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a b s t r a c t

Studying the set covering polyhedron of consecutive ones circulant matrices, Argiroffo and
Bianchi found a class of facet defining inequalities, induced by a particular family of cir-
culant minors. In this work we extend these results to inequalities associated with every
circulant minor. We also obtain polynomial separation algorithms for particular classes of
such inequalities.
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1. Introduction

The well-known concept of domination in graphs was introduced by Berge [6] in 1962, modeling many utility location
problems in operations research.

Given a graph G = (V , E) a dominating set is a subset D ⊂ V such that every node outside D is adjacent to at least one
node in D. Given a cost vector w ∈ R|V |, theMinimumWeight Dominating Set Problem (MWDSP for short), consists of finding
a dominating set D such that


v∈D wv is minimum. MWDSP arises in many applications, involving the strategic placement

of men or pieces on the nodes of a network. As an example, consider a computer network in which one wishes to choose a
smallest set of computers that are able to transmit messages to all the remaining computers [18]. Many other interesting
examples include sets of representatives, school bus routing, (r, d)-configurations, radio stations, social network theory,
kernels of games, etc. [15].

The MWDSP is NP-hard for general graphs and has been extensively investigated from an algorithmic point of view
([7,11,12,14] among others). The cardinality version (that is when the weights are 0 and 1) has been shown to be polyno-
mially solvable in several classes of graphs such as cactus graphs [16] and the class of series–parallel graphs [17].

However, a few results on theMWDSP derived from the polyhedral point of view are known. An interesting result in this
context can be found in [10], working on the problem when the underlying graph is a cycle.

Actually, the MWDSP corresponds to particular instances of the MinimumWeighted Set Covering Problem (MWSCP).
Indeed, given an m × n 0, 1 matrix A, a cover of A is a vector x ∈ {0, 1}n such that Ax ≥ 1, where 1 is the vector with all

components at value one. Given a cost function w ∈ Rn, the MWSCP consists of solving the integer program

min{wx : Ax ≥ 1, x ∈ {0, 1}n}.
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This is equivalent to solving the problem

min{wx : x ∈ Q ∗(A)}

where Q ∗(A) is the convex hull of points in {x ∈ {0, 1}n : Ax ≥ 1}. The set Q ∗(A) is usually called the set covering polyhedron
associated with A.

In particular, given a graph G = (V , E), if A is a matrix such that each row corresponds to the characteristic vector of the
closed neighborhood of a node v ∈ V (i.e., A is the closed neighborhood matrix of G) then every cover of A is the characteristic
vector of a dominating set of G and conversely. Therefore, solving the MWSCP on A is equivalent to solve the MWDSP on G.

It is easy to see that the closed neighborhoodmatrix of a cycle is a circulant matrix. Hence, the findings in [10] correspond
to obtaining the complete description of the set covering polyhedron for the 0, 1 n × n matrices having three consecutive
ones per row, known as the family of circulant matrices C3

n .
In general, the closed neighborhood of a web graph is a circulant matrix. Web graphs have been thoroughly studied in

the literature (see [21,23,24]).
The main goal of this work is the study of the MWSCP on circulant matrices and its direct consequences on the MWDSP

when the underlying graph is a web graph.
Previous results on the set covering polyhedron of circulant matrices can be found in [2,3,13,19,20]. In [13] it was

observed that if A is a circulantmatrix then every set {x ∈ [0, 1]n : Ax ≥ 1, xi = 1} for i = 1, . . . , n is an integer polyhedron.
Then it holds that solving the MWSCP on a circulant matrix can be thought as solving at most n linear programs. Hence, the
MWSCP on circulant matrices results in a polynomial problem.

In Section 2 of thiswork,wepresent basic definitions andpreliminaries needed for the remaining sections. In Section 3we
introduce a family of valid inequalities for the set covering polyhedron of circulant matrices.We obtain sufficient conditions
for a valid inequality to define a facet of the polyhedron.We also conjecture that this condition is also necessary. In Section 4
we prove that a subfamily of the inequalities presented in Section 3 can be separated in polynomial time.

A preliminary version of this work appeared without proofs in [8].

2. Definitions, notations and preliminary results

In what follows, every time we state S ⊂ Zn for some n ∈ N, we consider S ⊂ {0, . . . , n − 1} and the addition between
the elements of S is taken modulo n.

Given a set F of vectors in {0, 1}n, we say y ∈ F is a dominating vector (of F ) if there exist x ∈ F such that x ≤ y. It can be
also said that x is dominated by y.

From now on, every matrix has 0,1 entries, no zero columns and no dominating rows. If A is such an m × n matrix, its
rows and columns are indexed by Zm and Zn respectively. Two matrices A and A′ are isomorphic and we write A ≈ A′, if A′

can be obtained from A by permutation of rows and columns.
If S ⊂ Zm and T ⊂ Zn, let AS,T be the submatrix of Awith entries aij where i ∈ S and j ∈ T .
Given N ⊂ Zn, let us denote by R(N) = {j ∈ Zm : j is a dominating row of AZm,Zn−N}. Aminor of A obtained by contraction

of N , denoted by A/N , is the matrix AZm−R(N),Zn−N . In this work, when we refer to a minor of A we are always considering a
minor obtained by contraction.

Observe that there exists a one-to-one correspondence between a vector x ∈ {0, 1}n and the subset Sx ⊂ Zn whose
characteristic vector is x itself. Hence, we agree to abuse of notation by writing x instead of Sx. In this way, if x ∈ {0, 1}n, we
write i ∈ xmeaning that xi = 1. Also, if x is dominated by y ∈ {0, 1}n then we write x ⊂ y.

Remind that a cover of a matrix A is a vector x ∈ {0, 1}n such that Ax ≥ 1. In addition, the cardinality of a cover x is
denoted by |x| and equals 1x. A cover x isminimum if it has theminimum cardinality and in this case |x| is called the covering
number of the matrix A, denoted by τ(A). Observe that every cover of a minor of A is a cover of A and then, for all N ⊂ Zn, it
holds that τ(A/N) ≥ τ(A).

Recall that the set covering polyhedron of A, denoted by Q ∗(A), is defined as the convex hull of its covers. The polytope
Q (A) = {x ∈ [0, 1]n : Ax ≥ 1} is known as the linear relaxation of Q ∗(A). When Q ∗(A) = Q (A) the matrix A is ideal and the
MWSCP can be solved in polynomial time (in the size of A).

Given n and kwith 2 ≤ k ≤ n− 2, for every i ∈ Zn let C i
= {i, i+ 1, . . . , i+ (k− 1)} ⊂ Zn. The circulant matrix Ck

n is the
square matrix whose i-th row is the incidence vector of C i. Observe that, for j ∈ Zn, the j-th column of Ck

n is the incidence
vector of C j−k+1.

We say that a minor of Ck
n is a circulant minor if it is isomorphic to a circulant matrix.

Remark 1. Let Ck
n be a circulant matrix and let x = {ij : j ∈ Zr} ⊂ Zn with 0 ≤ i0 < i1 < · · · < ir−1 ≤ n − 1. The following

propositions are equivalent:

(i) x is a cover of Ck
n ,

(ii) ij+1 − 1 ∈ C ij for all j ∈ Zr ,
(iii) ij−1 ∈ C ij−k for all j ∈ Zr .
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It is not hard to see that τ(Ck
n) ≥

 n
k


. Moreover, for every i ∈ Zn

xi =


i + hk : 0 ≤ h ≤

n
k


⊂ Zn

is a cover of Ck
n of size

 n
k


, and then τ(Ck

n) =
 n

k


.

Also, the set {xi : i ∈ Zn} is linearly independent if and only if n is not a multiple of k. Thus the inequality
n

i=1 xi ≥
 n

k


that is always valid for Q ∗(Ck

n), defines a facet if and only if n is not a multiple of k (see [20]). This inequality will be called
the rank constraint.

In addition, for every i ∈ Zn, the constraints xi ≥ 0 and


j∈C i xj ≥ 1 are facet defining inequalities of Q ∗(Ck
n) (see [4,20]

for further details). We call them Boolean facets.
It is also known that if ax ≥ β is a non-Boolean facet defining inequality of Q ∗(Ck

n) then a > 0 [3].
We say that αx ≥ β is a Chvátal–Gomory inequality if there exists an inequality γ x ≥ δ, valid for Q (Ck

n) such that ⌈γi⌉ =

αi, for all i = 1, . . . , n and ⌈δ⌉ = β . Clearly, every Chvátal–Gomory inequality is valid for Q ∗(Ck
n).

Ideal circulantmatrices have been completely identified byCornuéjols et al. in [13].Manyof the ideas and results obtained
in this seminal paper inspired further results presented in this work.

In fact, the authors in [13] characterize ideal circulant matrices in terms of a nonideal circulant minor and give sufficient
conditions for a subset N ⊂ Zn to ensure that Ck

n/N is a circulant minor. These conditions are obtained in terms of simple
dicycles in a particular digraph.

Indeed, given Ck
n , the digraph G(Ck

n) has node set Zn and (i, j) is an arc of G(Ck
n) if j ∈ {i + k, i + k + 1}. In this way, we

will say that an arc (i, i + k) has length k and an arc (i, i + k + 1) has length k + 1.
If D is a simple dicycle in G(Ck

n), and n2 and n3 denote the number of arcs of length k and k + 1 respectively, then there
must be a positive integer n1 ≥ 1 such that n1n = kn2 + (k + 1)n3 and gcd(n1, n2, n3) = 1 (gcd means greatest common
divisor). Moreover, the conditions n1n = kn2 + (k + 1)n3 and gcd(n1, n2, n3) = 1 are not only necessary but also sufficient
for the existence of a simple dicycle in G(Ck

n) (see [1] for further details).
We say that n1, n2 and n3 are the parameters associated with the dicycle.
Later, Aguilera in [2] completely characterized subsets N of Zn for which Ck

n/N is a circulant minor in terms of dicycles in
the digraph G(Ck

n). We rewrite Theorem 3.10 of [2] in the following way:

Theorem 1. Let n, k be positive integers verifying 2 ≤ k ≤ n− 2 and let N ⊂ Zn. Then, the following assertions are equivalent:
(i) Ck

n/N ≈ Ck′
n′ .

(ii) N induces d disjoint simple dicycles D0, . . . ,Dd−1 in G(Ck
n), each of them having the same parameters n1, n2 and n3 such that

n = n′
− d(n2 + n3) and k′

= k − dn1.

Thus, whenever we refer to a circulant minor of Ck
n with parameters d, n1, n2 and n3, we are referring to the non-negative

integers whose existence is guaranteed by the previous theorem. In addition, N j, with j ∈ Zd refers to each of the subsets
inducing a simple dicycle Dj in G(Ck

n). Moreover, we call W j
= {i ∈ N j

: i − (k + 1) ∈ N j
}, for j ∈ Zd and W = ∪j∈Zd W

j.
Then,

W j
 = n3 and

N j
 = n2 + n3 for all j ∈ Zd.

Observe that, the parameters d, n1, n2 andn3 are not enough to identify theminor itself. For example,C4
9 has nine different

minors with parameters d = n1 = n2 = n3 = 1. Indeed, for every i ∈ Z9, C4
9/{i, i + 4} ≈ C3

7 .
Let us remark that starting fromW ⊂ Zn corresponding to a circulant minorM of Ck

n we can obtain the set N ⊂ Zn such
that M ≈ Ck

n/N . In order to see this, it is enough to observe that, given j ∈ W , we can construct the set N j inducing the
simple dicycle in G(Ck

n) with j ∈ N j. Indeed, let N j
:= {j, j − (k + 1)} and i = j − (k + 1). While i ≠ j we repeat the next

step: if i ∈ W then we add i− (k+ 1) to N j and set i := i− (k+ 1) else we add i− k to N j and set i := i− k. Once we obtain
N j, it is clear that we also obtain the parameters n1, n2 and n3 associated with the dicycle induced by N j. Also, considering
|W | = dn3, we can obtain the parameter d. Hence, we compute n′

= n − d(n2 + n3) and k′
= k − dn1.

So, in what follows, we usually refer to a circulant minor defined by W ⊂ Zn. We will also refer to the dicycle of G(Ck
n)

induced by W j, considering the dicycle induced by the corresponding subset N j.

Remark 2. LetW ⊂ Zn.
(i) If W = {wi : i ∈ Z|W |} with 0 ≤ w0 < · · · < w|W |−1 ≤ n − 1, then W defines a circulant minor with parameters

d = n1 = 1 if and only if wi+1 − wi = 1 (mod k) and wi+1 − wi ≥ k + 1, for all i ∈ Z|W |.
(ii) W defines a circulant minor with parameters d ≥ 2 and n1 = 1 if and only ifW = ∪j∈Zd W

j, for all j ∈ Zd, W j defines a
circulant minor with parameters dj = nj

1 = 1 and for all r, j ∈ Zd with r ≠ j,N r
∩ N j

= ∅.

In the next section,wewill see that subsetsW ⊂ Zn that define circulantminors, play an important role in the description
of the set covering polytope of circulant matrices.

3. Relevant minor inequalities

Cornuéjols and Novick in [13] obtained sufficient conditions under which a circulant matrix has a circulant minor. More
precisely and according to our current notation, Lemma 4.5 in [13] gives conditions on parameters n1, n2 and n3 in order to
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ensure that Ck
n has a circulant minor with parameter d = 1. Using this result, the authors in [3] found a Chvátal–Gomory

inequality associated with each one of these particular minors. More specifically, ifW induces a circulant minor isomorphic
to Ck′

n′ with parameter d = 1 then
i∈W

2xi +

i∉W

xi ≥


n′

k′


is a Chvátal–Gomory inequality.

Moreover, the authors proved that if n′
= 1 (mod k′) and


n′

k′


>
 n

k


, the inequality defines a facet.

In addition, the results in [10] imply that these inequalities, together with the Boolean facets and the rank constraint
completely describe Q ∗(C3

n ).
Later and as we have already mentioned in Theorem 1, Aguilera in [2] characterized all circulant minors of circulant

matrices. Moreover, according to our current notation, results Lemma 2.4 and Theorem 2.5 in [2] can be stated as follows:

Lemma 2. Let N ⊂ Zn be such that Ck
n/N ≈ Ck′

n′ . Then,
(i) R(N) = {i + 1 : i ∈ N}.
(ii)

C i
− N

 = k′
+ 1 if i + k ∈ W and

C i
− N

 = k′ otherwise.

From these results, we can prove that Theorem 6.9 in [3] holds for every W associated with any circulant minor of Ck
n .

Formally:

Theorem 3. Let W ⊂ Zn be a subset defining a minor isomorphic to Ck′
n′ . Then, the inequality

i∈W

2xi +

i∉W

xi ≥


n′

k′


(1)

is a valid inequality for Q ∗(Ck
n). Moreover, it is a Chvátal–Gomory inequality.

Proof. LetN ⊂ Zn be the subset defining theminor i.e. Ck
n/N ≈ Ck′

n′ and let us call A the row submatrix of Ck
n defined by rows

not in R(N), i.e. A = (Ck
n)Zn−R(N),Zn . Recall that the i-th column of Ck

n is the incidence vector of C i−k+1. By Lemma 2(i), the
number of entries at value one in the i-th column of A is the number of times an index of the form j + 1 with j ∉ N belongs
to C i−k+1, i.e.

C i−k
− N

. On the other hand, Lemma 2(ii) states that
C i−k

− N
 ∈ {k′, k′

+ 1} and
C i−k

− N
 = k′

+ 1 if
and only if i ∈ W . In summary, each column of A has k′ or k′

+ 1 entries at value one. Moreover, the i-th column has k′
+ 1

entries at value one if and only if i ∈ W . Thus if we add up all the rows of submatrix A we get:
i∈W

(k′
+ 1)xi +


i∉W

k′xi ≥ n′. (2)

Then, if we divide all the coefficients by k′ and round up, we obtain the inequality (1). �

From now on, we say that inequality (1) is theminor inequality corresponding to the minor defined byW .
Remind that if M is a minor of Ck

n isomorphic to Ck′
n′ then


n′

k′


≥
 n

k


. Observe that when


n′

k′


=
 n

k


the minor

inequality is dominated by the rank constraint. Also, if n′ is a multiple of k′ then it is valid for Q (Ck
n).

In summary, the relevant minor inequalities correspond to minors M isomorphic to Ck′
n′ such that n′

≠ 0(mod k′) and
n′

k′


>
 n

k


. In this case, we will say thatM is a relevant minor.

The following result identifies relevant minors:

Lemma 4. Let M be a circulant minor of Ck
n isomorphic to Ck′

n′ with parameters d, n1, n2 and n3 and let r be such that 1 ≤ r ≤

k′
− 1 and n′

= r(mod k′). Then, M is a relevant minor if and only if dn3 ≥ kr.
Proof. We know that nn1 = n2k + n3(k + 1), n′

= n − d(n2 + n3) and k′
= k − dn1.

Let s be such that n − d(n2 + n3) = s(k − dn1) + r then


n′

k′


= s + 1.

It follows thatM is a relevant minor if and only if
 n

k


≤ s. Since

n = sk − (sdn1 − d(n2 + n3) − r) ,

we have that
 n

k


≤ s if and only if

sdn1 − d(n2 + n3) − r ≥ 0.

It is not hard to see that

dn3 − kr = (k − dn1) (sdn1 − d(n2 + n3) − r) .

Since k − dn1 > 0, the proof is complete. �
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Taking advantage of the same ideas in proving Theorem 6.10 in [3], we can prove the following generalization:

Theorem 5. Let W ⊂ Zn be a subset defining a relevant minor isomorphic to Ck′
n′ . Then, if n′

= 1(mod k′) the inequality
i∈W

2xi +

i∉W

xi ≥


n′

k′


(3)

defines a facet of Q ∗(Ck
n).

Proof. We will show that there are n linearly independent roots of inequality (3), i.e. n linearly independent covers of Ck
n

that satisfy (3) at equality.
Let N = ∪j∈Zd N

j
⊂ Zn be the subset defining the minor, i.e., Ck

n/N ≈ Ck′
n′ and let us denote the elements of Zn − N as

{v0, . . . , vn′−1} with 0 ≤ v0 ≤ v1 ≤ · · · ≤ vn′−1 ≤ n − 1.
Recall that the subsets x̃l =


vl+sk′ : 0 ≤ s ≤


n′

k′


with l ∈ Zn′ are n′ linearly independent minimum covers of Ck

n/N

and then they are n′ linearly independent roots of (3).
For the remaining |N| roots, we will construct a root z i for every i ∈ N .
Observe that as n′

= 1 (mod k′), if l ∈ Zn′ then l+⌊
n′

k′ ⌋k
′
= l−1 (mod n′). Hence, vl−1 ∈ x̃l for every l ∈ Zn′ . Therefore, for

every l ∈ Zn′ there are two consecutive elements of Zn − N that belong to x̃l, i.e. {vl−1, vl} ⊂ x̃l for every l ∈ Zn′ . Moreover,
by Lemma 2(ii), we know that for every i ∈ Zn, k′

≤ |C i
− N| ≤ k′

+ 1 < n′ and then, there exists l ∈ Zn′ such that vl ∉ C i

and vl+1 ∈ C i.
Let us start with i ∈ N − W . Let l ∈ Zn′ such that vl ∉ C i and vl+1 ∈ C i. Observe that, by Lemma 2(ii) we have that

|C i−k
− N| = k′ and since k′

≥ 2 it follows that vl−1 ∈ C i−k. Then, the vector z i = (x̃l − {vl}) ∪ {i} satisfies the inequality
(3) at equality and by the condition (iii) in Remark 1 it is a cover. Also observe that z i ∩N = {i}, and then {x̃l : l ∈ Zn′}∪ {z i :

i ∈ N − W } is a set of linearly independent covers of Ck
n .

Let us now obtain z i for i ∈ W . Let i ∈ W and w.l.o.g. assume that i ∈ N0. First, consider the minimum cover of Ck
n

xi =


i + tk : 0 ≤ t ≤

n
k


− 1


.

If xi ⊂ N0 then xi ∩ W = {i}, and since xi satisfies (3) we have
j∈W

2xij +

j∉W

xij = 2 +

n
k


− 1 ≥


n′

k′


≥

n
k


+ 1.

Hence, xi is a root of (3) and then we set z i = xi.
Otherwise, let s be the smallest nonnegative integer such that s ≤

 n
k


−1 and i+sk ∉ N0. It holds that i+sk+1 ∈ W∩N0

and for all 1 ≤ t ≤ s − 1, i + tk ∈ N0
− W .

Now, let l ∈ Zn′ such that vl−1 ∉ C i but vl ∈ C i.
Hence, by Lemma 2(ii) we have |C i+(t−1)k

− N| = k′, for 1 ≤ t < s and |C i+(s−1)k+1
− N| = k′

+ 1. Then,

C i+(t−1)k
− N = {vl+(t−1)k′ , . . . , vl+tk′−1}

for all 1 ≤ t ≤ s − 1 and

C i+(s−1)k+1
− N = {vl+(s−1)k′ , . . . , vl+sk′}.

We define

z i = x̃l − ({vl−1} ∪ {vl+tk′ : 0 ≤ t ≤ s − 1}) ∪ {i + tk : 0 ≤ t ≤ s − 1}.

We have seen that vl+sk′ ∈ C i+(s−1)k+1. By Remark 1(ii), we only need to prove that vl+sk′ ∈ z i. For this, we need to verify
that vl+sk′ ≠ vl−1.

But vl+sk′ = vl−1 if and only if s =


n′

k′


and this cannot happen since we consider s ≤

 n
k


− 1 and

 n
k


<


n′

k′


. Then

z i is a cover and it is easy to check that it is also a root of (3). In addition z i ∩ W = {i}. Hence, it is not hard to see that
{x̃l : l ∈ Zn′} ∪ {z i : i ∈ N} is a set of linearly independent covers of Ck

n . �

Computational experiences lead us to conjecture that the converse of Theorem 5 always holds, i.e., a minor inequality
defines a facet only when it corresponds to a relevant minor isomorphic to Ck′

n′ with n′
= 1(mod k′).

Moreover, we conjecture the following

Conjecture 6. If W ⊂ Zn defines a relevant minor of Ck
n isomorphic to Ck′

n′ then there exists W ′
⊂ W that defines a relevant

minor isomorphic to Ck′
n′′ such that n′′

= 1(mod k′) and


n′′

k′


≥


n′

k′


.
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Clearly, if the conjecture holds, the converse of Theorem5 is true. Nevertheless,we have aweaker result than the previous
conjecture:

Lemma 7. If W ⊂ Zn defines a relevant minor of Ck
n isomorphic to Ck′

n′ then there exists W ′
⊂ Zn with |W ′

| ≤ |W | that defines

a relevant minor isomorphic to Ck′
n′′ such that n′′

= 1(mod k′) and


n′′

k′


≥


n′

k′


.

Proof. Let s be such that n′
= sk′

+ r . If r = 1 the result clearly holds. Let r be such that 2 ≤ r ≤ k′
− 1.

By Theorem 1 there exist non negative integers d, n1, n2 and n3 such that n1n = (n2+n3)k+n3, n′
= n−d(n2+n3), k′

=

n − dn1 and |W | = dn3.
In addition, by Lemma 4, we have that dn3 ≥ kr .
Then if we set ñ3 = dn3 −k(r −1) and ñ2 = dn2 + (k+1)(r −1), we have that n1n = (ñ2 + ñ3)k+ ñ3 with 0 < ñ3 < dn3.
Considering d̃ = gcd(n1, ñ2, ñ3), Theorem 1 states that there exists a minor of Ck

n isomorphic to Ck′
n′′ with subsetW ′ such

that |W ′
| = ñ3 < dn3 = |W | and n′′

= n − (ñ2 + ñ3).
Moreover, n′′

= 1(mod k′) and


n′′

k′


=


n′

k′


= s + 1. �

In addition, we can state:

Lemma 8. Conjecture 6 holds for relevant minors with parameters d = n1 = 1.

Proof. LetW ⊂ Zn be a subset defining a relevant minor of Ck
n isomorphic to Ck−1

n′ and n′
= s(k−1)+ r with 2 ≤ r ≤ k−1.

Assume thatW = {wi : i ∈ Z|W |} with 0 ≤ w0 < w1 < · · · < w|W |−1 ≤ n − 1.
Take W ′

= {wi : 0 ≤ i ≤ |W | − k(r − 1) − 1}. It is not hard to see that, by Remark 2, W ′ defines a relevant minor with
parameters d = n1 = 1 and by using the same arguments as in the previous lemma, the minor is isomorphic to Ck−1

n′′ with
n′′

= 1(mod (k − 1)). �

As a consequence we have:

Corollary 9. Let k ≤ 4. If W ⊂ Zn defines a relevant minor of Ck
n isomorphic to Ck′

n′ then the corresponding minor inequality
defines a facet of Q ∗(Ck

n) if and only if n′
= 1(mod k′).

Proof. If k ≤ 4, every minor inequality valid for Q ∗(Ck
n) corresponds to a relevant minor isomorphic to Ck′

n′ with k′
= 2 or

k′
= 3. If k′

= 3, the minor has parameters d = n1 = 1 and then the corollary follows from Lemma 8. It only remains to
observe that when k′

= 2 and the minor inequality defines a facet of Q ∗(Ck
n), then n′ has to be odd. �

4. The separation problem for minor inequalities

In the context of the study of the dominating set problem on cycles, the authors in [10] give a polynomial time algorithm
to separate minor inequalities valid for Q ∗(C3

n ). Let us observe that every circulant minor of C3
n has parameters d = n1 = 1.

In this section we study the separation problem for inequalities associated with circulant minors of any circulant matrix
with parameter n1 = 1 and any d ≥ 1.

In order to do so, let us first present a technical lemma for these inequalities.

Lemma 10. Let d, n1 = 1, n2, n3 be the parameters associated with a circulant minor of Ck
n such that n3 = r(mod (k − d))

with 1 ≤ r < k − d. Then
n − d(n2 + n3)

k − d


=


n
k

−
r

k − d
+ 1


+

1
k(k − d)

dn3.

Proof. Let s be the nonnegative integer such that n3 = s(k − d) + r . Since n = k(n2 + n3) + n3 we have that
n − d(n2 + n3)

k − d


=


(k − d)(n2 + n3) + n3

k − d


= n2 + n3 + s + 1.

Since s =
n3−r
k−d and n2 + n3 =

n−n3
k it follows that

n2 + n3 + s + 1 =
n − n3

k
+

n3 − r
k − d

+ 1 =


n
k

−
r

k − d
+ 1


+

1
k(k − d)

dn3

and the proof is complete. �

From the previous lemma, if W ⊂ Zn defines a relevant minor of Ck
n with parameters d, n1 = 1, n2, n3 and n3 =

r(mod (k − d)) with 1 ≤ r < k − d, then the corresponding minor inequality can be written as
i∈W

xi +
n

i=1

xi ≥ α(d, r) + β(d) |W |
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where

α(d, r) =
n
k

−
r

k − d
+ 1, β(d) =

1
k(k − d)

or equivalently
i∈W

(xi − β(d)) ≥ α(d, r) −

n
i=1

xi. (4)

Given Ck
n and two integer numbers d, r with 1 ≤ d ≤ k − 2 and 1 ≤ r < k − d, we define the function cd on R such that

cd(t) = t − β(d) and the function Ld,r on Rn such that Ld,r(x) = α(d, r) −
n

i=1 xi.
Then, the inequality (4) can be written as

i∈W

cd(xi) ≥ Ld,r(x). (5)

We will first extend the techniques used in [10] for matrices C3
n to any matrix Ck

n , in order to separate inequalities
corresponding to relevant minors with parameters d = n1 = 1.

Let us denote by W(d, r) the set of subsets W ⊂ Zn defining relevant minors with parameters d, n1 = 1, n2, n3 =

r(mod (k − d)). Observe that, from Lemma 8, when d = n1 = 1 every relevant minor inequality corresponds to the case
r = 1, that is why we only consider subsetsW ∈ W(1, 1).

To this end, given n, k let K k
n = (V , A) be the digraph with set of nodes V = {v

j
i : i ∈ Zn, j ∈ Zk−1} ∪ {t} and set of arcs

defined as follows: first consider in A the arcs

• (v0
0, v

1
l ) for all l such that k + 1 ≤ l ≤ n − 1 and l = 1 (mod k),

then consider in a recursive way:

• for each (v, v
j
i) ∈ A, add (v

j
i, v

j+1
l ) whenever l is such that i + k + 1 ≤ l ≤ n − 1 and l − i = 1 (mod k),

• for each (v, v0
i ) ∈ A, add (v0

i , t) whenever i is such that i ≤ n − (k + 1) and n − i = 1 (mod k).

Note that, by construction, K k
n is acyclic. For illustration, digraph K 4

20 is depicted in Fig. 1.
We have the following result:

Lemma 11. There is a one-to-one correspondence between v0
0 t-paths in K k

n and subsets W ∈ W(1, 1) with 0 ∈ W.

Proof. Let W ∈ W(1, 1) and assume that W = {ij : j ∈ Zn3} ⊂ Zn with 0 = i0 < i1 < · · · < in3−1 ≤ n − 1. Let α be the
positive integer such that |W | = n3 = α(k − 1) + 1.

Then, by Remark 2(i), ij+1 − ij = 1 (mod k) and ij+1 − ij ≥ k + 1 for all j ∈ Zn3 . Then,
vs
ij ∈ V (K k

n ) : ij ∈ W , s = j(mod (k − 1))


∪ {t}

induces a v0
0 t-path in K k

n .
Conversely, let P be a v0

0 t-path in K k
n . By construction, there exists a positive integer α such that |V (P) ∩ V j

| = α for all
j ≠ 0 and |V (P) ∩ V 0

| = α + 1. Then, |V (P) − {t}| = α(k − 1) + 1.
Now, if we define

W = {i ∈ Zn : v
j
i ∈ V (P) for some j ∈ Zk−1}

then |W | = α(k − 1) + 1 and from Remark 2(i) and Lemma 4, it follows thatW ∈ W(1, 1). �

Theorem 12. Given Ck
n , the separation problem for inequalities corresponding to minors with parameters d = n1 = 1 can be

polynomially reduced to at most n minimum weight path problems in an acyclic digraph.

Proof. Let x̂ ∈ Rn. We will show that the problem of deciding if, given j ∈ Zn, there exists W ∈ W(1, 1) with j ∈ W and
such that x̂ violates the inequality (5) can be reduced to a shortest path problem. W.l.o.g we set j = 0.

Consider the digraph K k
n and associate the weight c1(x̂i) with every arc (v

j
l , v

j+1
i ) ∈ A and the weight c1(x̂0) with every

arc (v0
l , t) ∈ A.

Clearly, if W is the subset corresponding to a v0
0 t-path P in K k

n , the weight of P is equal to


i∈W c1(x̂i).
Then, there existsW ∈ W(1, 1)with 0 ∈ W and such that x̂ violates the inequality (5) if and only if theminimumweight

on all v0
0 t-paths in K k

n is less than L1,1(x̂). Since K k
n is acyclic, computing thisminimumweight path can be done in polynomial

time using for instance Bellman’s algorithm [5]. �

In what follows we consider inequalities corresponding to minors with parameters n1 = 1 and d ≥ 2. More precisely,
we will focus on a particular family of minors that we call alternated minors.
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Fig. 1. The digraph K 4
20 .

Definition 1. Let W = {is : s ∈ Zdn3} ⊂ Zn with 0 ≤ i0 < i1 < · · · < idn3−1 ≤ n − 1 be a subset defining a relevant
minor of Ck

n with parameters d ≥ 2, n1 = 1, n2, n3. Then, the minor defined byW is a d-alternated minor if, for every j ∈ Zd,

W j
= {ij+td : t ∈ Zn3}.

Example 1. In the following two cases, let us consider the circulant minors of C6
33 induced byW = W 0

∪ W 1:

(i) W 0
= {7, 14, 21} and W 1

= {8, 15, 22},
(ii) W 0

= {7, 14, 21} and W 1
= {12, 25, 32}.

Clearly, the case (i) corresponds to a 2-alternated minor, while the case (ii) does not.

We are interested in characterizing the subsetsW ⊂ Zn that define alternated minors of Ck
n .

Fromnowon,wheneverW ⊂ Zn and |W | = mweassume thatW = {is : s ∈ Zm}with 0 ≤ i0 < i1 < · · · < im−1 ≤ n−1.
In addition, according toW we let δs = is+1 − is, for all s ∈ Zm.

Remark 3. If W ⊂ Zn defines a d-alternated minor it can be checked that
d−1
s=0

δs = id − i0 = 1(mod k) ≥ k + 1.

If in addition to the necessary condition above, we have that δs+d = δs for all s ∈ Z|W |, then W clearly defines a d-
alternated minor. However, not every alternated minor verifies this condition as the following example shows:

Example 2. Consider the minor of C9
47 defined by W = W 0

∪ W 1 where W 0
= {0, 10} and W 1

= {3, 22}. It is easy to see
that W defines a 2-alternated minor but δ0 = 3 and δ2 = 12.

However, we have:

Lemma 13. Let W ⊂ Zn be a subset defining a d-alternated minor. Then, δs+d = δs(mod k) for all s ∈ Z|W |.

Proof. We know that, sinceW defines a d-alternatedminor, for any s ∈ Z|W |, is and is+d belong toW j for some j ∈ Zd. Then,
by Remark 2(ii), is+d − is = 1 (mod k).
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Hence, for all s ∈ Z|W |, we have that

δs+d − δs = (is+1+d − is+d) − (is+1 − is) = (is+1+d − is+1) − (is+d − is) ,

proving that δs+d = δs(mod k) for all s ∈ Z|W |. �

We also have the following result:

Lemma 14. Let W ⊂ Zn be a subset defining a d-alternated minor with |W | = dn3. Then,

(i) if
r

s=j δs = 0(mod k) for some j ≤ r < j + d, then r = j + d − 2 and δr+1 = 1,
(ii) if δs = 1(mod k) for some s ∈ Zd then δs+td = 1 for all t ∈ Zn3 .

Proof. In order to prove item (i), let j, r ∈ Zdn3 with j ≤ r < j + d and
r

s=j δs = 0(mod k). Considering that

r
s=j

δs = ir+1 − ij,

we have that ir+1 − ij = 0(mod k).
Since r + 1 ≤ j + d and ij+d − ij = 1(mod k), then r + 1 < j + d and ij < ir+1 < ij+d.
W.l.o.g. let us assume that j ∈ W j. Since ij+d ∈ W j, ij+d = ij + tk + 1 for some positive integer t and ij + t ′k ∈ N j for all

1 ≤ t ′ ≤ t − 1. Since ij < ir+1 < ij+d, ir+1 − ij = 0(mod k) and ir+1 ∉ N j, then ir+1 = ij + tk.
Equivalently, ir+1 = ij+d − 1, r = j + d − 2 and δr+1 = 1.
To prove item (ii), we only need to observe that if δs = 1(mod k) for some s, then using the previous lemma for all t ∈ Zn3

we have,
s+td−1

j=s+(t−1)d+1

δj = 0(mod k),

and by item (i), δs+td = 1 for all t ∈ Zn3 . �

The previous results describe necessary conditions that the values in {δs : s ∈ Zd} associated with a subset W ⊂ Zn
must satisfy in order to define a d-alternated minor. Actually, we will see that these conditions characterize these subsets.
For this purpose, let us define the following:

Definition 2. Given k ≥ 4 and 2 ≤ d ≤ k − 2, let Rd,k ⊂ Zd
k such that (a0, a1, . . . , ad−1) ∈ Rd,k if and only if

(i)
d−1

s=0 as = 1(mod k) ≥ k + 1,
(ii) if

r
s=j as = 0(mod k) for some 0 ≤ j ≤ r ≤ d − 1 then r = j + d − 2 and j ∈ {0, 1}.

Remark 4. Observe that:

(i) R2,k = {(a0, a1) ∈ Z2
k : a0 + a1 = 1(mod k)} and

(ii) in general, |Rd,k| = O(kd).

So, we have the following characterization for d-alternated minors.

Theorem 15. Let d ≥ 2,W = {is : s ∈ Zdn3} ⊂ Zn and W j
= {ij+td : t ∈ Zn3}, for every j ∈ Zd. Then, W defines a d-alternated

minor of Ck
n if and only if there exists a ∈ Rd,k such that:

(i) aj = δj+td(mod k) for all j ∈ Zd, t ∈ Zn3 and
(ii) if aj = 1 for some j ∈ Zd then δj+td = 1 for all t ∈ Zn3 .

Proof. LetW be a subset defining a d-alternated minor of Ck
n . For every j ∈ Zd, let aj ∈ Zk such that aj = δj(mod k).

We first prove that a = (aj)j∈Zd ∈ Rd,k. If d = 2, it is clear that a = (a0, a1) ∈ R2,k.
Let d ≥ 3. By definition of a and Remark 3,

d−1
s=0

as = 1(mod k) ≥ k + 1

and condition (i) in Definition 2 is verified. Moreover, by Lemma 14(i), if
r

s=j as = 0(mod k) for some 0 ≤ j ≤ r ≤ d − 1
then j + d = r + 2. Since r + 2 ≤ d + 1 then j ∈ {0, 1} and condition (ii) in Definition 2 holds. Therefore, a ∈ Rd,k.

Moreover, from the definition and Lemma 14, a satisfies assumptions (i) and (ii).
Conversely, let a ∈ Rd,k satisfy assumptions (i) and (ii). Since, for any s ∈ Zdn3 , is+d − is =

s+d−1
j=s δj, by Definition 2(i)

it holds that is+d − is =
d−1

j=0 aj = 1(mod k) and then is+d − is = 1(mod k) ≥ k + 1. Then, from Remark 2(i), each W j
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induces a circulant minor with parameters d = n1 = 1. Again from Remark 2, we only need to prove that subsets N j, j ∈ Zd
are mutually disjoint.

Let us start with the case d = 2. Suppose that there exists v ∈ N0
∩ N1. W.l.o.g. we set i1 < v ≤ i2. Then, since v ∈ N0,

v − i0 = 0 (mod k) and since v ∈ N1, v − i1 = 0 (mod k). Moreover, as i2 − i0 = 1 (mod k), then i2 − v = 1 (mod k) and
δ1 = i2 − i1 = (i2 − v) + (v − i1) = 1 (mod k). Hence, a1 = 1. By assumption (ii), δ1+t2 = 1 for all t ∈ Zn3 and it is not
hard to check that, in this case, N0

∩ N1
= ∅, which is a contradiction.

Let d ≥ 3. W.l.o.g., it is enough to prove that N0
∩ N r

= ∅, for any r ∈ Zd, r ≠ 0. To this end let W = W 0
∪ W r . We

will see that W defines 2-alternated minor of Ck
n . By using the same arguments as in the case d = 2, we only need to find

ã = (ã0, ã1) ∈ R2,k satisfying assumptions (i) and (ii) for W with δ̃2t = ir+td − itd and δ̃1+2t = i(t+1)d − ir+td for all t ∈ Zn3 .
Let ã0, ã1 ∈ Zk be such that ã0 = ir − i0(mod k) and ã1 = id − ir(mod k). Clearly, ã = (ã0, ã1) ∈ R2,k and verifies

assumption (i).
If ã0 = 1, ã1 = 0 i.e.

d−1
i=r δi = 0(mod k). Then,

d−1
i=r ai = 0(mod k). Hence, since a ∈ Rd,k we have that r = 1 and

ã0 = a0 = 1. By hypothesis, δ̃2t = δ2t = 1 for all t ∈ Zn3 .
If ã1 = 1, ã0 = 0, i.e.

r−1
i=0 δi = 0(mod k) and

r−1
i=0 ai = 0(mod k). Hence, since a ∈ Rd,k, r−1 = d−2 and ã1 = ad−1 =

1. By hypothesis, δ̃1+2t = δd−1+td = 1 for all t ∈ Zn3 . Therefore, ã satisfies assumption (ii) and the proof is complete. �

Given Ck
n and d, r integer numbers such that 2 ≤ d ≤ k − 2, 1 ≤ r ≤ k − d we define A(d, r) as the set of all subsets

W ⊂ Zn defining a d-alternated minor of Ck
n such that |W | = dn3 with n3 = r (mod (k − d)). Moreover, if a ∈ Rd,k, we

define the separation problem Ck
n − SP(d, r, a) as follows:

INSTANCE: x̂ ∈ Rn

QUESTION: Is thereW ∈ A(d, r) such that 0 ∈ W ,
δs = as(mod k) for all s ∈ Zd and
i∈W

cd(x̂i) < Ld,r(x̂)?

We will reduce Ck
n − SP(d, r, a) to a shortest path problem in the digraph K k

n (d, r, a) with node set

V =

 
i∈Zd, j∈Zk−d+r

V i
j


∪ {t}

where V i
j = {vi

j(p) : p ∈ Zn} for all i ∈ Zd, j ∈ Zk−d+r .
The set of arcs A of K k

n (d, r, a) is defined as follows: first consider in A the arcs (v0
0(0), v

1
0(p)) for all p = a0 (mod k) and

1 ≤ p ≤ n − 1 when a0 ≠ 1, and (v0
0(0), v

1
0(1)) when a0 = 1.

Then consider in a recursive way:

• for each (v, vi
j(p)) ∈ A with 1 ≤ i ≤ d − 2

if ai ≠ 1 then add (vi
j(p), v

i+1
j (q)), for all q such that p+ai ≤ q ≤ n−1 and q−p = ai (mod k), else add (vi

j(p), v
i+1
j (p+1));

• for each (v, vd−1
j (p)) ∈ A with j ≤ k − d + r − 2

if ad−1 ≠ 1 then add (vd−1
j (p), v0

j+1(q)), for all p + ad−1 ≤ q ≤ n − 1 and q − p = ad−1 (mod k), else add (vd−1
j (p),

v0
j+1(p + 1));

• for each (v, vd−1
k−d−1(p)) ∈ A

if ad−1 ≠ 1 then add (vd−1
k−d−1(p), v

0
0(q)), for all p + ad−1 ≤ q ≤ n − 1 and q − p = ad−1 (mod k), else add (vd−1

k−d−1(p),
v0
k−d−1(p + 1)).

Finally, consider the following arcs: for each (v, vd−1
k−d+r−1(p)) ∈ A, if ad−1 ≠ 1 then add (vd−1

k−d+r−1(p), t), for all p ≤ n−1
and n − p = ad−1 (mod k), else add (vd−1

k−d+r−1(p), t) only when p = n − 1.
In Fig. 2 we sketch the digraph K 4

29(2, 1, (3, 2)) where only the arcs corresponding to two v0
0(0)t-paths are drawn.

Note that, by construction, if (vi
j(p), v

s
l (q)) ∈ A thenq > p. Hence, K k

n (d, r, a) is acyclic.
We have the following result:

Lemma 16. There is a one-to-one correspondence between v0
0(0)t-paths in K k

n (d, r, a) and subsets W ∈ A(d, r) with 0 ∈ W.

Proof. LetW ∈ A(d, r). Then, for all j ∈ Zd,W j
= {ij+hd : h ∈ Zn3} and n3 = α(k − d) + r for some positive integer α.

For each h ∈ Zn3 we define t(h) such that t(h) = h (mod (k − d)) and

• if 0 ≤ h ≤ α(k − d) − 1 then t(h) ∈ Zk−d
• if α(k − d) ≤ h ≤ α(k − d) + r − 1 then k − d ≤ t(h) ≤ k − d + r − 1.
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Fig. 2. Two v0
0(0)t-paths in the digraph K 4

29(2, 1, (3, 2)).

Then, we associate with every ij+hd ∈ W j, the node v
j
t(h)(ij+hd) and

v
j
t(h)(ij+hd) : j ∈ Zd, h ∈ Zn3


∪ {t}

induces a v0
0(0)t-path in K k

n (d, r, a).
Conversely, let P be a v0

0(0)t-path in K k
n (d, r, a). By construction, there exists a positive integer α such that |V (P)∩V j

| =

α(k − d) + r for all j ∈ Zd. Hence, if we define

W j
= {p ∈ Zn : v

j
i(p) ∈ V (P) ∩ V j for some j ∈ Zk−d, i ∈ Zk−d+r},

then |W j
| = α(k − d) + r . ClearlyW = ∪j∈Zd W

j
∈ A(d, r). �

Theorem 17. The Ck
n − SP(d, r, a) can be polynomially reduced to a shortest path problem in a weighted acyclic digraph.

Proof. Let us consider the digraph K k
n (d, r, a) and assign the weight cd(x̂p) to every arc (v

j
i(q), v

m
l (p)) ∈ A and the weight

cd(x̂0) to every arc (vd−1
l (q), t) ∈ A.

Clearly, ifW is the subset corresponding to a v0
0(0)t-path P in K k

n (d, r, a), the weight of P is equal to


i∈W cd(x̂i).
Then, x̂ violates an inequality corresponding to a circulant minor of Ck

n with parameters d and n1 = 1 and subsetW with
0 ∈ W if and only if the minimum weight of all v0

0(0)t-paths P in K k
n (d, r, a) is less than Ld,r(x̂).

Since K k
n (d, r, a) is acyclic, computing this minimum path can be done in polynomial time using for instance Bellman’s

algorithm [5]. �

Finally, the separation problem for inequalities corresponding to alternated minors can be formally stated as:
INSTANCE: x̂ ∈ Rn

QUESTION: Is there an alternated minor whose corresponding inequality is violated by x̂?
Hence, from Theorems 12 and 17 and Remark 4(ii), we have:

Theorem 18. For a fixed k, the separation problem for inequalities corresponding to alternated minors of Ck
n can be solved in

polynomial time.
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5. Conclusions

In this paper we study the description of the set covering a polyhedron of circulant matrices. We associate a valid
inequality with each circulant minor and we show (Theorem 5) that minor inequalities include an important family of facet
defining inequalities. We also give a polynomial time algorithm to separate a subfamily of them.

As it was mentioned at the beginning of the paper, the dominating set polyhedron of web graphs is the set covering
polyhedron of certain circulant matrices. Then, the results obtained so far have direct consequences on the dominating set
problem on web graphs.

We also state some interesting open questions. Theorem 5 gives sufficient conditions for a minor inequality in order to
define a facet. In this way, we give a conjecture (Conjecture 6) whose validity would imply that these conditions are also
necessary. Moreover, the computational complexity of the separation problem for general minor inequalities remains open.

Finally, we would like to sketch some new research lines on this topic.
Given N ⊂ Zn such that Ck

n/N ≈ Ck′
n′ and following the proof of Theorem 3, if before adding up all the rows of A =

(Ck
n)Zn−R(N),Zn wemultiply them by a positive integer r and then we divide all the coefficients by k′ and round up, we obtain

the following Chvátal–Gomory inequality:

(r + 1)

i∈W

xi + r

i∉W

xi ≥


rn′

k′


.

Let us call r-minor inequalities those ones obtained by the previous procedure. Clearly, r-minor inequalities are valid for
the set covering polyhedron of circulant matrices for every r ∈ Z+. The inequalities considered in this paper correspond to
the case r = 1.

Initially, we strongly believed that the only r-minor inequalities defining a facet would be the 1-minor inequalities. The
results in [10] for matrices C3

n for any n ≥ 5 together with those in [9] for matrices Ck
sk, with s = 1, 2 and any k ≥ 2

strengthened this conjecture. But recently in [22], the authors have found a 2-minor inequality defining a facet of Q ∗(C4
59),

contradicting our early beliefs.
This last result determines the lines of our current research work. Indeed, we focus on obtaining sufficient conditions

and necessary conditions for an r-minor inequality to define a facet of the set covering polyhedron of a circulant matrix as
well as studying the underlying separation problem. In addition, we are interested in characterizing classes of matrices for
which these inequalities completely describe the polyhedron.
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