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In this paper we perform a complete study of the dynamics ofransetric sphere rolling
on a horizontal plane without sliding or spinning. Integraf motion that completely determine
the behaviour of this systems in terms of elementary funstiare explicitly written. Equilibrium
points and closed orbits are systematically described. &pproach is geometric and we find
that the system is equivalent to an ODE on the manif§ddx S2.
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1. Introduction

In [1] a detailed study of the behaviour of a heavy homogesegphere rolling
on a horizontal plane, under the assumption that the areaoofact is a small
circle and that the force of friction between the sphere dmel plane obeys the
Coulomb law, has been realized. In particular, it is showat thfter a finite time
the sphere rolls without sliding or spinning, in which ca$e tdynamics is very
simple, namely, the center of the sphere moves along a Btrdiige. Dissipative
effects are assumed to appear only during that part of thdomathere there is
sliding or spinning. See for instance, among several ofh@is{14], for references
on nonholonomic systems and in particular on rolling spherccording to [10]
the no spinning condition would be a simplified model for a kb ball.

1Corresponding author.
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The no spinning condition is a particular case of the so daNeselova’s
constraints [13]. For a nonhomogeneous sphere subjected to the no glidin
spinning condition the motion is not as simple as in the cas@a dlomogeneous
sphere. The integrability of the general case has beenlisitath recently by Borisov
and Mamaev [14], as part of a general method which includegaiof the Euler—
Jacobi theorem, existence of invariant measures and Hanazdtion. However, the
detailed description of the dynamics, for instance pedaatbits, equilibrium points,
has not been performed yet, to the best of our knowledge.

The purpose of the present work is to give a complete desmmiftf the dynamics
of a symmetric sphere rolling on a horizontal plane without sliding or spimg and
with no dissipation of energy. By definition, a symmetric sgh has a distribution
of mass such that the center of mass coincides with the cefitdre sphere, while
two of the three principal moments of inertia are equal. Oppraach is geometric,
integrability follows after we write the equations on the mfald $? x S, which
appears naturally.

2. Equations of motion

Description of the model. We shall model our system as a nonholonomic
system on the groupSO(3) x R2. More precisely, we assume that there is an
orthonormal basis fixed in the space, s@y, ez, e3), e1 = (1,0,0), ¢, = (0,1, 0),
e3 = (0,0,1), and also an orthonormal basis moving with the bo@e1, Aes, Aes),
where A = A(r) depends on time. We introduce the variakles S?, given by
z = Aez. The spatial angular velocityp can be written asw = voz + z X Z, SO
vo = {w, z) is the component of» along z. The nonholonomic constraint is given by
the conditionw x rez = x, which is similar to the non sliding condition for a rigid
sphere, plus the extra condition (Veselova’'s constraingt the vertical component
of the spatial angular velocity is, ®that is, w3 = 0.

The Lagrangian of the system is given by the kinetic energy

1 1 1
51122 + 5131)5 + EMXZ
Using the nonholonomic constraint we can conclude that ftinetic energy of the
actual motion of the symmetric sphere is given by

1 . 1
E=Z(h+ Mr?)z% + SUs+ Mr?)v3,

which is a preserved quanity.

Derivation of equations. Equations of motion for a general sphere were written
in [14], using multipliers. Our derivation is slightly ddfent, for instance equation
of balance of momentum (2.2) is written in terms of thpatial angular velocity.
This leads to a geometric description of the system as an OBEhe manifold
52 x §* which has an expression in terms of elementary functionse Gan also
derive the same equations using the methods of [2]. We int®ddimensionless
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quantities « = I3/I; and B = Mr?/I;. Moreover, we will assume, without any
essential loss of generality, thdt =1, =1 andr =1, thena =13 and 8 = M.
The quantity A(12 — IQ2 x ), where Q@ = A~ is the body angular velocity,

must be compensated by the torque due to the forces of thdaraimms. This leads
to the equation of motion

AIQ— I x Q) x e3 = —B(@ X e3). (2.1)

For a symmetric sphere we havg = I, = 1, which leads to a simpler equation.
In fact, we havelQ = (521, Q2,0Q3) = (21, Q2, avg) = 2 — (L — a)vges, from
which we obtain I = Q — (1 — a)lges. Then we haveA(I2 — IQ x Q) =
w—(1- a)voz + Q- a)voz x (voz + z x 2), where we have used the equalities
w=AQ, & = AQ, w = voz+zxz. Finally, we getA(IQ—IQx Q) = &— (1—a)(voz).
Using the equalityw — (1—a)(voz) = aw+ (1—a)(z x Z), the balance of momentum
equation (2.1) becomes

a(@wxez)+ (Ll—a)(z xZ) xe3=—B(w X e3). (2.2)

Then the system of dynamical and constraint equations is,

(@+B)@xe3)+(1—a)(z xZ) xe3=0, (2.3)
w=1v9Z + 2 X Z, (2.4)
w3 =0, (2.5)
or, equivalently,
A(voz) X ez +(z x 7)) x e3 =0, (2.6)
vo(z, e3) + (z x 2, e3) =0, (2.7)

where . = (@ + 8)/(1+ B). Letting u = z x z we have the equations of the system
in variables (z, u, vg) as follows:

A(voz) x e3 — 1t x e3=0, (2.8)
Z=zXu, (2.9)

uz — vgzz3 =0, (2.10)

2—1=0, (2.11)

(z,u)=0. (2.12)

By taking the inner product of Eq. (2.8) khywe obtainivg(z x e3, z) — (1t x e3, z) = 0.
Since u = z x z we obtain —Avg{es, u) — {(z x 1, e3) =0, that is

Avgus + zquto — zoup = 0. (2.13)

Then we have the following system of equations in the spacehef variables
(z1, 22, 23, U1, U2, U3, Vo),
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21=ZoU3 — T3U2, (2.14)
22 =2Z3U1 — Z1U3, (2.15)
23 =2z1U2 — ZaU1, (2.16)
ZoUl1 — Z1ll = AVgU3, (2.17)
0=u3 — vozs, (2.18)
0=u3 + u5+uj + 2§ — s, (2.19)
O=zZ+z5+25—1, (2.20)
0=ziu1 + zouz + z3us. (2.21)

Eq. (2.19) represents conservation of energy.

The equations of motion on S%2x St. In this paragraph we show that equations
obtained in the previous paragraph can be transformed integuation, that is, a
vector field, onS? x S*. First of all, one can check that Egs. (2.18)—(2.21) define a
submanifold N of the space of the variablex, zo, z3, u1, uz, us, vo), that is, R’,
by using the implicit function theorem at each point 8f Eq. (2.21) tells us that
u is a vector tangent to the 2-sphe$é given by z2— 1 = 0. Heuristically, for each
z € §% we consider the 3-dimensional spafes? x R., where R, represents a line
normal to the sphere at € S2, so the collection of allR, is a trivial real line
vector bundle with bases?. We imagine that the variabley is the coordinate of
the axisR. = z which is normal to7.52. Then, for eachy, Eq. (2.18) is a plane in
T.5% x R, containing the origin G= 0. since z3 is fixed oncez is fixed. Eq. (2.19)
gives an ellipsoid. The intersection of the plane with thépsbid is an ellipse.
Therefore N must be some fiber bundle with fibes® and baseS?. Using all this
and some imagination we can see that it is, in fact, the tribiandle S? x S*,
moreover, we have the following parametrization &f in the variables(®, ¢, ¥):

71 =Siné cosy, (2.22)
z2=Sinf sing, (2.23)
73 =C0S6, (2.24)
u1 = —acogy — ) cos 6 cosy — b sin(g — ¥) sing, (2.25)
up=—acogg — ) cos 0 sing + b sin(p — ) cosy, (2.26)
uz=a coq¢ — ) cosh sinb (2.27)
vo=a coq¢ — ) sing, (2.28)
where
a= \/* b= Jﬁ/.
Asinf 6 + cog 6

In any case, we can check directly that the previous expessi(z1, z2, 73, u1, U2, us,
vo) in coordinates(d, ¢, ) satisfies (2.18)—(2.21). We can also see that Egs. (2.22)—
(2.28) define a diffeomorphisny : $? x St — N, f(z, (cosy, siny)) = (z, u, vg).
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This is not difficult, but is lengthy, and it involves, in piadlar, checking that the
tangent map off is injective, for each point of§? x S

The differential equation in N, in variables (0, ¢, ). Considering the para-
metrization for N given by (2.22)-(2.28) we get equations (2.14)—(2.21) ie th
coordinates(9, ¢, ¥), as follows

COSH COSpd — Sind Singg = a cosh sing cop — V) (2.29)
—b cosH cosy sin(p — V),

cosh singd + sind cospg = —a CosY COSy COY — ) (2.30)
—b cosh sing sin(p — V),

—sindd = b sind sin(p — V), (2.31)

a sind cos 6 cosg — V)¢ (2.32)

—bsind cosg — V) (¢ — ¥) = ra® coS (¢ — ) Sirf 6 cosh.
If sing £ 0 the system (2.29)—(2.32) becomes

6 =—bsin(p — V), (2.33)
. cosh
¢=—a <ing coSp — V), (2.34)
. cost (b
or equivalently,
6 =—bsin(p — V), (2.36)
. cosf
¢ =—a <ing codep — V), (2.37)
. cost
V=0—a)g Cosy — V). (2.38)

It is not difficult to see that the only solution with some iaitcondition compatible
with the system and involving the condition gin= 0, that is, an initial condition
of the type (z10, 220, 230, U10, U20, U430, V0O) = (O, 0, &1, u10, uz0, O, 0), consists of a
uniform circular motion ofz on a vertical plane perpendicular to the constant vector
(u1(2), us(t), uz(t)) = (u10, u20, 0), while vg(r) = 0. This is also consistent with
physical reasoning. Then we have a smooth vector fielddr S* which represents
equations of motion of the system.

It can be easily seen that this system can be integrated bgrajuses. For
instance, if we callw = ¢ — ¢, from (2.36)—(2.38) we obtain a planar system in
the coordinateqd, w),

6 =—bsinw, (2.39)
so
W= _bZ'— cosw, (2.40)
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which, in turn, leads to the separable equation

do
— =tanéd tanw. (2.41)
dw

3. Dynamics

By introducing a reparametrization of time, if necessary gan normalize the
system (2.39)-(2.40) so thdt= 1, thereforeu = 1.

Equilibrium points. Using (2.39)—(2.40) we conclude that equilibrium points
are given by (@, w) = ((2k + Vn/2,ix), k,l € Z. Linearization of the system at
any equilibrium point is given by the matrix

0 -1
1 0

so the classification and stability of each equilibrium paimust be studied at the
nonlinear level.

The solutions. By integrating (2.39)-(2.40) we obtain the solutions

o(t) = arctan[iﬁw} , (3.1)
C —201)
w(t) = —arctanC1(z)), (3.2)

where C1(t) = ¢18int — ¢, c0st, Co(t) = ¢1C0St + ¢ sint. EQ. (2.41) can be easily
integrated by separation of variables, so the solutionshef dystem must be in the
level surface ,

sing cosw = c. (3.3)
Now we are going to obtain another level surface containhmg golutions and also
an explicit expression op(r). Using (3.1) and (3.2) we can obtain expressions for
tand, cofw, sirfd, cofd anda in terms of C1(r) and C»(r). Then using (2.37)
and taking into account that tam = Cf(t), we obtain the expression

o 1 A0
v= C/(x — D@L+ CA0) + 21+ C) 34)

1
=—C dw, 3.5
c\/(k—l)(1+tar12w)+52 v (3.5)
where ¢ = ,/1+¢2 +¢3. We can integrate this expression ¢f and we obtain
. c sin
—sm(go—d):c ! w, (3.6)
m

where m2 = » — 1+ 2.
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Using the expressions of gii and codw in terms of C1(r) and C»(f) we can
show that

. 1
sinéd cosw = — =c,
c

which gives a relation betweea and ¢, then from (3.6) we obtain

vV — 1?2+ 1sin(p —d) + sinw = 0. (3.7)

We have shown that the solutions of (2.39)-(2.40) must fga(3.3) and (3.7), in
other words,c and d are constants of motion. The following theorem describes
completely the dynamics of the elastic rolling sphere.

THEOREM 3.1. Let us consider the system

6 = —sinw, (3.8)
sinf¢ = —a cosh cogw), (3.9)
(sinf)w = — cosh cosw. (3.10)

(@) The solution of the planar syster8.8), (3.10) for a given initial condition

(6o, wo) is unique and is described as follows

@) If (6o, wo) = (2k+ D) /2,1m), then the only solution i6(¢), w(t)) = (6o, wo).
These are the only equilibrium points for the system.

(ii) If (o, wo) = (B, (2A+1)7r/2), then the only solution ig) (1), w(t)) = ((—1) 1+
6o, (2 + 1)1 /2).

(i) If (6g, wo) is such that6y € (km,(k + Dm), wo € (A — Dn/2, (2 +
Dr/2), (6o, wo) # ((2k + 1)r/2,1m); the only solution is a closed curve in
@@), w)) € (km, (k+ D) x (2 —Drx/2, 2 + Dz /2).

(iv) If (6o, wo) is such thatfy = kmr, wo # (2 + 1)7/2, there is no solution.

(b) The solution of the systei3.8)—(3.10)for each initial condition(6g, ¢g, wo)
is uniqgue and is given by the solution to the planar systerscrileed in part(a),
and (3.7). Each solution, including equilibrium points, is stable.

Proof: We first prove (a). (i) and (iv) are easily verified. (ii) issal easily
verified using (3.3). The statement (iii) can be proved uding fact that for each
¢ € (0,1) the subset

S. = {0, w) € (k, (k + 1)) x (2 — D)m/2, (2 + D)7 /2) | sinb cosw = ¢},

is a simple closed, therefore compact, curve. For e@ghwg) € S. there is a unique
solution (8(¢), w(z)) such that(6(0), w(0)) = (6p, wg), moreover (8(t), w(t)) € S,
for all z.

The proof of part (b) is straightforward, taking into accouart (a). O
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