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a b s t r a c t

We study Lovász and Schrijver’s hierarchy of relaxations based on positive semidefinite-
ness constraints derived from the fractional stable set polytope. We show that there are
graphs G for which a single application of the underlying operator, N+, to the fractional
stable set polytope gives a nonpolyhedral convex relaxation of the stable set polytope. We
also show that none of the current best combinatorial characterizations of these relaxations
obtained by a single application of the N+ operator is exact.

© 2014 Published by Elsevier B.V.

1. Introduction

Lovász and Schrijver [8] proposed an elegant, general framework to construct the convex hull of 0, 1 points in a given
polytope P inside a hypercube, say [0, 1]n. Such methods are called Lift-and-Project Methods. Among the methods proposed
by Lovász and Schrijver [8], we can mention N(·) and N+(·); the latter is the focus of this paper.

There are at least two major features of lift-and-project methods. First, by going to the matrix space Rn×n we possibly
square the number of variables; however, in some cases, by enforcing polynomially many linear inequalities in this higher
dimensional space, we can generate exponentiallymany inequalities in the original spaceRn. One example of this is theN(·)
operator applied to the fractional stable set polytope of a graph (which leads to odd-cycle polytope of the graph). A way to
impose such valid inequalities in thematrix space is to represent x ∈ Rn by xxT inRn×n andnote that, for example, if x satisfies
some linear inequalities, then every column of every n×nmatrix representing xmust also satisfy that inequality. The second
feature of lift-and-project methods is that it is natural to add a nonlinear (but convex and tractable) constraint in this ‘‘lifted
space’’. As wementioned above, in this higher dimensional space, instead of only dealing with x ∈ Rn, we can also deal with
xxT ∈ Rn×n. If this is the representation we choose, then xxT is a symmetric, positive semidefinite matrix of rank at most
one. Among these three requirements, relaxing the ‘‘rank is at most one’’ condition (which makes the problem nonconvex
and intractable), we can derive tractable convex relaxations. The operator N+(·) enforces such positive semidefiniteness
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constraints in the lifted matrix space. As we will see, N+(·) operator can be much stronger than N(·) when applied to the
relaxations of the stable set polytope.

The behavior of these operators N(·) and N+(·) has been of particular interest when P is the fractional stable set polytope
of a graph, given by

FRAC(G) :=

x ∈ [0, 1]V (G)

: xu + xv ≤ 1, ∀ {u, v} ∈ E(G)

,

where V (G), E(G) denote the node set and the edge set of a graph G, respectively. For every graph G, STAB(G) denotes the
convex hull of incidence vectors of stable sets in G. It is elementary to show that STAB(G) is the convex hull of integer points
in FRAC(G). In general, FRAC(G) ≠ STAB(G) unless G is bipartite.

Let Sn denote the space of n-by-n symmetric matrices with real entries. Then, given a graph G,

M(G) := {Y ∈ S{0}∪V (G)
: Ye0 = diag(Y ), Yev ∈ cone(FRAC(G)), Y (e0 − ev) ∈ cone(FRAC(G)), ∀v ∈ V (G)}.

In the above, 0 is the special homogenizing index, ei is the ith unit vector, and

cone(FRAC(G)) :=


x0
x


∈ R{0}∪V (G)

: xu + xv ≤ x0, ∀ {u, v} ∈ E(G), 0 ≤ xv ≤ x0, ∀v ∈ V (G)


.

Projecting this lifting back to the space of STAB(G) results in

N(G) :=


x ∈ [0, 1]V (G)

:


x0
x


= Ye0, for some Y ∈ M(G)


,

a relaxation of STAB(G) satisfying N(G) ⊆ FRAC(G).
Let Sn

+
denote the space of n-by-n symmetric positive semidefinite (PSD) matrices with real entries. Then

M+(G) := M(G) ∩ S{0}∪V (G)
+

yields the tighter relaxation of STAB(G)

N+(G) :=


x ∈ [0, 1]V (G)

:


x0
x


= Ye0, for some Y ∈ M+(G)


.

If TH(G) denotes the theta body of G (see Lovász [4,7]) and CLQ(G) the polytope defined by the clique constraints that are
valid for STAB(G), it is known that TH(G) ⊆ CLQ(G) [4]. In [8], the authors gave a PSD representation for TH(G) that seems
close to the definition of N+(G):

TH(G) =


x ∈ [0, 1]V (G)

:


x0
x


= Ye0, Yuv = 0, ∀{u, v} ∈ E(G), Ye0 = diag(Y ), for some Y ∈ S{0}∪V (G)

+


.

Motivated by that result, we define

T̂H(G) :=


x ∈ [0, 1]V (G)

:


x0
x


= Ye0, Yev ∈ cone(FRAC(G)), ∀v ∈ V (G),

Ye0 = diag(Y ), for some Y ∈ S{0}∪V (G)
+


. (1)

Clearly, N+(G) ⊆ T̂H(G) ⊆ TH(G).
Lovász and Schrijver [8] proved that for every graph G,N(G) = OC(G), where OC(G) denotes the polytope defined

by intersecting FRAC(G) with all the odd-cycle inequalities that are valid for STAB(G). To the best of our knowledge, no
analogous characterization has been discovered for N+(G).

Let ANTI-HOLE(G) denote the polytope defined by all the anti-hole constraints that are valid for STAB(G) and let
WHEEL(G) denote the polytope defined by all the wheel constraints that are valid for STAB(G) (for the underlying inequal-
ities, see for instance [8]).

Given any graph G, let us define

LS(G) := OC(G) ∩ ANTI-HOLE(G) ∩ WHEEL(G) ∩ CLQ(G).

The following theorem follows from the results in [8]:

Theorem 1.1. For every graph G,

N+(G) ⊆ LS(G) ∩ TH(G).

The inclusion in the statement of Theorem 1.1 may be strict. This gives one of the motivations for the current paper:
Find a sharper description of N+(G) analogous to the partial description in Theorem 1.1. Full characterizations analogous to
Theorem 1.1 may be helpful in analyzing relaxations, approximation ratios and integrality gaps.



462 S. Bianchi et al. / Discrete Applied Mathematics 164 (2014) 460–469

Fig. 1. The antiweb W
3
11 .

Note that LS(G)may have exponentiallymany facets and TH(G)may need uncountablymany defining linear inequalities.
Moreover, it is known that TH(G) is a polyhedron if and only if G is a perfect graph, (see for instance [4]) but for N+(G), no
such characterization has been obtained yet. To the best of our knowledge, no graph with nonpolyhedral N+(G) is known.
The closest existing results in the literature about the nonpolyhedrality of the relaxation obtained by theN+ operator can be
found in Bianchi’s Ph.D. Thesis [1]. It was proved there thatwhen theN+ operator is applied to the relaxation of thematching
polytope described by the nonnegativity and degree constraints, the resulting tighter relaxation can be nonpolyhedral. The
second motivation of the current work is: to show that N+(G) may not be a polyhedron.

Let us present one of the main technical tools used by Lovász and Schrijver [8] in proving Theorem 1.1. Given a graph
G = (V , E) and a node v, we denote by G ⊖ v the graph obtained after the destruction of node v, that is the subgraph of G
obtained after deleting v and its adjacent nodes in G. If aT x ≤ b is a valid inequality for STAB(G), we denote by Ga its support
graph, that is, the subgraph of G induced by the nodes with positive coefficients in the inequality.

Lemma 1.2 ([8]). Let G = (V , E) and aT x ≤ b be a valid inequality for STAB(G). If, for every v ∈ V (Ga), the inequality
i∈V (Ga⊖v)

aixi ≤ b − av (2)

is valid for FRAC(Ga ⊖ v), then aT x ≤ b is a valid inequality for N+(G).

It is well known that all the odd-cycle, anti-hole, wheel and clique constraints that are valid for STAB(G), satisfy the
sufficient conditions given in the lemma above. However, there are examples of graphsG forwhich not every valid inequality
of N+(G) satisfies these conditions. Hence, the third motivation for the current paper is: to improve (strengthen) the technical
tool provided by Lemma 1.2.

We start towards these goals by considering the following questions:

Q.1. Is there a stronger relaxation of N+(G) than the one presented in Theorem 1.1? (Here, we are seeking a stronger
relaxation which has an elegant, explicit description, analogous to the one given in Theorem 1.1.)

Q.2. Is N+(G) polyhedral for every G?
Q.3. Which valid inequalities for N+(G) do not satisfy the sufficient condition in Lemma 1.2?

In Sections 2–4 we provide answers to questions Q.1, Q.2 and Q.3, respectively.

2. A stronger relaxation of N+(G)

A graph is called near-bipartite [10] if after the destruction of any node, the resulting graph is bipartite.
Therefore, by Lemma 1.2, every valid inequality for STAB(G) with near-bipartite support graph is also valid for N+(G). In

particular, if G is near-bipartite then N+(G) = STAB(G). However there are near-bipartite graphs G for which STAB(G) does
not coincide with LS(G). Consider as graph G the antiweb W

3
11 in Fig. 1.

It is known that the rank constraint,


v∈V (G) xv ≤ α(G), is needed in the description of STAB(G) [11]; but it is neither one
of the inequalities of LS(G), nor implied by them. This motivates the definition of a new polyhedral relaxation of N+(G). For
this purpose, let us recall that if G′ is a node-induced subgraph of G (G′

:= G[U] where U ⊆ V ), then

STAB(G) ⊆ STAB(G′) ⊕ [0, 1]V (G)\V (G′),

where for S1 ⊆ Rn and S2 ⊆ Rm, S1 ⊕ S2 :=


x
y


∈ Rn+m

: x ∈ S1, y ∈ S2

. For the sake of simplicity, using the above

context, we define the completion of STAB(G′) as

compV (G)


STAB(G′)


:= STAB(G′) ⊕ [0, 1]V (G)\V (G′).
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Fig. 2. The graph Ĝ.

Fig. 3. The graphs GLT and GEMN .

If NB denotes the class of all near-bipartite graphs, given a graph G, we define

NB(G) :=


G′=G[U],U⊆V ;G′∈NB

compV

STAB(G′)


.

It is clear that ifG is near-bipartite then STAB(G) = NB(G). However, there are other classes of graphs forwhich this condition
holds. For instance, perfect graphs and t-perfect graphs (i.e., a graph G for which STAB(G) = OC(G)) are examples of this
kind.

From the definition of NB(G) and Lemma 1.2, it is clear that N+(G) ⊆ NB(G). Since complete graphs, odd holes, odd
antiholes and wheels are near-bipartite graphs, we have

NB(G) ⊆ LS(G)

and the inclusion can be strict (recall the graph W
3
11). Then, we have a stronger relaxation of N+(G) analogous to the one

given in Theorem 1.1.

Lemma 2.1. For every graph G,N+(G) ⊆ NB(G) ∩ T̂H(G).

Actually, in the following sections we analyze how tight the above relaxation of N+(G) is. At the time of this writing, we
do not have an example of a graph G for which N+(G) ≠ NB(G) ∩ T̂H(G).

3. A graph G with nonpolyhedral N+(G)

As we have already mentioned, TH(G) is polyhedral if and only if G is a perfect graph, and in this case TH(G) = STAB(G).
In addition, if G is perfect then N+(G) is polyhedral, but it is known that it is not the only class of graphs for which this
condition (polyhedrality of N+(G)) holds. For instance, near-bipartite, t-perfect and all graphs for which STAB(G) coincides
with NB(G) are graphs for which N+(G) is a polyhedron. It remains intriguing to characterize when N+(G) is polyhedral.
In what follows we will identify a small, symmetric obstruction to the polyhedrality of N+(G), namely the 8-node graph in
Fig. 2.

Let us denote by Ĝ that 8-node graph. Utilizing similar techniques as the ones used in [1] we will prove that N+(Ĝ)

is nonpolyhedral. It will follow from our results that every graph G which contains Ĝ as an induced subgraph has N+(G)
nonpolyhedral. It seems likely that there are smaller obstructions to nonpolyhedrality of N+(G). Any such obstruction must
have at least 6 nodes and there are exactly twopossibilities of such obstructionswith 6nodes, namely,GLT andGEMN , depicted
in Fig. 3 (see [3,6]). In fact, Ĝ can be considered as a ‘‘symmetrization’’ of GEMN . Moreover, GEMN is an induced subgraph of Ĝ
(for example, with node set {1, 2, 3, 4, 5, 6}).

Using the results in [9] (e.g., Theorem 4.11 of [9]) we know that

STAB(Ĝ) = CLQ(Ĝ) ∩


x ∈ RV (G)

:

8
i=1

xi ≤ 2


. (3)
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We prove that a two-dimensional cross-section (defined by the linear subspace determined by the constraints x1 = x2 =

x3 = x4 and x5 = x6 = x7 = x8) of the compact convex relaxation N+(Ĝ) has a nonlinear piece on its boundary. In order to
do so, for every pair of nonnegative numbers α and β , let z ∈ R8 be such that

zi :=


α if i ∈ {1, 2, 3, 4} ,
β if i ∈ {5, 6, 7, 8} .

(4)

Since N+(Ĝ) ⊆ CLQ(Ĝ), every z defined by (4) which belongs to N+(Ĝ) must satisfy the nonnegativity and clique
constraints, i.e.,

2α + β ≤ 1, α + 2β ≤ 1, 4β ≤ 1, α ≥ 0, β ≥ 0.

It is easy to check that the inequality α + 2β ≤ 1 can be deduced from the other inequalities, leading us to the following
definition:

Definition 3.1. Given nonnegative numbers α and β , we say that z ∈ R8 defined in (4) is an αβ-point andwewrite z (α, β),
if α and β satisfy

2α + β ≤ 1 and 4β ≤ 1. (5)

The main result of this section is that the convex set of αβ-points in N+(Ĝ) is not a polyhedron. In order to prove it,
we characterize the set of αβ-points in N+(Ĝ). Let us begin by considering an appropriate matrix Y ∈ M+(Ĝ) for such an
αβ-point.

Definition 3.2. For nonnegative numbersα andβ , let z be as defined in (4). If λα and λβ are nonnegative numbers, we define
Y (z; λα, λβ) the symmetric matrix satisfying:

1. the diagonal and the zeroth column are equal to (1, z)T ∈ R9,
2. for each {i, j} ∈ E(Ĝ),


Y (z; λα, λβ)


ij := 0,

3. for each {i, j} ∉ E(Ĝ) and i ≠ 0, j ≠ 0,
Y (z; λα, λβ)


ij :=


λα if zi = zj = α, i ≠ j,
λβ if zi = α, zj = β.

Then we have,

Lemma 3.3. Let z(α, β) be an αβ-point. Then, z ∈ N+(Ĝ) if and only if there exist nonnegative numbers λα, λβ such that

λα + λβ ≤ α, 2λβ ≤ β, 2λβ ≤ α, (6)

3α − 1 ≤ λα, (7)
Y (z; λα, λβ) is PSD. (8)

Proof. Trivially, if z is an αβ-point and there is a PSD matrix Y (z; λα, λβ) for which λα, λβ satisfy (6) and (7), then
Y (z; λα, λβ) ∈ M+(Ĝ) and z(α, β) ∈ N+(Ĝ).

Let z ∈ N+(Ĝ) and let S be the set of automorphisms of Ĝ. Given Y ∈ M+(Ĝ) and σ ∈ S, let σ(Y ) be the matrix such
that, for every i, j ∈ {0, 1, . . . , 8}, [σ(Y )]ij := Yσ(i)σ (j) where σ(0) = 0. It is not hard to see that σ(Y ) ∈ M+(Ĝ). Moreover,
as M+(Ĝ) is a convex set, defining

Y :=
1
|S|


σ∈S

σ(Y ),

we have that Y ∈ M+(Ĝ).
It only remains to observe that if Y ∈ M+(Ĝ) and Ye0 =


1
z


then Y = Y (z; λα, λβ) for some nonnegative values

λα, λβ . The conditions (6) and (7) follow from the facts that Y (z; λα, λβ)ei ∈ FRAC(Ĝ) and Y (z; λα, λβ)(e0 − ei) ∈ FRAC(Ĝ),
respectively. �

Observe that, by using (1), the same arguments in the above proof can be applied to T̂H(Ĝ). Actually,

Remark 3.4. Let z(α, β) be an αβ-point. Then, z ∈ T̂H(Ĝ) if and only if there exist nonnegative numbers λα, λβ such that
conditions (6) and (8) hold.
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In order to characterize the points z(α, β) in N+(Ĝ) we must handle the PSD restriction of a matrix Y (z; λα, λβ) with
λα, λβ satisfying (6) and (7). Indeed, we have

Lemma 3.5. For nonnegative numbers α, β, λα, λβ satisfying (6), let

q(γ ) := (4λ2
β − α β + 4α2β − λα β − 16α λβ β + 4α β2

+ 4 λαβ2)

+ (α − 4α2
+ λα − 4 λ2

β + β + α β + λα β − 4β2)γ − (1 + α + λα + β)γ 2
+ γ 3. (9)

Let z be as in (4). Then, Y (z; λα, λβ) is PSD if and only if the roots of the polynomial q are nonnegative.

Proof. The characteristic polynomial of the matrix Y (z; λα, λβ) is

p (γ ) := − (α + λα − γ ) (β − γ )

(−2λ2

β + α β − λα β) − (α − λα + β)γ + γ 22 q(γ ).

Since the matrix Y (z; λα, λβ) is symmetric, all the roots of p(γ ) are real. Clearly, from conditions (6), the roots of
(α + λα − γ ) and (β − γ ) are nonnegative. The roots given by the factor

(−2λ2
β + α β − λα β) − (α − λα + β)γ + γ 2

are

γ3 =
1
2


α − λα + β −


α2 − 2α λα + λ2

α + 8λ2
β − 2α β + 2 λα β + β2


,

and

γ4 =
1
2


α − λα + β +


α2 − 2α λα + λ2

α + 8λ2
β − 2α β + 2 λα β + β2


.

From (6), we have α − λα + β ≥ 0. Then, proving that γ3 ≥ 0 is equivalent to proving that:

(α − λα + β)2 −

α2

− 2α λα + λ2
α + 8λ2

β − 2α β + 2 λα β + β2
≥ 0.

Or equivalently:
α − λα − λβ


β +


β − 2λβ


λβ ≥ 0.

The last inequality holds by (6). Finally, observing that γ3 ≤ γ4, the claim of the lemma follows. �

We analyze the roots of the polynomial q defined in the previous lemma by using the same techniques as in [1] and based
on the following results:

Theorem 3.6 (Hurwitz [5]). Let q(x) = q0 + q1x + q2x2 + · · · + qnxn with qi ∈ R for every i ∈ {0, . . . , n} and qn > 0. Then,
all the roots of q have negative real part if and only if the determinants:

det [q1] , det

q1 q0
q3 q2


, det

q1 q0 0
q3 q2 q1
q5 q4 q3


, . . . , det


q1 q0 0 · · · 0
q3 q2 q1 · · · 0
q5 q4 q3 · · · 0
...

...
...

...
q2n−1 q2n−2 q2n−3 · · · qn


are all positive. In the matrices above we let qr := 0 if r > n.

As a consequence of this theorem, we have

Corollary 3.7 ([1]). Let q (x) = q0+q1x+q2x2+x3 be a polynomial with real coefficients. Then, the roots of q have nonnegative
real part if and only if:

q0 ≤ 0, q1 ≥ 0, q2 ≤ 0 and q1q2 − q0 ≤ 0.

Observe that after applying the above result to the polynomial q in Lemma 3.5, it yields that

−q0 = c1(λα, λβ),

q1 = c2(λα, λβ),

−q2 = 1 + α + λα + β,

−q1q2 + q0 = c3(λα, λβ),
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where

c1

λα, λβ


:= −4 λ2

β + 16α β λβ + (β − 4β2)λα + α β − 4 (α2β + α β2),

c2

λα, λβ


:= −4 λ2

β + λα (1 + β) + α + β + α β − 4 (α2
+ β2),

c3

λα, λβ


:= (λα + α + β + 1) c2


λα, λβ


− c1


λα, λβ


.

Hence, we can state,

Theorem 3.8. Let z(α, β) and λα, λβ satisfying (6). Then, Y (z; λα, λβ) is PSD if and only if

c1

α − λβ , λβ


≥ 0, c2


α − λβ , λβ


≥ 0 and c3


α − λβ , λβ


≥ 0.

Proof. Since 1 + α + λα + β ≥ 0, Y (z; λα, λβ) is PSD if and only if

c1

λα, λβ


≥ 0, c2


λα, λβ


≥ 0, and c3


λα, λβ


≥ 0.

If λα, λβ satisfy (6) and we define λ′
α = α − λβ , then (λ′

α, λβ) also satisfy (6) and λα ≤ λ′
α . Then, it only remains to prove

that the functions c1, c2 and c3 are nondecreasing with respect to λα . If we differentiate themwith respect to λα , we obtain:

•
∂c1
∂λα

= β − 4β2
= β (1 − 4β) ,

•
∂c2
∂λα

= 1 + β,

•
∂c2
∂λα

= 1 + 2α (1 − 2α + β) + 2 λα + 2β + 2 λα β +

β − 2 λβ

 
β + 2 λβ


.

Using the facts that z is an αβ-point and inequalities in (6) hold, the functions above are nonnegative and the proof is
complete. �

We summarize all the results obtained so far in the following:

Corollary 3.9. Let z(α, β) be an αβ-point. Then, the following statements are equivalent:

1. z ∈ N+(Ĝ);
2. z ∈ T̂H(Ĝ);
3. there exists 0 ≤ λβ ≤ min


α
2 ,

β

2


such that

c1

α − λβ , λβ


≥ 0, c2


α − λβ , λβ


≥ 0 and c3


α − λβ , λβ


≥ 0.

Proof. Observe that (i) trivially implies (ii). Now, let z ∈ T̂H(Ĝ); then by Remark 3.4, there exist nonnegative numbers λα

and λβ satisfying inequalities (6) and condition (8). Then (iii) follows from the previous theorem.
Finally, let 0 ≤ λβ ≤ min


α
2 ,

β

2


and set λ′

α := α − λβ . By assumption, z(α, β) satisfies (5). Then, β + 2α ≤ 1. Since
λβ ≤ β/2, it follows that λβ ≤ 1 − 2α or equivalently α − λβ ≥ 3α − 1. Hence, λα′ and λβ satisfy (6) and (7). Applying
Theorem 3.8 and Lemma 3.3, we conclude that z ∈ N+(Ĝ). �

In order to show thatN+(Ĝ) is not a polyhedron, we identify a nonlinear piece on its boundary, by restricting toαβ-points
in N+(Ĝ) \ STAB(Ĝ). Recall that the only facet of STAB(Ĝ) that is not a clique inequality is the full rank inequality (3). This
allows us to consider only αβ-points in the set A (see Fig. 4) given by

A :=


z (α, β) : 0 ≤ β ≤

1
4
, β + 2α ≤ 1, 2α + 2β ≥ 1


.

Now, for αβ-points in A ∩ N+(Ĝ), conditions in Corollary 3.9 can be simplified as follows:

Lemma 3.10. Let z(α, β) ∈ A. Then, z ∈ N+(Ĝ) if and only if there exists 0 ≤ λβ ≤
β

2 satisfying c1

α − λβ , λβ


≥ 0.

Proof. Observe that, for every z(α, β) ∈ A, we have β ≤ α. By Corollary 3.9, z ∈ N+(Ĝ) if and only if 0 ≤ λβ ≤
β

2 , c1

α − λβ , λβ


≥ 0, c2


α − λβ , λβ


≥ 0, and c3


α − λβ , λβ


≥ 0.

For λβ ∈ [0, β

2 ] we define

g(λβ) := c2

α − λβ , λβ


− c1


α − λβ , λβ


and

h(λβ) = c3

α − λβ , λβ


− c1


α − λβ , λβ


.

To prove the result we only need to show that g(λβ) ≥ 0 and h(λβ) ≥ 0 for every λβ ∈ [0, β

2 ]. It is not difficult to see

that they are decreasing functions for λβ ∈ [0, β

2 ] and then, it is enough to prove that g


β

2


≥ 0 and h


β

2


≥ 0. Taking
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Fig. 4. The set A corresponds to the shaded region.

into account that

g


β

2


= 2α − 4α2

+
β

2
+ 4α2β − 4β2

− 2β3

and

h


β

2


=

1
4


8α − 32α3

+ 2β + 40α2β − 9β2
− 40αβ2

− 27β3 ,

it can be easily checked that the minimum values of g


β

2


and h


β

2


are both achieved at β = 1/4.

Finally, it is not hard to see that, for every α ∈ [1/4, 1/2], we have g
 1
8


≥ 0 and h

 1
8


≥ 0. �

We are now ready to present the main result of this section.

Theorem 3.11. Let α and β be nonnegative numbers satisfying 2α + β ≤ 1 and 4β ≤ 1. An αβ-point belongs to N+(Ĝ) ∩ A if
and only if

β ≤
3 −


1 + 8(−1 + 4α)2

8
.

Proof. For every λβ ∈ [0, β

2 ] we define f (λβ) := c1

α − λβ , λβ


. Let z(α, β). By Lemma 3.10, z ∈ N+(Ĝ) ∩ A if and only if

there exists λβ ∈ [0, β

2 ] such that f (λβ) ≥ 0. We will prove that f is a nondecreasing function in [0, β

2 ] and then f (λβ) ≥ 0
if and only if f ( β

2 ) ≥ 0.
Recall that

f

λβ


= −4 λ2

β + 2α β − 4α2β + λβ β + 16α λβ β − 8α β2
+ 4 λβ β2,

and

∂

∂λβ

f

λβ


= 4


−2λβ + β


+ β (−5 + 16α + 4β)

= 4

−2λβ + β


+ β [(−5 + 12α) + 4(α + β)] .

Observe that for z ∈ A, we have α ≥
1
4 and 4(α + β) ≥ 2. Hence,

∂

∂λβ

f

λβ


≥ 4


−2λβ + β


+ β(−3 + 12α).

Thus, ∂
∂λβ

f

λβ


≥ 0.

It only remains to verify that condition f ( β

2 ) ≥ 0 is equivalent to

β ≤
1
8


3 −


1 + 8 (−1 + 4α)2


.
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By definition,

f


β

2


= 2α β − 4α2β −

3
2
β2

+ 2β3

=
β

32


(−3 + 8β)2 − 1 − 8 (−1 + 4α)2


;

then,

f


β

2


≥ 0 if and only if (−3 + 8β)2 ≥ 1 + 8 (−1 + 4α)2 .

Since z ∈ A, we have −3 + 8β ≤ 0 yielding

f


β

2


≥ 0 if and only if 3 − 8β ≥


1 + 8 (−1 + 4α)2,

or equivalently,

f


β

2


≥ 0 if and only if β ≤

1
8


3 −


1 + 8 (−1 + 4α)2


. �

The result in Theorem 3.11 allows us to establish the following:

Corollary 3.12. For any graph G having Ĝ as an induced subgraph, N+(G) is not a polyhedron.

4. More valid inequalities for N+(Ĝ)

Let us observe that Theorem 3.11 provides an infinite family of valid inequalities for N+(Ĝ) that do not satisfy the
conditions of Lemma 1.2. Actually, we can state,

Theorem 4.1. For α0 ∈
 1
4 ,

1
2


, let

a(α0) := 4(4α0 − 1), b(α0) :=


1 + 8(4α0 − 1)2 and

c(α0) :=
3
2


1 + 8(4α0 − 1)2 + 16α0 −

9
2
.

Then,

a(α0)(x1 + x2 + x3 + x4) + b(α0)(x5 + x6 + x7 + x8) ≤ c(α0) (10)

is a valid inequality for N+(Ĝ) that does not satisfy the conditions of Lemma 1.2.

Proof. Let us observe that if there exists a point x ∈ N+(G) violating an inequality of the form (10), then by convexity there
exists an αβ-point violating this same inequality. Thus, it is enough to prove that

4a(α0)α + 4b(α0)β ≤ c(α0)

is valid for any αβ-point in N+(Ĝ). Indeed, this fact follows after computing the tangent line to the function

g(α) :=
3 −


1 + 8(4α0 − 1)2

8

at the point (α0, g(α0)) for α0 ∈
 1
4 ,

1
2


and observing that this tangent line is exactly 4a(α0)α + 4b(α0)β = c(α0).

Finally, it is easy to check that the point x =

1, 0, 1

2 , 0, 0, 0,
1
2 ,

1
2

T
∈ FRAC(Ĝ)∩{x : x1 = 1} and violates the inequality

(10) for every α0 ∈
 1
4 ,

1
2


. In other words, inequality (10) does not satisfy the conditions of Lemma 1.2 when G = Ĝ in Fig. 2

and v = 1. �

Also observe that by Corollary 3.9, the inequalities in (10) are valid inequalities for T̂H(Ĝ), for every α0 ∈
 1
4 ,

1
2


.

The results presented herein lead us to wonder if every valid inequality for N+(G) which is not valid for NB(G) is valid
for T̂H(G) or, equivalently, whether N+(G) = NB(G) ∩ T̂H(G).
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