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Starch metabolism in green algae
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1 Centro de Estudios Fotosintéticos y Bioquı́micos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha, Rosario,
Argentina

2 IIB – Universidad Nacional de General San Martı́n (UNSAM), San Martı́n, Buenos Aires, Argentina

Starch plays a central role in the life cycle as one of the principal sources of chemical energy. This

polysaccharide accumulates in plastids in green algae and land plants, and both organisms have

acquired various enzyme isoforms for each step of the metabolic pathway. Eukaryotic green

microalgae present the critical photosynthetic functions as higher plants. However, due to the

small size of their genome, gene redundancy is decreased, a feature that makes them an excellent

model for investigating the properties of photosynthetic physiology. In the last decade, there has

been an increasing demand for starch in many industrial processes, such as food, pharmaceutical,

and bioethanol production. Thus, a better understanding of starch biosynthesis, in particular the

structure–function relationship and regulatory properties of the enzymes involved in its pro-

duction may provide a powerful tool for the planning of new strategies to increase plant biomass,

as well as to improve the quality and quantity of this polymer.
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1 Introduction

The algae are a greatly diverse group of photosynthetic organ-

isms that are widely distributed on the planet and are critical

for sustaining atmospheric and terrestrial conditions. They

are present in many forms ranging from the small picoplank-

ton living in the oceans to the macrophytic organisms which

forms layers that resemble grass on the coasts [1–4]. The

higher diversity among the algae is not only respect to size

and shape, but also with respect to the formation of various

chemical compounds through the different biosynthetic path-

ways [3].

Algae are economically important due to their biological

role in ecosystems and as a source of commercially significant

products such as food. Moreover, algae are also used as

vitamin fount by the health food industry because of their

high levels of vitamin A. In addition, these micro-organisms

are used as feed additives for aquaculture, as coloring agents

of food, and as fluorescent tags to localize, quantify or identify

surface molecules for specific assays. Algae are also very

important because they synthesize a number of different

lipids and polysaccharides that serves as carbon storage com-

pounds of high biological and commercial value. Some of the

carbohydrates are anionic and bind and chelate several

metals, thus helping to maintain a hydration surface around

the cell [3, 5–8]. Finally, certain polysaccharides have anti-

coagulant properties [7], while others are used for making

solid media or other products, such as ice creams, cosmetics,

ceramics, cleaners, and toothpastes (http://www.nmnh.si.

edu/botany/projects/algae/Alg-Prod.htm). Furthermore, very

long chain PUFAs produced and stored in high levels by some

marine microalgae could be beneficial for mammalian brain

development [9, 10]. Besides its nutritional characteristics

make them an interesting product that can be sold as health

food products and can also be incorporated in infant food

formulas for worldwide distribution [3].

Graham et al. (2000) have postulated that land plants

evolved from green algae belonging to the Charophyceae

[4] (Fig. 1). Charophytes or stoneworts are one of the largest
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and most structurally complex green algae. It has been

reported the existence of six orders of green algae within

this class: Charales, Zygnematales, Chlorokybales,

Coleochaetales, Mesostigma, and Klebsormidiales [11, 12].

Based on a phylogenetic analysis of the combined sequen-

ces of four genes, a small subunit rRNA gene (nuclear), ATPB
and rbcL (chloroplastic), andNAD5 (mitochondrial) of various

green plants and charophycean green algae, Karol and col.

(2001) reported that the Charales represent the closest green

algae linked to land plants [13]. Additionally, taking into

account their morphological characteristics alone, the

Coleochaetales and the Charales were considered highly

nearby affiliated with land plants [12, 14].

Starch biosynthesis is unique to the Archaeplastida super-

group, comprising Rhodophyceae (red algae), Chloroplastida

(green algae and land plants), and a minor group called

the Glaucophytes (Fig. 1). It was described that the synthesis

of this polysaccharide evolved from the ancestral ability to

make glycogen [15]. The Archaeplastida are generally con-

sidered to be monophyletic; i.e., all members are descended

from a single ancestor in which a primary endosymbiotic

event occurred entailing the uptake of a cyanobacterial cell

(the symbiont) by a nonphotosynthetic eukaryotic cell (the

host) [16]. Most cyanobacteria synthesize glycogen, as also

occur in non-plant eukaryotes. However, the recent identifi-

cation of new cyanobacterial species that make starch-like

oligosaccharides with an intermediate type of chain length

distribution between amylopectin and glycogen (designated

as either semiamylopectin or cyanobacterial starch) suggests

that the primary endosymbiont also had the ability to syn-

thesize these kind of polymers [15, 17–20].

Differences in the starch biosynthetic pathways between

the archaeplastidal lineages have arisen during subsequent

evolution. Most notably, in green plants starch is synthesized

in the plastid compartment, whereas in red algae and

in glaucophytes its synthesis occurs in the cytosol.

Interestingly, some rhodophyte species have reverted their

metabolism to the synthesis of glycogen [15, 20].

There are four biochemical steps that are required for the

synthesis of starch: substrate activation, chain elongation,

chain branching, and chain debranching [15, 21] (Fig. 2).

Phylogenetic analyses of the protein sequences of different

starch metabolic enzymes have revealed a mixture of

host- and symbiont-derived genes in each branch of the

Archaeplastida [17, 22–24]. In green plants, the soluble (SS)

and granule-bound SSs (GBSSs), which utilizes mainly ADP-

glucose (ADPGlc) are derived from the symbiont; whereas SSs

from red algae and glaucophytes utilizes mainly UDP-glucose

(UDPGlc) being the soluble forms derived from the host,

while the GBSS-like proteins are derived from the symbiont.

The ancestry of other starch metabolic enzymes is also a

mosaic; in all cases, starch branching enzymes (SBEs), phos-

phorylases, andb-amylases are derived from the ancestral host,

whereas the disproportionating enzyme 1 (DPE1) protein and

isoamylase (ISA) are proposed to come from the symbiont. The

sequence of events that resulted in cytosolic starch biosynthesis

in some Archaeplastida and plastidial starch biosynthesis in

other organisms remains a subject of speculation [15, 17, 24].

Figure 1. Schematic representation of the
phylogeny of the Archeaplastida
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The components of the starch biosynthetic machinery that

are found in all starch-synthesizing organisms are likely to

have made an significant contribution at some stage in the

evolution of glucan polymers that form starch granules. For

example, GBSS-like proteins, the main enzymes that synthes-

ize amylose in Chloroplastida, are present in all starch-syn-

thesizing lineages examined thus far. Even though GBSS is

not essential for amylopectin synthesis in higher plants, it is

involved in amylopectin synthesis in Chlamydomonas rein-
hardtii, suggesting that their capacity to produce long glucan

chains could be an important factor in the evolutionary tran-

sition to the synthesis of amylopectin-like rather than glyco-

gen-like polymers [25]. It is worth mentioning that

C. reinhardtii GBSSI is involved both, in amylose and amy-

lopectin synthesis. Thus, it is possible to postulate that the

subsequent acquisition of other SS isoforms in green plants

made the original function of GBSS redundant, being the

synthesis of amylopectin a secondary function.

It should be noted that there are two models for the

synthesis of the amylopectin fraction: (i) the glucan-trimming

model [26] based on experimental evidence in maize,

Arabidopsis and Chlamydomonas, it was suggested that SS

and SBE enzymes synthesize a soluble molecule called pre-

amylopectin which is substrate for the debranching enzyme

(DBE) and D-enzyme (a 4-a-glucanotransferase), that selec-

tively remove some branches leading to the production of a

insoluble amylopectin molecule; and (ii) the water-soluble

polysaccharide (WSP)-clearing model, described for

Arabidopsis [27], in which DBE would not act directly in the

synthesis of amylopectin, but would recycle soluble products

arising from the action of SS and SBE on maltooligosacchar-

ides (MOSs).

Isoamylases, also present in all starch-synthesizing organ-

isms, are other enzymes that have probably made an import-

ant contribution in starch metabolism evolution. Their

original function was associated to glucan degradation (as

is the case of some glycogen-synthesizing bacteria [28, 29]).

However, their recruitment to glucan synthesis is likely to

have been an important step toward the synthesis of glucan

polymers that form starch granules. This step could be facili-

tated by gene duplication events that allowed the evolution of

multiple isoforms with distinct substrate specificities (i.e.,

ISA1 and ISA2), whereas ISA3 is involved in starch degra-

dation (Fig. 2). Further insight into the evolution of

starch metabolism from ancestral glycogen metabolism will

be facilitated by the recent inclusion of other model

organisms from the different branches of the

Archaeplastida [15, 21, 22, 30].

2 Genomes: Sequenced strains and
genomic studies

Plant genomes are usually large and complex, having gene

redundancy, duplications, and transposable elements among

other features [31]. As a practical alternative, unicellular green

algae are suitable for the study of numerous biological proc-

esses due to their simplest genomic, molecular, and physio-

logical characteristics.

In the last years, several nuclear and organelle algae

genomes have been sequenced. Some nuclear-sequenced

genomes from green algae include those from Ostreococcus
tauri [32], Ostreococcus lucimarinus [33], C. reinhardtii [34],
Micromonas pusilla [35], Bathycoccus prasinos [36], Chlorella
variabilis [37], Coccomyxa subellipsoidea [38], and Volvox carteri
[39]. Genomes from Dunaliella salina [40], Chlorella vulgaris
(http://www.jgi.doe.gov/sequencing/allinoneseqplans.php),

Nannochloris (NCBI BioProject PRJNA84219), Chlorella pyr-
enoidosa (NCBI Bioproject PRJNA171991), Trebouxia sp.

(NCBI BioProject PRJNA82781), and Botryococcus braunii
(http://www.jgi.doe.gov/sequencing/allinoneseqplans.php)

are in the process of being sequenced.

Besides, sequencematerial of the organelle genomes from

O. tauri [41],D. salina [40], C. reinhardtii [42, 43], Nephroselmis

Figure 2. Starch synthesis (A) and degradation (B) pathways in
chloroplasts. (A) The first step in starch biosynthesis is the pro-
duction of ADPGlc via APGlc PPase. Then SSs catalyze the elon-
gation ofa-1,4-glucans by the transfer of the glucosyl moiety from
the sugar nucleotide to the non-reducing end of the growing
polyglucan chain. Soluble SSs forms are involved in amylopectin
synthesis, whereas the GBSS forms participate in amylose synth-
esis, but also have an essential role in amylopectin production in
C. reinhardtii. BE cleaves a linear glucose chain and transfers the
cleaved portion to a glucose residue within an acceptor chain via
an a-1,6 linkage to form a branch and ISA 1 and 2 facilitates
granule crystallization by removing wrongly positioned
branches. (B) PWD and GWD phosphorylate the surface of the
starch granule, making it accessible for b-amylase action.
Phosphate is concomitantly released by phosphoglucan phos-
phatase to allow complete degradation. Then, b-amylase hydro-
lyzes glucans producing maltose. Starch is also metabolized to
branched glucans by a-amylase and to linear glucans by a-amy-
lase, ISA3, and pullulanase. These linear glucans are further
metabolized through b-amylase to maltose, through DPE to glu-
cose or through starch phosphorylase to glucose-1-phosphate.
Maltose and glucose are then transported from chloroplast to
cytosol (Zeeman et al. 2010).
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olivacea [44, 45], Chaetosphaeridium globosum [46], C. vulgaris
[47], and Mesostigma viride [48, 49] are also available.

C. reinhardtii and O. tauri genomes are the best charac-

terized, as documented in numerous publications [32–34].

Although Chlamydomonas has been a model organism since

several decades ago [50], Ostreococcus has gained importance

in the last years, since its first description in 1994 [51]. While

Ostreococcus have a small and compact genome, with a low

number of introns per gene, broad reduction of intergenic

regions and small average transcript size [32, 33],

C. reinhardtii presents a genome complexity comparable to

Arabidopsis [34, 52].

Novel insights into algal starch metabolism have been

developed from the analysis of the genomes of the green

algae mentioned above. Ral’s work in 2004 was the first

comprehensive analysis of O. tauri starch genomics, granule

morphology, and partitioning mechanisms [53]. In this work

the presence and expression of storage polysaccharide metab-

olism genes by reverse transcription (RT)-PCR was verified

and proved that, in spite of O. tauri small-genome size, this

picoalga exhibits the same degree of complexity as that of

vascular plants regards to the starch metabolism pathways

[53]. Their results showed that most Prasinophyceae starch

metabolism enzymes have been conserved throughout evol-

ution; however, O. tauri, unlike Arabidopsis and other plants,

do not seem to have any protein related to glycogenin, a self-

glucosylating glycosyltransferase (GT) that acts as a primer for

the synthesis of glycogen in yeasts and mammals [54].

More recently, a comparative bioinformatic study of

six algal genomes (two Chlorophyceae: C. reinhardtii and

V. carterii, and four Prasinophytae: O. tauri and

O. lucimarinus and two M. pusilla strains) suggested that

the complexmetabolic pathway of glucan storage is conserved

in photosynthetic organisms [55]. These algae harbor all the

starch biosynthetic pathway steps, characteristic of higher

plants (Fig. 2), with at least one ADPGlc pyrophosphorylase

(ADPGlc PPase), a GBSSI, SSSs I-IV (SSI-SSIV), SBEI and

SBEII, ISA1 and ISA2, with the exception of O. tauri for
which no SSIV gene sequence was found [53, 56]. It was

reported that SSIV regulates starch granule number in

Arabidopsis and it would also participate in starch granule

priming [57]. In addition, all the characterized algae contain at

least one gene encoding each enzyme involved in starch

degradation, such as ISA3, pullulanase, D-enzyme, a-amy-

lase, glucan water dikinase (GWD), phosphoglucan water

dikinase (PWD), and starch excess 4 (SEX-4) phosphatase,

an enzyme required for the removal of phosphate groups

from starch in Arabidopsis [58, 59]. It is important to note that

the D-enzyme was also associated to amylopectin synthesis in

C. reinhardtii [26, 60, 61].
Interestingly, each analyzed algae contains more SSIII-like

genes than Arabidopsis. Besides, Micromonas strains contain
two copies of SSI and SSII genes whereas Chlamydomonas
and Volvox only have one duplicated SSI-like sequence. Until

now, the functional significance of these additional sequences

is unknown [58].

Regards Chlamydomonas, given the broad ESTs generated

for this algae in several nutritional conditions [62–64],

Deschamps et al. (2008) verified the presence of ESTs corre-

sponding to starch metabolism genes, and also described the

transit peptides for chloroplast localization in many related

enzymes [55, 58].

Several works have been reported about the regulation of

algae starch metabolism. Monnier et al. (2010) conducted a

genome-wide analysis of gene expression inO. tauri cells and
described the fundamental contribution of transcriptional

regulation during the light-dark cycle [65]. Furthermore, this

work suggested the occurrence of a circadian regulation of

starch content inOstreoccocus, as it was previously reported in
Chlamydomonas based on the analysis of ADPGlc PPase

activity and the expression of GBSSI and SSIII transcripts

[25]. Accordingly, Ral et al. (2006) demonstrated a strong

functional relationship between GBSSI and SSIII in

Chlamydomonas, two enzymes that play an essential role in

the synthesis of long glucan chains within amylopectin as

described above [25].

In Arabidopsis, although the transcription of starch

metabolism genes is regulated by circadian clock, protein

levels appear to remain relatively constant throughout the

circadian cycle [66]. Thus, the starch content in plant tissues is

not thought to be under circadian clock control. Accordingly,

these results suggest that regulatory mechanisms for starch

metabolism in green algae are dissimilar from those in plants,

being the transcriptional regulation more important in these

unicellular photosynthetic organisms [25].

Sorokina et al. (2011) have proposed a modeling approach

integrating data from microarray analysis with a stoichio-

metric reconstruction of starch metabolism in O. tauri for
the purpose of predicting the dynamics of the starch content

in the light/dark cycle [67]. In addition, after performing an

in silico experiment of gene deletion they have described

the contribution of each starch metabolism enzyme for the

glucan storage profile. In particular, the deletion of GWD,

a-amylase, and starch phosphorylase (Fig. 2) decreased the

starch degradation rate, while the deletion of phosphogluco-

mutase promotes its degradation. On the other hand, the

deletion of the maltose transporter increases the starch syn-

thesis rate, whereas the deletion of fructose-1,6-bisphospha-

tase and fructose bisphosphate aldolase genes had an

opposite effect [67]. Moreover, Sorokina et al. have also ident-

ified the ADPGlc PPase, GBSSI, a-amylases, GWD, and the

maltose transporter as potential targets of transcriptional

regulation, confirming the presence of different regulatory

mechanisms of starch metabolism in O. tauri respect to land

plants [67].

In addition to the genomic information, Chlamydomonas
and O. tauri are excellent model organisms because of the

existence of several genetic and molecular tools and appli-
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cations as well as the possibility to achieve stable mutants

using different approaches [68].

The development of selectablemarkers [50, 69–73] allowed

the transformation of the plastid and nuclear genomes of

Chlamydomonas [69, 74–76]. Gene function can be evaluated

using classical chemical or physical mutagenesis [77], anti-

sense or RNAi suppression of gene activity [78, 79] insertional

mutagenesis and gene disruption by homologous recombi-

nation, although the last one is still inefficient in nucleus. In

the chloroplast genome it is possible to insert a DNA frag-

ment at an exact position, whereas in the nuclear genome,

DNA integrates randomly, making impossible to inactivate

any particular gene. In addition, many reporter genes are

available to elucidate gene expression regulation [80, 81], as

well as several reporter molecules to enable trace gene and

gene products within particular compartments in the cell [82].

Regarding O. tauri, it has been recently developed at the

François-Yves Bouget laboratory many tools for gene func-

tional analysis including gene overexpression, antisense

knockdown, and stably transformed reporter cell lines to

analyze transcriptional and translational activity under differ-

ent growth conditions [83, 84].

On the other hand, five genomes from red algae (C. merolae,
P. umbilicalis, C. crispus, G. andersonii, and G. sulphuraria) and
one for Glaucophytes (C. paradoxa) have recently been

sequenced including unicellular and multicellular species

[85, 86]. Their starch metabolic pathways are well conserved

all over the lineage. Surprisingly, Rhodophyceae need fewer

than 12 genes to accumulate complex starch granules very

similar to Chloroplastida starch [87]. Initially it was reported

that floridean starch from red alga lacks amylose, but some

Rhodophyta lineages accumulate this polysaccharide [18, 19].

3 Green algae

3.1 Chlamydomonas

Chlamydomonas genus is polyphyletic, since it is distributed

in at least five distinct lineages and represents more than 600

species being Chlamydomonas reinhardtii the most character-

ized member [88–90].

Traditionally the genus Chlamydomonas comprises all

biflagellate green algae, approximately 10 mm long, in which

two flagella of the same length emerge closely spaced, coated

by a multilayered cell wall and having a unique chloroplast

with pyrenoid(s), a protein complex composed mainly of an

aggregation of RuBisCO, surrounded by starch, called pyre-

noidal starch [91].

Chlamydomonas has been widely used as a model system

for the study of photosynthesis, chloroplast biogenesis, flag-

ellar function, cell–cell recognition, cell cycle control, and

circadian rhythm because of its well-defined genetics, and

the development of efficient methods for nuclear and chlor-

oplast transformation [92, 93]. In addition, due to its high

growth rate, the microalgae can be easily cultured, obtaining

high yields by utilizing the sunlight as energy source [94, 95].

Particularly,C. reinhardtii is well-known as a photoautotrophic

microorganism, having a great ability to fix CO2 and accumu-

lating large quantities of starch. Therefore, the study and

characterization of Chlamydomonas becomes an excellent

opportunity to understand themechanisms involved in starch

biosynthesis [96, 97].

Different molecular analyses of starch biosynthetic genes

were performed in C. reinhardtii mutants defective in starch

biosynthesis [98, 99]. Some of these mutants include strains

defective for STA7 (encoding a DBE), resulting in the syn-

thesis of a glycogen-like polysaccharide instead of starch [100].

Izumo et al. (2011) reported the effects of the GBSSI-defective

mutation (STA2) on the production of pyrenoidal starch in

C. reinhardtii. It was suggested that, in Chlamydomonas,
GBSSI is required for the formation of a stable normally

thick pyrenoidal starch sheath without impacting either on

the CO2-concentrating mechanism (CCM) or cell growth.

Besides, it has been demonstrated the requirement of

GBSSI to obtain high levels of crystallinity of the pyrenoidal

starch granule due to the GBSSI induced starch granule

fusion as also reported in maize [101].

Other experimental evidences provided by Van den

Koornhuyse et al. (1996) showed that C. reinhardtii, mutants

defective either for phosphoglucomutase or ADPGlc PPase-

large subunit, accumulates polysaccharides similar to transi-

ent starch. Transient starch is defined as the polysaccharides

found in plant storage organs prior to storage starch and

amylose synthesis [102].

Furthermore, three distinct starch phosphorylase activities

were detected in C. reinhardtii, two plastidial enzymes (PhoA

and PhoB) and a single extraplastidial form (PhoC), all of them

displaying higher affinity for glycogen as in vascular plants.

Starch phosphorylases are involved in the phosphorolytic degra-

dation of starch, catalyzing the reversible transfer of glucosyl

units from glucose-1-phosphate to the non-reducing end of the

a-1,4-D-glucan chains with the release of phosphate [103]. The

two C. reinhardtii plastidial phosphorylases would function as

homodimers containing two PhoA (91-kDa) subunits and two

PhoB (110-kDa) subunits. PhoA and PhoB differ in their inhi-

bition sensitivity by ADPGlc and their affinity for MOSs.

Molecular analysis established that the C. reindhartii gene

STA4 encodes for PhoB, and it was reported that STA4 deficient
strains display a significant decrease in the amount of starch

during storage. This finding correlateswith the accumulation of

abnormally shaped granules containing a higher proportion of

amylose and a modified amylopectin structure [104].

3.2 Ostreococcus

Ostreococcus tauri is a unicellular green alga, discovered

in 1994 in the Thau Lagoon in France using flow cytometry
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[51, 105]. Each cell has a very simple structural organization

with a diameter minor than 1 mm, lacking cell wall and

flagella, and containing one large nucleus, a single chloroplast

and mitochondria, one Golgi apparatus and a reduced cyto-

plasmic compartment [106]. It is the smallest free-living

eukaryote identified to date and has the smallest eukaryotic

genome [51, 105]. More recently, three-dimensional images of

the O. tauri cell ultrastructure in a near-native state

were obtained using the new technology electron cryotomo-

graphy [107].

Based on its chlorophyll pigments, carotenoids [51] and its

18S rDNA sequence, it was reported that O. tauri belongs to
the Prasinophycee class [32], an early branch in the lineage of

green plants.

Othermembers of theOstreococcus genus have been found

in different marine ecosystems. Strain diversity was analyzed

by sequencing their rDNA internal transcribed spacer

regions, using pulsed-field gel electrophoresis and by the

characterization of its pigment composition [108]. As a result,

four different ecotypes have been defined regard its light

intensity adaptation, reinforcing results obtained by

Guillou et al. [109], by clustering small subunit rDNA sequen-

ces of Ostreococcus. Clade A comprised strains isolated from

surface down to 65 m depth. Clade B included strains from

the zone of 90–120 m depth; and sequences of strains OTH95

(Thau Lagoon) and RCC 501 (fromMediterranean Sea, 0–5 m

depth) constituted clades C and D, respectively, both adapted

to high light intensity [108]. These strains present different

adaptation to environmental conditions faced at surface and

the bottom of the oceanic photic zone. Deep strains show high

sensitivity to photoinhibition at high light intensities,

whereas surface strains do not grow at lowest light intensities.

It was described that O. tauri accumulates only one starch

granule inside its chloroplast by using a pathway of compar-

able complexity as occur in higher plants or Chlamydomonas,
using ADPGlc as the glycosyl donor substrate [53, 110, 111].

In vitro assays showed that O. tauri presents ADPGlc

PPase and GBSSI activities [53]. The former enzyme was

activated by 3-phosphoglycerate and inhibited by orthophos-

phate, as previously reported for land plants and cyanobac-

teria [112–115]. However,O. tauriADPGlc PPase is not redox-
regulated and present a modified functionality, with its large

subunit leading catalysis [116]. Accordingly to previous pub-

lications [18, 54], Sorokina et al. (2011) postulated the occur-

rence of a strong connection between genetic regulation and

metabolic function in O. tauri, essentially as a result of the

relative weakness of the redox regulation of starch metab-

olism because of the absence of the redox-target sequences of

the known redox regulated enzymes in plants, such as GWD,

ADPGlc PPase and a-amylase [63]. This results suggests

either, that redox regulation appeared later in evolution or

that the algae have developed a different mechanism for the

redox control of ADPGlc PPase and the other mentioned

enzymes [55, 58].

As mentioned above, Ostreococcus lacks genes related to

yeast or mammal glycogenin. O. tauri starch granule parti-

tioning mechanism could explain the absence of these

proteins, making unnecessary the existence of a primer to

start de novo starch synthesis. It was reported that during

plastid division, the starch granule is elongated and is divided

in two new granules that are segregated into each recently

formed chloroplast [53]. The requirements for initiating the

crystalline growth of the granule are contained in the existing

structure of the polysaccharide and the plastid division

machinery. Besides, it has been proposed that the localized

synthesis and degradation would regulate starch granule

partitioning in O. tauri. The presence of a pullulanase associ-
ated to the starch granule may reflect a function of this

enzyme in the partitioning process [53].

This hypothesis is further reinforced by the fact than

Ostreococcus never degrades its starch completely, even after

a prolonged incubation in the dark. A similar fact occurs in

Chlamydomonas, where starch is not fully degraded under

different tested conditions, and also seems to lack glycoge-

nins [53].

Another interesting data is the fact that Ostreococcus
genome lacks SSIV gene. As mentioned, SSIV controls the

number of starch granules in Arabidopsis and is supposed to

participate in polysaccharide biosynthesis priming or in

starch granule priming. Mutants of Arabidopsis lacking

SSIV display a single large granule for each chloroplast

instead of the many smaller starch granules present in

wild-type plants [55, 57]. The absence of SSIV in O. tauri
would be also a direct consequence that this alga does not

require starch granule priming or does not need to maintain a

certain number of starch granules. In contrast, the same

genus member O. lucimarinus contains one SSIV-like

sequence and present several starch grains in its chloroplast

[55, 56]. It remains to be determined whether this alga con-

tains a genuine SSIV or if SSIV would have a different role in

this case.

3.3 Micromonas

The Prasinophyte M. pusilla was the first picoplanktonic

species described by Butcher et al. in 1960 [117]. M. pusilla
is a diminute (1–2 mm) green alga with a pear-shaped naked

cell body, one chloroplast with pirenoidal starch, a single

posterior flagellum and a characteristic swimming behavior

[118, 119]. According to the literature, M. pusilla is the most

ubiquitous and cosmopolitan species of all picoeukaryotes

described at the present [120]. M. pusilla becomes predom-

inant in the picoeukaryotic community along all the year in

many coastal systems such as the English Channel [121].

Recent studies based on phylogenetic analysis of several

genes from these species collected worldwide revealed the

existence of three [109] to five [122] phylogenetically discrete

clades, suggesting that this taxon is a complex of cryptic
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species which started to diverge during the late Cretaceous

period [119, 122, 123].

However, to date no clear morphological, ecophysiological,

or biogeographical differentiation between strains or clades of

this species had been reported, except for one lineage

described as purely Arctic [124].

In the work of Deschamps et al. (2008), it has been

described at least 32 genes involved in starch metabolism

onM. pusilla: 3 ADPGlc PPases, 8 SSs, 1 GBSS, 3 SBE, 3 DBE,
1 pullulanase, 3 phosphorylases, 1 D-enzyme, 1 DPE2, 2 b-

amylases, 3 isoamylases, and 3 GWD (Table 1). However, at

the present there is no information about mutants in starch

metabolism genes from Micromonas [55, 58].

4 Red algae and Glaucophytes

Red algae (Rhodophyceae) are one of the oldest groups of

marine organisms with nearly 6000 species. The color of

these algae is due to the phycoerythrins pigments which

absorbs blue light and reflect red light [16, 125].

Rhodophyceae are photosynthetic eukaryotes which accumu-

late starch granules outside the plastids named floridean

starch. These granules contain all the major features found

in Chloroplastida starch. In spite of the initial report that

floridean starch lacked amylose [18, 19], it was demonstrated

that some red alga lineages such as the Porphyridiales also

accumulate this glucan fraction [126, 127].

The extra-plastidic starch synthesis is performed by an

UDPGlc-selective a-glucan synthase, unlike what happens in

plants, where the synthesis occurs within plastids, but similar

to the cytosolic synthesis of glycogen that occurs in other

eukaryotes. Viola et al. (2001), suggested that given the arising

consensus of the monophyletic origin of plastids, the capacity

for starch synthesis might have selectively evolved from an

a-glucan synthesizing machinery of the host ancestor and its

endosymbiont in red algae and green algae, respectively [128].

On the other hand, Glaucophytes are a small group of

microscopic algae found in freshwater environments. There

are only about 13 species of glaucophytes, and although not

particularly common in nature they are important because

they occupy a pivotal position in the evolution of photosyn-

thesis in eukaryotes. They also represent an intermediate in

the transition from endosymbiont to plastids due to the

presence of the prokaryotic peptidoglycan layer between their

two membranes [129].

Price et al. (2012) performed an exhaustive analysis of the

genome and transcriptome data from Cyanophora paradoxa
and they have provided evidence for a single origin of the

primary plastid in the eukaryote supergroup Plantae [86].

Indeed, several putative carbohydrate metabolism enzymes

in C. paradoxa were identified using the Carbohydrate-Active

Table 1. Storage glucan characteristics from representative photosynthetic organisms

Embryophyta Chlorophyta Chlorophyta Chlorophyta Rhodophyta Glaucophyta

A. thaliana O. tauri C. reinhardtii M. pusilla C. merolae C. paradoxa

Storage glucan Name Starch Starch Starch Starch Floridean starch Floridean starch

Glycosid bonds a-1,4 a-1,4 a-1,4 a-1,4 a-1,4 a-1,4

Branches a-1,6 a-1,6 a-1,6 a-1,6 a-1,6 a-1,6

Structure Granules Unique granule Granules Granule Granules Granules

Cell location Plastidial Plastidial Plastidial Plastidial Cytosolic Cytosolic

Molecular

composition

Amylose/

amylopectin

Amylose/

amylopectin

Amylose/

amylopectin

Amylose/

amylopectin

Semi-amylopectin Amylose/

amylopectin

Metabolic

pathway

Glucose donor ADPGlc ADPGlc ADPGlc ADPGlc UDPGlc UDPGlc

Complexity High High High High Low Low

Enzyme sets ADPGlc PPase 6 2 3 3 –

SSS (ADPG) 5 5 7 8 –

SSS (UDPG) – – – – 1 1

GBSS 1 1 2 1 1 1

SBE 3 2 3 3 1 1

Isoamylase 3 3 3 3 2 1

Direct DBE 3 3 3

Pullulanase 1 1 1 1

Phosphorylases 2 2 2 3 1 1

Glucanotransferase 1 1 1 1 –

Transglucosidase 1 1 1 1 1

b-amylases 9 2 3 2 1

GWD 3 4 4 3 1

References [135] [53] [111] [55, 58] [87, 136] [17, 30]
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enZymes (CAZy) database [130] (see also The Cyanophora

paradoxa Genome project, http://dblab.rutgers.edu/cyano-

phora/home.php). It was reported that the genome of this

alga encodes 84 glycoside hydrolases (GHs) and 128 GTs,

which is more than those present in O. lucimarinus (30 GHs

and 69 GTs), but less than in A. thaliana (400 GHs and 468

GTs). It was also described that many of the aboveC. paradoxa
proteins are involved in starch metabolism. Particularly, the

major protein is phylogenetically related to the GT5 UDP-Glc

specific enzyme of heterotrophic eukaryotes, suggesting that

UDPGlc is the main nucleotide-sugar donor for starch syn-

thesis in this alga [17, 30, 58].

Furthermore, another gene in the glaucophyte genome

was detected whose product is related to the SSIII–SSIV from

plants. This gene is phylogenetically related to glucan

synthase in Chlamydiae, Cyanobacteria, and some

Proteobacteria, possibly playing a role in linking the metab-

olism of the host and the endosymbiont. Because SSIII and

SSIV enzymes uses preferentially ADPGlc in bacteria and

plants [30, 131–134], it is possible to postulate that

C. paradoxa or, alternatively, the common ancestor of

Viridiplantae and Glaucophytes may have used both,

ADPGlc or UDPGlc for starch synthesis [86].

Table 1 resumes the main storage polysaccharide charac-

teristics from the members of Green Linage Arabidopsis,
O. tauri, and C. reinhardii, the red alga C. merolae, and the

Glaucophyte C. paradoxa [13, 53, 86, 111, 135, 136].

5 Biofuels: Biotechnological applications
and uses of algae starch

The importance of a variety of renewable biofuels has been

renovated due to the volatility of petroleum fuel costs and

consequences resulting from the greenhouse emissions

[137]. The interest in photosynthetic algae (microalgae and

macroalgae) as a possible biofuels resource has considerably

increased in the last years. Some algae species have higher

biomass production rates compared to terrestrial plants [138].

In addition, many eukaryotic microalgae are able to store

important amounts of energy rich compounds, such as starch

and triacylglycerol (TAG) that can be utilized for the pro-

duction of different biofuels, including biodiesel and

ethanol [139].

Carbohydrates can be metabolized into a multiplicity of

biofuels, such as ethanol, butanol, hydrogen, lipids, and/or

methane. Polyglucans are accumulated in microalgae in a

variety of ways. As wementioned above the phyla Chlorophyta

and Rhodophyta store a-1,4 and branched a-1,6 glucans [99].

While the use of algae with enriched starch content is

conventional for the production of bioethanol, another attrac-

tive exploitation of starch from algae might be the production

of hydrogen, which may be realized soon [140–142]. It has

been described that sulfur limitation could be one of the ways

to promote hydrogen production [143, 144]. In this way,

recently it was shown that some Chlorella strains can produce

and accumulate a significant volume of hydrogen gas under

anaerobic conditions and sulfur deprivation as it was also

reported for C. reinhardtii [145]. Another example might be

Chlorococcum, that was also proposed for bioethanol pro-

duction via dark fermentation of starch [146, 147].

Furthermore, this alga was also evaluated as a source of lipid

for biodiesel production [148–150].

Unicellular microalgae are at the vanguard of research

efforts directed at developing model systems and their cor-

responding technologies for the production of hydrogen and

other fuels [138, 151, 152]. Compared with terrestrial plants,

microalgae are much more efficient in converting sunlight

into chemical energy, and need less water for cultivation [138].

Many species of algae that grow in salt water, are also able to

grow on various conditions, and do not accumulate recalci-

trant lignocellulosic biomass [138]. Actually, genetic and bio-

technological manipulation techniques have been developed

for some species, and are increasingly being applied to opti-

mize biofuel production in several algal systems [152].
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