICAL REVIEW LETTERS 121, 240401 (2018)

240401-5

https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.101.150402
https://doi.org/10.1103/PhysRevLett.101.150402
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.112.120404
https://doi.org/10.1103/PhysRevLett.112.120404
https://doi.org/10.1103/PhysRevA.82.042103
https://doi.org/10.1103/PhysRevA.83.052128
https://doi.org/10.1103/PhysRevA.88.020102
https://doi.org/10.1103/PhysRevA.88.020102
https://doi.org/10.1103/PhysRevA.86.044101
https://doi.org/10.1103/PhysRevLett.112.210402
https://doi.org/10.1103/PhysRevLett.112.210402


manifestations of Markovian and non-Markovian forms,
Phys. Rev. A 82, 042107 (2010).

[20] M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson,
Canonical form of master equations and characterization
of non-Markovianity, Phys. Rev. A 89, 042120 (2014).

[21] P. Haikka, J. D. Cresser, and S. Maniscalco, Comparing
different non-Markovianity measures in a driven qubit
system, Phys. Rev. A 83, 012112 (2011); C. Addis, B.
Bylicka, D. Chruściński, and S. Maniscalco, Comparative
study of non-Markovianitymeasures in exactly solvable one-
and two-qubit models, Phys. Rev. A 90, 052103 (2014).

[22] B. Bylicka, M. Johansson, and A. Acín, Constructive
Method for Detecting the Information Backflow of Non-
Markovian Dynamics, Phys. Rev. Lett. 118, 120501 (2017).

[23] N. Megier, D. Chruściński, J. Piilo, and W. T. Strunz,
Eternal non-Markovianity: From random unitary to Markov
chain realisations, Sci. Rep. 7, 6379 (2017).

[24] A. A. Budini, Maximally non-Markovian quantum dynam-
ics without environment-to-system backflow of information,
Phys. Rev. A 97, 052133 (2018).

[25] Y. Aharonov and L. Vaidman, Properties of a quantum
system during the time interval between two measurements,
Phys. Rev. A 41, 11 (1990); Complete description of a
quantum system at a given time, J. Phys. A 24, 2315 (1991).

[26] D. Tan, S. J. Weber, I. Siddiqi, K. Mølmer, and K.W.
Murch, Prediction and Retrodiction for a Continuously
Monitored Superconducting Qubit, Phys. Rev. Lett. 114,
090403 (2015).

[27] S. Gammelmark, B. Julsgaard, and K. Mølmer, Past
Quantum States of a Monitored System, Phys. Rev. Lett.
111, 160401 (2013).

[28] T. Rybarczyk, B. Peaudecerf, M. Penasa, S. Gerlich, B.
Julsgaard, K. Mølmer, S. Gleyzes, M. Brune, J. M.
Raimond, S. Haroche, and I. Dotsenko, Forward-backward
analysis of the photon-number evolution in a cavity, Phys.
Rev. A 91, 062116 (2015).

[29] P. Campagne-Ibarcq, L. Bretheau, E. Flurin, A. Auffèves, F.
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