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The aim of this work is to introduce the entanglement entropy of real and virtual exci-
tations of fermion and photon fields. By rewriting the generating functional of quantum
electrodynamics theory as an inner product between quantum operators, it is possible
to obtain quantum density operators representing the propagation of real and virtual
particles. These operators are partial traces, where the degrees of freedom traced out
are unobserved excitations. Then the von Neumann definition of entropy can be applied
to these quantum operators and in particular, for the partial traces taken over by the
internal or external degrees of freedom. A universal behavior is obtained for the entangle-
ment entropy for different quantum fields at zeroth order in the coupling constant. In
order to obtain numerical results at different orders in the perturbation expansion, the
Bloch–Nordsieck model is considered, where it is shown that for some particular values
of the electric charge, the von Neumann entropy increases or decreases with respect to
the noninteracting case.
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1. Introduction

Entanglement entropy has become an important topic in theoretical physics and has

become a widely studied topic in the last few years. In general, the entanglement

is studied between one part of a system and in different branches of theoretical

physics usually, the partitioning is spatial. An entanglement entropy can be defined

through the quantum density operator and permits applying the concept in different
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frameworks, for example, to distinguish new topological phases and characterize

critical points1–3 or in discussions of holographic descriptions of quantum gravity,

in particular, for the AdS/CFT correspondence.4 More recently, the entanglement

entropy has been applied in condensed matter physics, density matrix renormaliza-

tion group method5,6 and black hole thermodynamics,4,7–11 thermal quantum field

theory12–14 curved space–time,15–17 decoherence,18 squeezed vacuum19 and in low

dimension systems.20

The concept of entanglement entropy in quantum field theory is linked to a

region of space–time that contains the relevant degrees of freedom.21–24 The trace

over the degrees of freedom localized on a region which is not accessible to the

observer, results in a reduced density matrix. Then, the von Neumann definition of

entanglement entropy can be applied to obtain a measure of the inaccessibility of

the vacuum state that is mixed after the partial trace. In QFT, geometric entropy

can be computed by using the Euclidean path integral method in models without

interactions and the results show that in d dimensions, the entropy behaves as a

Laurent series starting in ǫ−(d−1), where ǫ is a short-distance cutoff and the leading

coefficient that multiplies to ǫ−(d−1) is proportional to the d − 1 power of the size

of V , which is the area law for the entanglement entropy.9

Although entanglement entropy in quantum field theory has been focused on

entanglement between degrees of freedom associated with spatial regions, it is also

permissible to consider the entanglement between real and virtual excitations. The

virtual excitations are a mere mathematical artifact of the perturbation expansion,

so in principle any physical quantity that depends on this entanglement depends

naturally on interactions introduced in the Lagrangian. On the other hand, given

that interactions introduce virtual excitations and these are entangled with the

real excitations, then an interaction entanglement entropy can be defined and it

would be a measure of the information restored in the propagation of the quantum

field, this information would depend on the interactions with other quantum fields

or itself. In Ref. 25, the generating functional of the φ4 theory has been written in

terms of quantum operators. These operators are partial traces over larger quantum

operators that depend on the internal vertices and a new set of vertices. These new

vertices imply that there are real particles propagating elsewhere but cannot be

measured; then we must average over the possible space–time points where these

particles propagate. This inaccesibility to these new particles implies that there

are unobserved particles or virtual particles, that is, interactions introduce new

particles, but these particles cannot be observed, then the quantum state must

be traced out. Because the real particles and the new particles are entangled, the

entanglement entropy can be computed. A very simple example25 is the first-order

correction to the φ4 theory, where the quantum density operator can be written as

(not normalized)

ρ =

∫

∆(x1 − y1)∆(y1 − w1)∆(y1 − x2)|x1, y1〉〈x2, w1|d4w1 d
4y1 d

4x1 d
4x2 . (1)
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By considering the following quantum operator:

O =

∫

δ(y1 − w1)J(x1)J(x2)|x1, y1〉〈x2, w1|d4w1 d
4y1 d

4x1 d
4x2 , (2)

where J(x) are the external sources and the Dirac delta δ(y1 − w1) is explicitly

shown inside the integral in order to remark that the coefficients related to the

internal degrees of freedom are the identity matrix. Then it follows that the mean

value Tr(ρO) is identical to the first order in λ0 of the generating functional. In

turn, Tr(ρO) = Tr(ρextOext), where

ρext = Trint(ρ) = ∆(0)

∫

∆(x1 − y1)∆(y1 − x2)d
4y1|x1〉〈x2|d4x1 d4x2 , (3)

which is identical to the first correction to the two-point correlation function. The

trace over the internal degrees of freedom y1 and w1 implies that there is a vir-

tual propagation between y1 and w1 that is unobserved and then their degrees of

freedom must be traced out. This is the crucial point of the idea of this paper,25

and the quantum operator of the quantum field theory is a partial trace which im-

plies, in some sense, that some physical process has been neglected and moreover,

the consequences of this lack of observability occur in the scattering processes of

φ4 theory. The coefficient of the quantum density operator ρ is entangled in the

coordinates because these are linked through the propagators. Making a Fourier

transform, the quantum operator can be written in the momentum basis as

ρ =

∫∫

dDp

(2π)D
dDq

(2π)D
dDr

(2π)D
1

p21 −m2
0

1

p22 −m2
0

1

p23 −m2
0

× |p1, p2 + p3 − p1〉〈p3, p2| . (4)

In this way, the coefficient is not entangled, each propagator depends on its momen-

tum vector but the entanglement has been translated to the bra and ket vectors.

That is, the degrees of freedom of an interacting quantum field theory are entangled

in momentum space.26

In Refs. 27–29, the full description of the model described above is done, where

the intermediate operators introduced artificially by the perturbation expansion

can be obtained as partial traces over the internal degrees of freedom, represented

by a duplication of the internal vertices of the internal propagators. The particles

that are created in these vertices are virtual particles because they do not obey the

constraint of the energy–momentum relation. This implies that if these particles are

not measured, then it must be traced out. This lack of observation causes these par-

ticles to become virtual. One of the most known consequences of the impossibility

of unobserved particles is in the scattering process of quantum electrodynamics

(QED), where the infrared divergences are canceled by the contribution of the soft

photons which are unobserved photons.30,31 Although this phenomena will be dis-

cussed in the next section in relation to the photon entropy, it must be stressed

that the additional soft photon emmisions can be interpreted as “opened” loops in

the scheme presented in Ref. 25 (Fig. 1). It should be stressed that in the previous
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work,25 the quantum operators ρ and O has been called “states” and “observables.”

Although the main result of this work, where the correlation function can be written

as Tr(ρO) suggests to consider ρ as a quantum state, written formally as a quan-

tum density operator and O as an observable, the mathematical objects cannot

be associated to physical concepts, mainly because the latter can be constrained

by physical relations, where the former is defined mathematically. In particular,

the quantum states satisfy dynamical equations and the quantum density operator

ρ defined in Ref. 25 using the generating functional obeys a functional differen-

tial equation (see Eq. (1) of Ref. 32, p. 288). In this sense, the quantum entropy

computed can be related to processes, but not to quantum states.

The model introduced in this work can be considered as a particular case of the

general boundary formalism (GBF),33–37 where at each boundary S, defined by a

spacelike hyperplane in Minskowski space–time, there is a vector space Hs. In turn,

for a given boundary S, changing the orientation corresponds to replace Hs with

H∗
s . Moreover, associated with M , which is the region bounded by S, there is a

complex function ρM : Hs → C which associates an amplitude to a state. In turn,

if S can be decomposed into disconnected components S = S1 ∪ S2 · · · ∪ Sn, then

one may convert ρM : HS1
⊗ · · · ⊗HSn

→ C to a function ρM : HS1
⊗ · · · ⊗HSk

→
H∗

Sk+1
⊗· · ·⊗H∗

Sn
replacing spaces with dual spaces. In the GBF, the focus is moved

from quantum states, which describe a system at some given time, to quantum states

of processes, which describe what happens to a local system during a finite time-

span. For conventional nonrelativistic system, the quantum space of the processes

are defined as the tensor product of the initial and final Hilbert state spacesH1⊗H2

where the subscripts 1 and 2 indicate the initial and final stages of the process.

The amplitude of the process is represented by the Feynman propagator and is

determined as a linear functional over the quantum state defined as the tensor

product of the initial and final quantum states.a In Ref. 25, the processes are ordered

in terms of the perturbation parameter λ0. The external points of the correlation

functions define the boundary and this boundary should be chosen as spacelike

hyperplanes as it is done in Ref. 36, which implies to fix the time components of

x1 and x2 and consider H1 ⊗H2 as the space which represents the whole family of

transition amplitudes between two spacelike hyperplanes.b But when interactions

are turned on, internal propagators appear and moreover, we must integrate over

aIn App. A, a closer relation between the general boundary formalism and the model introduced
in this work is discussed.
bIn the general boundary formalism, the observables defined in the preparation stage are written
as O⊗I, where the identity acts on the bulk and in the measurement stage the observable is written
as I ⊗O. This is similar to what happens in the observable-state model, where an identity in the
observables implies to trace out the irrelevant degrees of freedom that appears in the perturbation
expansion, that is, interactions introduce new sets of Hilbert spaces, but the observables defined
on it contain identity operators. Then it appears that self-interactions in quantum scalar fields
can be related to the quantum states of the bulk of the boundaries. The utility of the observable-
state model is that the complexity of the Hilbert space structure depends on the order of the
perturbation expansion.
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the possible space–time coordinate of these propagators. It must be stressed that

to integrate in the external points, implies to connect x1 with x2 in the Feynman

diagrams, which is a simple example of the generation of correlation functions from

vacuum diagrams (see Subsec. 5.5 of Ref. 38, p. 68), where for example, by cutting

one line to the first-order vacuum diagram, we obtain the first-order contribution to

the two-point function. Then, the space–time coordinates should not be fixed when

interactions are considered because all the correlation functions are related. A vertex

inside a Feynman diagram can be converted into an external point by cutting an

internal propagator.25 As an example of the concept of family of processes, we can

consider the Feynman propagator in 3 + 1 dimensions39

∆(s) = θ(s2)
im

8π
√
s2 − iǫ

H
(2)
1

(

m
√

s2 − iǫ
)

+ θ(−s2) im

8π
√
−s2 + iǫ

K1(m
√

−s2 + iǫ) , (5)

where s2 = ∆t2 − ∆r2 is the proper distance and H
(2)
1 is the Hankel function of

the second kind and K1 is the modified Bessel function of the first kind. What is

interesting of this propagator is that depends on the proper distance between the

two space–time coordinates. We can consider the whole family of processes that

is parametrized by s. For s ∈ (−∞, 0) we have spacelike interval, s = 0 lightlike

interval and s ∈ (0,∞) timelike interval. We can consider that we are only interested

in those processes with timelike interval, then if we consider ∆(s) the amplitude of

the process, then |∆(s)|2 is the probability of the process. If we demand that it is a

probability, then it must be normalized, which can be obtained easily for timelike

intervals
∫∞

0 |∆2(s)|ds = m3

2π3 .
c

In Ref. 41, the distinction between pure and mixed states is weakened in the

general covariant context when finite spatial regions are considered. In the model

introduced in this paper, the quantum state is mixed when interactions are turned

on. The mixture is due to the entanglement of the virtual state in the bulk with

the real states in the boundary. In turn, for free fields, there is a priori distinction

between pure and mixture states because we can distinguish between past and

future parts of the boundary. Moreover, the observables act in the infinite past and

infinite future. In this sense, it seems that the model introduced in this work is a

particular case of the GBF with the incorporation of the interactions treated in a

perturbative manner and allowing these virtual states to be defined in the whole

space–time.

In order to introduce the formalism for quantum operators and where the trace

can be applied, the generating functional of the quantum field theory must be con-

sidered. As it was done for the self-interacting theory φ4, it is necessary to establish

the formalism to the quantum field theory of electrons, positrons and photons in

order to apply the concept of entanglement entropy between these particles. Due

cSection 6 of Ref. 40 was used to compute the integrals.
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to the complicated integrals that must be solved, in order to obtain results for

the second-order corrections to the photonic and fermionic entropies, the Bloch–

Nordsieck model42 will be considered, to show the way in which the interaction

entanglement introduces changes in the quantum entropy. Then, the paper will be

organized as follows. In Sec. 2, the formalism for the quantum operators by rewrit-

ing the generating functional is introduced for electrons and photons. In Sec. 3,

the von Neumann entropy is computed for the electron and photon propagator at

zeroth order in e and the first corrections are sketched by using the results found

in App. B. The Bloch–Nordsieck model is discussed and exact results for the von

Neumann entropy are obtained. In the last section, the conclusions are presented

and in App. A, a conceptual discussion of the model is done.

2. Quantum Operators in QED

The generating functional can be constructed in a general way by considering some

(symmetric) n-point functions τ (n)(x1, . . . , xn), then the corresponding generating

functional (Ref. 43, Eq. (II.2.21); Ref. 44, Eq. (3.2.11)) can be defined as

Z[η, η̄] =

∞
∑

n=0

in

n!

∫

τ (n)(x1, . . . , xn)η(x1)η̄(x2) · · · η(xn−1)η̄(xn)

n
∏

i=1

d4xi , (6)

where η(xi) and η̄(xi) are external sources for ψ(xi) and ψ̄(xi), fields respectively,

and τ (n) can be

τ
(n)
F (x1, . . . , xn) = S(n)(x1, . . . , xn) = 〈Ω|ψ(x1)ψ̄(x2) · · ·ψ(xn−1)ψ̄(xn)|Ω〉 ,

τ
(n)
P (x1, . . . , xn) = D(n)

µ1,...,µn
(x1, . . . , xn) = 〈Ω|Aµ1

(x1) · · ·Aµn
(xn)|Ω〉 ,

(7)

where the first correlation function is for fermions and the second is for photons,

ψ(x) (ψ̄(x)) and Aµ(x) are the fermion (positron) and photon fields and |Ω〉 is the
vacuum state. A convenient way to eliminate trivial contributions in the correlation

function is by introducing a modified generating functional Z[η, η̄] for irreducible

Green’s functions that is defined as W [η, η̄] = eiZ[η,η̄]. The new generating func-

tional Z[η, η̄] satisfies the normalization condition Z[0, 0] = 0 and it reads

Z[η, η̄] =

∞
∑

n=0

1

n!

∫

τ (n)c (x1, . . . , xn)η(x1)η̄(x2) · · · η(xn−1)η̄(xn)

n
∏

i=1

d4xi , (8)

where in this case τ
(n)
c (x1, . . . , xn) are connected n-point functions that can be

obtained by differentiation

τ (n)c (x1, . . . , xn) =
δnZ[η, η̄]

δη(x1)δη̄(x2) · · · δη(xn−1)δη̄(xn)

∣

∣

∣

∣

η=0

η̄=0

. (9)
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In turn, the connected n-point functions can be written in terms of the Lagrangian

interaction density L0
I = −eψ̄γµψAµ for QED as (see Eq. (II.2.33) of Ref. 43)d

S(n)(x1, . . . , xn)
(p)

=
ip

p!

∫

〈Ω0|Tψ(x1)ψ̄(x2) · · ·ψ(xn−1)ψ̄(xn)L0
I(y1) · · · L0

I(yp)|Ω0〉
p
∏

i=1

d4yi (10)

for external fermions and

D(n)
µ1,...,µn

(x1, . . . , xn)
(p)

=
ip

p!

∫

〈Ω0|TAµ1
(x1) · · ·Aµn

(xn)L0
I(y1) · · · L0

I(yp)|Ω0〉
p
∏

i=1

d4yi (11)

for external photons and introducing (10) in (8) we have

iZF [η, η̄] =

∞
∑

n=0

∞
∑

p=0

in

n!

ip

p!

∫

〈Ω0|Tψ(x1)

× ψ̄(x2) · · ·ψ(xn−1)ψ̄(xn)L0
I(y1) · · · L0

I(yp)|Ω0〉

× η(x1)η̄(x2) · · · η(xn−1)η̄(xn)

n
∏

i=1

d4xi

p
∏

i=1

d4yi (12)

and

iZP [η, η̄] =

∞
∑

n=0

∞
∑

p=0

in

n!

ip

p!

∫

〈Ω0|TAµ1
(x1) · · ·Aµn

(xn)

× L0
I(y1) · · · L0

I(yp)|Ω0〉η(x1)

× η̄(x2) · · · η(xn−1)η̄(xn)

n
∏

i=1

d4xi

p
∏

i=1

d4yi , (13)

where in the last equation, indices in Zp[η, η̄] are not written. The main idea on

which the entanglement entropy is based between real and virtual field excitations

is that both generating functionals can be written as an inner product of a quan-

tum operator defined through the η(x) and η̄(x) sources with a quantum operator

defined by the correlation functions S(n)(x1, . . . , xn) and D
(n)
µ1,...,µn(x1, . . . , xn). For

the sake of simplicity, the procedure will be shown for the generating functional of

the fermion correlation functions. The procedure for photon correlation functions is

identical. To define the quantum operator, we can consider some operator function

F that depends on a set of vertices y1, . . . , yp and some new coordinates w1, . . . , wp

dIn Eq. (10), we have introduced the perturbative expansion of the correlation function, where
the yi are the internal vertices.
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in such a way that

∫

F(y1, . . . , yp, w1, . . . , wp)

p
∏

i=1

δ(yi − wi)d
4wi = L0

I(y1) · · · L0
I(yp) , (14)

where L0
I(yp) is the Lagrangian that appears in Eq. (10). In Ref. 27, we have

studied the φ4 theory and two possible functional forms can be found. In a similar

way, the corresponding operator for quantum electrodynamics L0
I = −eψ̄γµψAµ

can be represented by two different functional forms:

F1(y1, . . . , yp, w1, . . . , wp) = (−1)pep
p
∏

i=1

ψ̄(yi)γ
µiψ(wi)Aµi

(yi) ,

F2(y1, . . . , yp, w1, . . . , wp) = (−1)pep
p
∏

i=1

ψ̄(yi)γ
µiψ(yi)Aµi

(wi) ,

(15)

where in both cases, Eq. (14) holds, that is, by introducing F1/2 in Eq. (14), and

performing the integration in w1 using the Dirac delta δ(yi−wi), the QED Lagran-

gian is recovered L0
I(y) = eψ̄(y)γµψ(y)Aµ(y). The main difference between F1 and

F2 is that the new internal vertex wi is attached to the fermion field for F1 and to

the photon field for F2. The last equation implies that we are considering a nonlocal

Lagrangian that contains information that can be traced out. It must be stressed

that although there are two different ways to introduce the formalism, for the pur-

poses of this work, any choice would be adequate because, as was shown in Eq. (14),

the quantum operator that appears in the correlation function of QED is the re-

duced quantum operator, which does not depend on the prescription adopted F1 or

F2. Different von Neumann entropies will be obtained for the nontraced quantum

operator whereas for the reduced operators the von Neumann entropy is identical for

both prescriptions (see Fig. 1). In Ref. 25, a physical interpretation of the operator

function Fi is given for φ4 theory. In the same way, we can consider F1 in Eq. (15)

for the electron propagator.e In this case, the nonreduced quantum operator repre-

sents an electron in a definite momentum which is prepared in the infinite past x1,

and when the interaction is turned on, this electron annihilates at coordinate w1. In

coordinate y1, an electron and a photon are created, where the electron annihilates

at point w2 and the photon annihilates at coordinate y2 and creates a new electron

that propagates and is measured in the infinite future coordinate x2. In the same

eThe same partition can be found in Ref. 25. A way to explain both partitions is by considering
the quantum operator defined as

ρ1 = |φ0(x1)〉〈φ0(x2)| ⊗ |φ2
0(y1)〉〈φ

2
0(w1)|

for the first partition and

ρ2 = |φ0(x1)〉〈φ0(x2)| ⊗ |φ3
0(y1)〉〈φ0(w1)|

for the second partition in Ref. 25. From this point of view, the quantum operators with interac-
tions can be conceived as composite operator functions.
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Fig. 1. Scheme of partial traces over the possible quantum operator of the electron propagator
at first order in e.

way, F2 describes the physical process in which an electron is created at point x1
and annihilates at y1, where another electron is created and annihilates at y2, where

a third electron is created and measured in x2. At the coordinate w1, a photon is

created and annihilates at w2. For experimental purposes, different choices of the

operator function is irrelevant because there is no available experimental procedure

in which the remaining particles propagating elsewhere can be measured in such

a way as to have access to the nontraced quantum state. The unique comparison

available is then the von Neumann entropy with and without interaction. In order

to understand the number of different choices of the operator function in φn theory,

a simple inspection indicates that a φn theory can be split, according to the par-

tition, to n = p + q, where p and q are natural numbers. Because n is symmetric

under interchange of p and q, the number of different splitting is n
2 . In Ref. 25, a

particular operator function was adopted because it was easier to compute the von

Neumann entropy of the nonreduced quantum operator. In this work, no prescrip-

tion is adopted because only the entanglement entropy of the reduced operator will

be computed, which does not depend on the choice of the operator function.

In the first case of Eq. (15), in terms of Feynman diagrams, a positron and a

photon field interact at the same space–time point and an electron in a different

point. In the second case, an electron and a positron interact at the same space–

time point and a photon field acts in a different space–time point. Both functions of

the fields will contain the same reduced state when the internal degrees of freedom

1850081-9
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are traced out. Then, inserting Eq. (14) in Eq. (12), we obtain

iZF [η, η̄] =
∞
∑

n=0

∞
∑

p=0

in

n!

ip

p!

∫

〈Ω0|Tψ(x1)ψ̄(x2) · · ·ψ(xn−1)ψ̄(xn)

× F(y1, . . . , yp, w1, . . . , wp)|Ω0〉η(x1)η̄(x2) · · · η(xn−1)η̄(xn)

×
p
∏

i=1

δ(yi − wi)

n
∏

i=1

d4xi

p
∏

i=1

d4yi d
4wi . (16)

Now, we can define two quantum operators in the following way:

̺(F,n,p) =

∫

〈Ω0|Tψ(x1)ψ̄(x2) · · ·ψ(xn−1)ψ̄(xn)F(y1, . . . , yp, w1, . . . , wp)|Ω0〉

×
∣

∣x1, . . . , xn
2
, y1, . . . , yp

〉〈

xn
2
+1, . . . , xn, w1, . . . , wp

∣

∣

×
n
∏

i=1

d4xi

p
∏

i=1

d4yi d
4wi , (17)

O(n,p) =

∫

η(x1)η̄(x2) · · · η(xn−1)η̄(xn)

p
∏

i=1

δ(yi − wi)

×
∣

∣x1, . . . , xn
2
, y1, . . . , yp

〉〈

xn
2
+1, . . . , xn, w1, . . . , wp

∣

∣

×
n
∏

i=1

d4xi

p
∏

i=1

d4yi d
4wi . (18)

Then, Eq. (16) can be written as

iZF [η, η̄] =

∞
∑

n=0

∞
∑

p=0

in

n!

ip

p!
Tr
(

̺(F,n,p)O(n,p)
)

. (19)

The quantum operator of Eq. (18) has the following form:

O(n,p) = O
(n)
ext ⊗ I

(p)
int , (20)

where

O
(n)
ext =

∫

η(x1)η̄(x2) · · · η(xn−1)η̄(xn)
∣

∣x1, . . . , xn
2

〉〈

xn
2
+1, . . . , xn

∣

∣

n
∏

i=1

d4xi (21)

and

I
(p)
int =

∫ p
∏

i=1

δ(yi − wi)|y1, . . . , yp〉〈w1, . . . , wp|
p
∏

i=1

d4yi d
4wi

=

∫

|y1, . . . , yp〉〈y1, . . . , yp|
p
∏

i=1

d4yi (22)

is an identity operator acting on the yi vertices that appear in the perturbation

expansion. The Dirac delta that appears as the coefficient of the identity operator
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can be considered as a particular choice of an operator that physically implies no

measurement. The subscript “ext” in Eq. (20) refers to the external points xi and

the subscript int to the internal vertices yi. Then, the generating functional of

Eq. (12) can be written as the inner product of the quantum operator Oext on the

reduced operator ¯̺ext as

Tr(̺(F,n,p)O(n,p)) = Tr
(

¯̺
(F,n,p)
ext O

(n)
ext

)

, (23)

where

¯̺
(F,n,p)
ext = Trint

(

̺(F,n,p)
)

=

∫

〈y1, . . . , yp|̺(F ;n,p)|y1, . . . , yp〉
p
∏

i=1

d4yi

=

∫

(

∫

〈Ω0|Tψ(x1)ψ̄(x2) · · ·ψ(xn−1)ψ̄(xn)L
0
I(y1) · · ·L0

I(yp)|Ω0〉
p
∏

i=1

d4yi

)

×
∣

∣x1, . . . , xn
2

〉〈

xn
2
+1, . . . , xn

∣

∣

n
∏

i=1

d4xi . (24)

The procedure introduced above is suitable to consider the von Neumann entropy

defined as Sext/int = −Tr[̺ext/int ln(̺ext/int)], where ̺ext/int are partial traces

with respect to the internal/external vertices, respectively. In φ4 theory, in the

propagator, the contributions to the physical mass are given by the loop diagrams

obtained from the perturbation theory. By “opening” the loops, a quantum den-

sity operator can be defined, that represents the propagation of a defined number

of entangled bosons. By considering the internal trace over this quantum opera-

tor, the boson propagator is recovered, represented by a reduced operator. In this

sense, the dressed propagator of the boson is a reduced operator that represents

a real propagating particle entangled with its virtual excitations and a measure of

this entanglement is related to the physical mass, which is a consequence of the

irrelevant degrees of freedom traced out. In the same way as for the φ4 theory, we

can write the nonrenormalized quantum state of the two-point correlation function

that represents the electron propagation as

ρext =

∫

d4p

(2π)4
i

p2 −m2
0 − Σ

(

p,m2
0

) |p〉〈p| , (25)

where Σ
(

p,m2
0

)

is the self-energy. For the sake of simplicity, the first contribution

to Σ comes from the diagram

Σ ∼ λ0∆0 +O(λ20) ∼ λ0

∫

d4w1 ∆(y1 − w1)δ(y1 − w1) + O(λ20) . (26)

Because we can conceive the propagators as quantum density operators, then it

is natural to interpret the coefficients of the operator as the probability amplitude

attached to a particle travelling from one point x1 to another point x2 with a specific
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value of energy and momentum that a particle is created at x1 and annihilated at x2.

Finally, it should be possible to apply the concept of entanglement entropy between

real and virtual excitations for other systems that are treated perturbatively, for

example for the Gell-Mann and Goldberger relation,45 in disordered systems in

condensed matter46 and whenever there is a generating functional for the correlation

function or a generating function for the Green functions, as it occurs in condensed

matter with the Luttinger–Ward functional.47

3. The Quantum Entropy

In order to compute the quantum entropy, we must take into account the algebraic

structure of the Hilbert space involved in the procedure introduced in the previ-

ous section. The main difference between spinor quantum electrodynamics and φ4

theory is that in the latter, the coefficients of the quantum operators are complex

numbers and in the first theory are d × d matrices due to the Dirac matrices in

d dimensions, where d is the dimension of space–time when the dimensional reg-

ularization is applied. Nevertheless, the orders of the perturbation considered in

this manuscript implies quantum operators where the d × d matrices are identity

matrices, then the quantum operators can be written as

̺(n) =
[

Tr
(

̺(n)
)]−1[

̺(n,0) ⊕ ̺(n,1) ⊕ · · · ⊕ ̺(n,i) · · ·
]

=
[

Tr
(

̺(n)
)]−1

+∞
⊕

j=0

̺(n,i) , (27)

where the superscript n indicates the number of external points and i indicates

the order in the perturbation expansion.
[

Tr
(

̺(n)
)]−1

is the normalization of the

quantum operator that can be introduced at the right or left of
⊕+∞

j=0 ̺
(n,i) because

it is only a diagonal matrix. The coefficient of each quantum operator will be of the

form

̺(n,i)(x1, . . . , xn, y1, . . . , yp, w1, . . . , wp)

= 〈Ω0|Tψ(x1)ψ̄(x2) · · ·ψ(xn−1)ψ̄(xn)F (y1, . . . , yp, w1, . . . , wp)|Ω0〉 . (28)

The trace readsf

Tr(̺(n)) =

+∞
∑

j=0

(−e)jW(n,j) Tr(ρ
(n,j)) , (29)

where W(n,i) is the weight factor48 corresponding to the connected Feynman dia-

gram and ρ(n,j) is an operator that depends on the propagator of the respective

Feynman diagram. The total quantum entropy can be computed as

S(n) = −Tr
[

̺(n) ln
(

̺(n)
)]

, (30)

fShould be clear that the quantum operators ̺(n) that depend only on the two external points
are the partial traces over the internal degrees of freedom.
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where S will be a function of e and some factor which will depend on the regular-

ization scheme chosen. Up to second order in e, the quantum entropy in terms of ρ

reads

S(n) = ln
(

β(n,0)
)

−
[

β(n,0)
]−1

Tr
[

ρ(n,0) ln
(

ρ(n,0)
)]

− e2W(n,1)

W(n,0)[β(n,0)]2

[

β(n,1) Tr
[

ρ(n,0) ln
(

ρ(n,0)
)]

− β(n,0) Tr
[

ρ(n,1) ln
(

ρ(n,0)
)]

]

+O(λ20) , (31)

where β(n,i) = Tr
(

ρ(n,i)
)

.

3.1. Free fermion field entropy

In the case of two external points, at zeroth order in e, β(2,0) = Tr
[

ρ
(2,0)
ext

]

and

Tr
[

ρ
(2,0)
ext ln(ρ

(2,0)
ext )

]

must be computed. The quantum operator at zeroth order is

the free propagator

ρ
(2,0)
extF =

∫

d4p

(2π)4
i(/p+m0)e

−ip(x1−x2)

p2 −m2
0

|x1〉〈x2|d4x1 d4x2 . (32)

Taking the Fourier transform by writing

|x1〉 =
∫

d4q1
(2π)4

e−iq1x1 |q1〉 ,

〈x2| =
∫

d4q2
(2π)4

eiq2x2〈q2| ,

performing a Wick rotation p0E = −ip0, piE = pi, d
4p = id4pE , the quantum

operator ρ
(2,0)
ext in momentum space is diagonal and reads

ρ
(2,0)
extF =

∫

d4pE
(2π)4

(/pE +m0)

p2E +m2
0

|pE〉〈pE | , (33)

where /pE = γµEpµE
, and γµE are the Euclidean Dirac matrices γ0E = γ0, γiE = −iγi.g

The trace of ρ
(2,0)
extF reads β

(2,0)
F = Tr

[

ρ
(2,0)
extF

]

= 2TVm0∆0, where

∆j =

∫

d4pE
(2π)4

1

(p2E +m2
0)

j+1
, (34)

where the integral of the term with odd pµE
in the numerator vanishes by symmetry

and where 2TV =
∫

d4x = δ(4)(0) (see Ref. 48, p. 96) which implies that the process

considered can happen at any place in space of volume V , and at any time between

−T and T . It is interesting to note that β
(2,0)
F for fermions is different from scalar

gA simple inspection implies that {γµ
E
, γν

E} = −2δµν , {γi
E , γj

E
} = −{γi, γj} = 2δijI4, then

(γµ
E
)2 = d and

{

/pE , /qE
}

= 2p · q.
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boson fields, where β
(2,0)
B = Tr

[

ρ
(2,0)
extB

]

= 2TV∆0 (see Eq. (32) of Ref. 25).h Because

ρ(2,0) is diagonal in the momentum basis, ln
[

ρ
(2,0)
extF

]

reads

ln
[

ρ
(2,0)
extF

]

=

∫

d4pE
(2π)4

ln

(

/pE +m0

p2E +m2
0

)

|pE〉〈pE | . (35)

By computing the matrix logarithm of
/pE

+m0

p2
E
+m2

0

, we obtain (see Eq. (B.5) of App. B)

ln

(

/pE +m0

p2E +m2
0

)

= −1

2
ln
(

p2E +m2
0

)

I +
/pE
2pE

ln

(

m0 + pE
m0 − pE

)

. (36)

Then, by multiplying Eq. (35) with ρ
(2,0)
ext we obtain

ρ
(2,0)
extF ln

[

ρ
(2,0)
extF

]

=

∫

d4pE
(2π)4

/pE +m0

p2E +m2
0

ln

(

/pE +m0

p2E +m2
0

)

|pE〉〈pE | . (37)

Then the trace Tr
[

ρ
(2,0)
extF ln

(

ρ
(2,0)
extF

)]

reads

Tr
[

ρ
(2,0)
extF ln

(

ρ
(2,0)
extF

)]

= TV [η0 −m0χ0] , (38)

where η0 reads

η0 =

∫

d4pE
(2π)4

pE
p2E +m2

0

ln

(

m0 + pE
m0 − pE

)

(39)

and

χ0 =

∫

d4pE
(2π)4

ln
(

p2E +m2
0

)

p2E +m2
0

, (40)

which has been computed in Ref. 25, Eqs. (36) and (A3) of App. B. In Eq. (38), we

have disregarded the odd term in /pE because it integrates symmetrically to zero.

Taking into account all the terms and using Eq. (31) at zeroth order, the quantum

entropy of the free electron propagation reads

S
(2)
extF = ln(2TVm0∆0)−

η0
2m0∆0

+
χ0

2∆0
, (41)

where ∆0 was computed in Ref. 25 using dimensional regularization. Applying the

same regularization scheme in η0 and χ0, the external entropy at zeroth order in

the perturbation expansion reads

S
(2)
extF = −1

ǫ
− 11

6
+ ln

(

m4
0TV

4π2ǫ

)

+O(ǫ) , (42)

hThe extra i factor appears because Wick rotation was not applied.
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where ǫ = d − 4 can be considered as a microscopic cutoff. The appearance of

the logarithm of the microscopic cutoff ǫ has been obtained in other works.49–53

The entropy is proportional to the dimensionless coefficient
m4

0TV
4π2 similar to the

result obtained in Ref. 25 for the scalar boson which is S
(2)
extB = ln(2TV∆0)+

χ0

∆0
=

− 2
ǫ − 1+ ln

(

m4
0TV
4π2ǫ

)

+O(ǫ), where ∆0 and χ0 are defined in Eqs. (34) and (40). By

comparing with Eq. (42) for the particular case of identical masses for the fermion

and boson excitations, we obtain

S
(2)
extF − S

(2)
extB = −1

ǫ
− 5

6
+O(ǫ) .

By neglecting the 1/ǫ divergent term, S
(2)
extB = 5

6 + S
(2)
extF the boson field entropy is

larger than the fermion field entropy of propagation in the space–time for identical

masses.

3.2. Free photon field entropy

In the case of an external photon propagating, the two external points, at zeroth

order in e reads

ρ
(2,0)
extP = Iµ1µ2

∫

d4pE
(2π)4

1

p2E +m2
γ

|pE〉〈pE | , (43)

where mγ is fictitious photon mass to avoid infrared divergences. The trace reads

Tr
(

ρ(2,0)µν

)

= Iµ1µ2
2TV

∫

ddpE

(2π)d
1

p2E +m2
γ

= Iµ1µ2
2TV∆0(mγ) . (44)

The quantum entropy of free photons reads

S
(2,0)
extP = ln(2TV∆0(mγ)) +

χ0(mγ)

∆0(mγ)
. (45)

The result obtained is identical to the quantum entropy of a free scalar boson but

with m0 replaced by mγ and the limit mγ → 0 must be taken. From the last equa-

tion, an infrared divergence appears. Nevertheless, it is well known from the theo-

rem due to Kinoshita–Lee and Nauenberg30,31 that any physically observable must

be infrared safe. To avoid the fictitious mass mγ , a sum over additional photon

emissions must be computed. This point is very important, because in order to

obtain finite values of the observables in the infrared limit, we must consider that

in the scattering process there are some soft photons unobserved. In Ref. 25 a

mathematical structure for this unobserved propagation was introduced. In fact,

the perturbation expansion of any quantum field theory allows rewriting the dif-

ferent contributions as partial traces over some degrees of freedom that represent

particles that are not detected. In several texts, the discussion is introduced in the

context of the vertex correction to the electron propagator. The first virtual contri-

bution comes from a photon connecting two electron propagators. To this virtual
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contribution, we must add the real soft photon contribution, that is nothing more

than “opening” the virtual photon propagator (see pp. 199 and 203 of Ref. 48). It

is interesting to note that we can avoid infrared divergences by considering that un-

observed photons are contributing. In Ref. 25, a discussion about φ4 theory implies

that the first contribution to the scalar boson propagator implies not measuring a

third scalar propagator. This unobserved boson implies tracing over its degrees of

freedom and this corresponds to “close” the propagator and obtain the loop, which

introduces an ultraviolet divergence.i Following the same procedure, it is possible

to introduce soft photon emissions in the quantum entropy by simply adding to

Eq. (43) a quantum state with fictitious mass mγ but that is integrated in momen-

tum from 0 to Ec , where Ec is the maximum photon energy allowed to escape

detection. Computing Eq. (45) and considering the d → 4 limit, the quantum

entropy of a free photonic field reads

S
(2,0)
extP = −2

ǫ
− 1 + ln

(

E4
cTV

4π2ǫ

)

+O(ǫ) . (46)

The logarithmic behavior is identical to the free bosonic and fermionic entangle-

ment entropies. This entropy diverges with the cutoff as ǫ−1 and ln(ǫ) and the finite

part depends on some complex number and the logarithm of some dimensionless

number m4
0TV .j The ln(ǫ) term of the divergence does not appear in the typical

entanglement entropy between regions of space–time, where the entropy is ultra-

violet divergent due to the entanglement of short-wavelength modes across ∂A,

where A is a bounded region and ∂A is the boundary. By considering the boson

field of Ref. 25 and computing the entropy for the free propagation of Eq. (37)

using an ultraviolet regularization instead of dimensional regularization, terms like

ln(ln(m2
0 + Λ2)) appears, where Λ is the ultraviolet cutoff. Because the quantum

operators defined in Eqs. (33) and (44) represent the possible process of propaga-

tion, the trace of these quantum operators implies to compute the loop propagator,

which is ultraviolet divergent. When the entanglement entropy is computed, a

double logarithmic behavior in terms of the ultraviolet cutoff appears due to the

first term of Eq. (31). This ultraviolet behavior is not expected in other types of

entanglement entropy, for example, between different regions of space. Nevertheless,

a relation between both entropies can be obtained when interactions are considered.

In this case, the entanglement of the vacuum state depends on the perturbative

expansion and the different contributions in power of the coupling constant can be

compared with the results obtained in this work and Ref. 25.

iPerhaps it could be possible to renormalize the theory by considering that there are unobserved
heavy bosons propagating anywhere that are not measured. These heavy bosons are the equivalent
to the soft unobserved photons. These soft photons are real photons with energy less than some
cutoff Ec , where Ec is the maximum photon energy allowed to escape detection. In the same way,
the heavy bosons are integrated from Eb to ∞, and Eb is the minimum boson energy allowed to
escape detection.
jWe are using ~ = c = 1, which implies that [energy] = [mass] = [distance]−1.
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Fig. 2. Left: Open Feynman diagram representing the quantum operator at second order in e for
the fermion propagator. Right: Partial trace over the internal degrees of freedom y1, w1, y2 and
w2 which gives the self-energy contribution to the electron propagator.

3.3. First correction to the fermion field entropy

In this case, the total quantum operator at second order in e for the electron

propagator reads

ρ
(2,1)
extF =

∫

ddp

(2π)d
ddq

(2π)d
i(/p+m0)e

−ip·x1

p2 −m2
0

γµ1

×
i(/q +m0)

q2 −m2
0

γµ2
i(/p+m0)e

ip·x2

p2 −m2
0

−igµ1µ2

(p− q)2

× |x1〉〈x2|d4y1 d4y2 d4x1 d4x2 . (47)

This quantum state can be obtained by computing the trace over the inter-

nal degrees of freedom represented by the basis |y1, y2〉〈w1, w2| over the quantum

operator defined as (see Fig. 2)

ρ
(2,1)
F =

∫

SF (x1 − y1)γ
µ1SF (y2 − w1)γ

µ2SF (w2 − x2)DP (y1 − y2)gµ1µ2

× |x1, y1, y2〉〈x2, w1, w2|ddx1 ddx2 ddy1 ddw1 d
dy2 d

dw2 , (48)

where SF is the fermionic propagator andDP is the photon propagator. By applying

Wick rotation and computing the Fourier transform, the quantum operator reads

Trint
[

ρ
(2,1)
F

]

= ρ
(2,1)
extF = −

∫

ddpE
(2π)d

(

/pE +m0

)

p2E +m2
0

Σ2

(

/pE
)

(

/pE +m0

)

p2E +m2
0

|pE〉〈pE | , (49)

where Σ2(/pE) is the second order in e contribution to the self-energy (see Eq. (7.16)

of Ref. 48).k From Eq. (10.41) of Ref. 48, Σ2 can be written as Σ2

(

/pE
)

= Σ
(0)
2 (pE)−

Σ
(1)
2 (pE)/pE , where

Σ
(0)
2 (pE) =

e2

(4π)d/2

∫ 1

0

dx
Γ
(

2− d
2

)

(4− ǫ)m0

[

(1− x)m2
0 + xµ2 − x(1 − x)p2E

]2− d
2

,

Σ
(1)
2 (pE) =

e2

(4π)d/2

∫ 1

0

dx
Γ
(

2− d
2

)

(2− ǫ)x
[

(1− x)m2
0 + xµ2 − x(1 − x)p2E

]2− d
2

.

(50)

kThe e dependence in Σ2

(

/pE
)

is considered in the expansion of the quantum entropy of Eq. (31).
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We can write
(

/pE +m0

)

Σ2

(

/pE

)(

/pE +m0

)

= A0(pE) +A1(pE)/pE , where

A0(pE) = Σ
(0)
2

(

p2E +m2
0

)

− 2m0Σ
(1)
2 p2E ,

A1(pE) = m0Σ
(0)
2 − Σ

(1)
2

(

m0p
2
E +m2

0

)

.
(51)

In order to compute Tr
[

ρ
(2,1)
extF ln

(

ρ
(2,0)
extF

)]

, we note that the ln
(

ρ
(2,0)
extF

)

has been

computed in Eq. (36), so that

Tr
[

ρ
(2,1)
extF ln

(

ρ
(2,0)
extF

)]

= −2TV

∫

ddpE
(2π)d

A0(pE) ln
(

p2E +m2
0

)

2
(

p2E +m2
0

)2

− 2TV

∫

ddpE
(2π)d

A1(pE)pE

2
(

p2E +m2
0

)2 ln

(

m0 + pE
m0 − pE

)

, (52)

where we have neglected the odd terms in /pE because they integrate symmetrically

to zero. In turn, the trace of ρ
(2,1)
extF reads

β(2,1) = −2TV

∫

ddpE
(2π)d

A0(pE)

(p2E +m2
0)

2
. (53)

Equations (53) and (52) are complicated integrals that give the second-order con-

tribution to the fermion entropy. Instead of computing the last integrals, we can

consider a more simple system in which the full propagator can be solved exactly.

This model is the Bloch–Nordsieck model,42 where the Dirac matrices γµ in the

Lagrangian are replaced by uµ, where uµ are the components of a velocity vector

and uµuµ = 1. This model has been solved in Ref. 54 and an exact solution to the

full Green function reads (see Ref. 55, Eq. (46.28), p. 484)

G(p) =
1

(uµpµ −m0)γ+1
, (54)

where γ = e2

8π2 (3− ξ) = α
2π (3− ξ), where α is the fine structure constant and ξ is a

gauge fixing parameter. We can write uµp
µ = |p| cos θ, where θ is the angle between

u and p. This full propagator is the analogue to the full propagator of a φ4 theory

written in terms of the partial trace of a quantum density operator (see Ref. 27,

Eq. (65)) or the full electron propagator of QED, G = (p2 −m2
0 − Σ(/p))−1. As we

write the quantum operator for the electron or boson propagator, we can do the

same with the quantum state in the Bloch–Nordsieck model as

ρ =

∫

d4p

(2π)4
1

(p cos θ −m0)γ+1
|p〉〈p| . (55)

The quantum entropy can be computed as SBN = ln[2TV∆] + (γ+1)
∆ Γ, where

∆ =
1

8π2

∫ ∞

0

p3

(p cos θ −m0)γ+1
dp =

6(−1)3−γ(m0)
3−γ

8π2(γ − 3)(γ − 2)(γ − 1)γ cos4 θ
(56)

1850081-18



May 8, 2018 12:19 IJMPA S0217751X18500811 page 19

Entanglement entropy between virtual and real excitations in quantum electrodynamics

Fig. 3. Right: Total entropy as a function of γ for different values of the ratio ν =
m4

0TV

cos4 θ
for the

Bloch–Nordsieck model. Left: Difference between total entropy and entropy without interactions
for the Bloch–Nordsieck model as a function of γ = α

2π
(3− ξ).

and

Γ =
1

8π2

∫

p3 ln(up−m0)

(up−m0)γ+1
dp

=
6(−1)γ(m0)

γm3
0[−2(2γ − 3)(1 + γ(γ − 3))− (γ − 3)(γ − 2)γ ln(−m0)]

8π2(γ − 3)2(γ − 2)2(γ − 1)2γ2 cos4 θ
. (57)

Then

SBN =
1 + γ

γ
+

1 + γ

γ − 1
+

1 + γ

γ − 2
+

1 + γ

γ − 3

+ ln

[

3m4
0TV

2π2 cos4 θ(γ − 3)(γ − 2)(γ − 1)γ

]

. (58)

By considering the limit γ → 0, ∆SBN = SBN(γ)− SBN(0) reads

∆SBN =
11

6
+

1 + γ

γ − 1
+

1 + γ

γ − 2
+

1 + γ

γ − 3
+ ln

[

6

(3− γ)(2− γ)(1 − γ)

]

. (59)

In Fig. 3, the total entropy for different values of
m4

0TV
cos4 θ is shown in the first case and

the difference of the total entropy with respect to the noninteracting case ∆SBN

is shown as a function of γ in the second case. As it can be seen, the interactions

decrease the fermion entropy. In fact, by replacing γ by α
π , where the Feynman

gauge is considered ξ = 1, we obtain ∆SBN ∼ −0.003, which is the entropy lost by

the interactions. This is the same behavior found in the quantum entropy of the

boson field. In Ref. 25, it was shown that the quantum entropy at first order in λ0
for the boson field reads

Sext
B = ln(2TV∆0) +

χ0

∆0
+
λ0µ

−ǫ

2

(

χ1 −
∆1χ0

∆0

)

+O(λ20)

= −2

ǫ
− 1 + ln

(

m4
0TV

4π2ǫ

)

+
λ0

32π2

(

−1 + 2γ0 + ln

(

m4
0

4π2µ4

))

+O(λ20) , (60)
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Fig. 4. (Color online) Quantum entropy of boson propagator at zeroth order in λ0 (black line)
and at first order in λ0 (red line).

where γ0 is the Euler–Mascheroni constant. The contribution at order λ0 is simi-

lar to the results obtained in Ref. 26 for the mutual information. In Fig. 4, the

total entropy is plotted as a function of m0

µ , where it can be seen that the con-

tribution at first order in λ0 decreases the quantum entropy with respect to the

free value. This result for the Bloch–Nordsieck and the scalar boson suggests that

interactions reduce the unpredictability of the quantum operator propagation. On

the other hand, by computing the integrals of Eqs. (56) and (57) in d dimensions,

taking the limit d → 4 and finally the γ → 0 limit, the quantum entropy can be

written as

SBN = −1

ǫ
− 11

6
+ ln

(

m4
0TV

4π2ǫ cos4 θ

)

− 49

36
γ − 199

108
γ2 −O(γ3) , (61)

where the finite term − 11
6 is identical to the QED interaction (see Eq. (42)). With-

out loss of generality, taking cos θ = 1, then the free quantum entropy obtained

follows the same behavior as the quantum entropy for free fermions (see Eq. (42).

The logarithm term ln
(

m4
0TV
4π2ǫ

)

is common for the different quantum fields. Finally,

comparing Eqs. (42), (44) and Eq. (38) of Ref. 25 and last equation it can be seen

that the finite term is negative, which implies a negative entanglement entropy.

This point should not be a problem because the factor TV must be considered too

large, in fact, in Fig. 3 the Bloch–Nordsieck entropy increases when the value of ν

is larger.
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Fig. 5. Left: Open Feynman diagram representing the quantum operator at second order in e for
the photon propagator. Right: Partial trace over the internal degrees of freedom y1, w1, y2 and
w2 which gives the self-energy contribution to the photon propagator.

3.4. First correction to the photon field entropy

The quantum operator of the first correction to the photon propagator reads (see

Fig. 5)

ρ
(2,1)
P =

∫

DP (x1 − y1)gµ1ρSF (y1 − w2)γ
ργνSF (w1 − y2)DP (y2 − x2)gνµ2

× |x1, y1, y2〉〈x2, w1, w2|ddx1 ddx2 ddy1 ddw1 d
dy2 d

dw2 . (62)

The partial trace over the internal degrees of freedom y1, ω1 and y2, w2 gives

as a result, the first quantum correction to the photon propagator reads

ρ
(2,1)
extP =

∫

ddp

(2π)d
Πµ1µ2

2 (p)

(p2 + µ2)2
|p〉〈p| , (63)

where we have used that introduced the Fourier transform of |x1〉 and 〈x2| and
where (see Eq. (7.71) of Ref. 48)

Πµ1µ2

2 (p) =

∫

ddq

(2π)d
tr

[

γµ1
i

/q −m0
γµ2

i

/q + /p−m0

]

, (64)

which in turn can be written as Πµ1µ2

2 (p) = (p2δµ1µ2
− pµ1pµ2)Π2(p), where

Π2(p) = − 8

(4π)d/2

∫ 1

0

dx
x(1 − x)Γ

(

2− d
2

)

[m2
0 − x(1 − x)p2]2−

d
2

. (65)

The quantum entropy at second order in e implies to compute two integrals

β(2,1) = Tr
[

ρ
(2,1)
extP

]

= 2TV

∫

ddp

(2π)d
Πµ1µ2

2 (p)

(p2 + µ2)2
(66)

and

Tr
[

ρ
(2,1)
extP ln

(

ρ
(2,1)
extP

)]

= −2TV

∫

ddp

(2π)d
Πµ1µ2

2 (p) ln(p2 + µ2)

(p2 + µ2)2
, (67)

where we have disregarded terms with odd pµE
and qµE

in the numerator. Last

integrals can be solved in order to obtain the first contribution to the quantum

entropy of the photon propagation. Consider the Bloch–Nordsieck model, in con-

trast with the fermionic self-energy, there is no vacuum polarization, which is the

effect of the photon self-energy. Then it is not possible to obtain other contributions

to the quantum entropy in this model than the result obtained in Eq. (46).
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Summing up, we can collect all the results for the free quantum entropies for

different quantum fields

SB = −2

ǫ
− 1 + ln

(

m4
BTV

4π2ǫ

)

,

SF = −1

ǫ
− 11

6
+ ln

(

m4
FTV

4π2ǫ

)

,

SP = −2

ǫ
− 1 + ln

(

E4
cTV

4π2ǫ

)

,

(68)

which can be condensed in

Si = −ai
ǫ
− bi + ln

(

m4
iTV

4π2ǫ

)

, (69)

where we can consider that the maximum photon energy allowed to escape detec-

tion El can be considered as an off-shell photon mass. For any two scalar bosons

with different masses mB1
and mB2

, we have that SB1
−SB2

= 4 ln
(mB1

mB2

)

. In turn,

SB − SF = 5
6 + 4 ln

(

mB

mF

)

and if mB > e−
5
24mF then SB > SF . The different quan-

tum entropies contain ultraviolet divergences which can be isolated by dimensional

regularization. It should be stressed that even in the most simple case where no

interactions are considered, the von Neumann entropy contains ultraviolet diver-

gences (see Eq. (68)). This implies that no mathematical operation at the level of

the density quantum operators exists to avoid UV divergences. The von Neumann

entropy for the free scalar propagator depends only on the mass of the quantum

fieldm0, the space–time volume and the ultraviolet cutoff. These divergences appear

similarly in the entanglement entropy between regions of space–time.9 In local quan-

tum field theory, discussions of entanglement are focused on the density matrices

associated with bounded spatial regions. These results are well defined because by

locality, there are independent degrees of freedom in disjoint spatial domains, so the

Hilbert space factorizes. The associated spatial entanglement entropy is typically di-

vergent, even in free field theory, because in the continuum limit, any spatial region

contains an infinite number of degrees of freedom produced by high-energy vacuum

fluctuations at arbitrarily short wavelengths. These divergences require regulariza-

tion and some procedure is needed to extract finite regularization independent data.

In entanglement entropy between space–time regions, the terms that are propor-

tional to 1
ǫj are not physical since they are not related to quantities well defined in

the continuum.9 The logarithmic divergence is expected to be universal in the sense

that is independent of the regularization prescription adopted or of the microscopic

model used to obtain the continuum QFT at distances large with respect to the

cutoff.l

lPerhaps these similar terms imply a deep connection between entanglement between space–time
regions and local interactions between fields. In turn, if this deep connection turns to be an identity,
then model introduced in this manuscript can be useful to compute entanglement entropy between
curved space–time regions.
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4. Conclusions

In this work, the entanglement entropy between real and virtual propagating states

has been computed by rewriting the generating functional of the quantum electro-

dynamics theory in terms of quantum operators and inner products. In this way,

it is possible to compute the von Neumann entropy for the electron and photon

propagator as a perturbation expansion in e. It was shown that for the Bloch–

Nordsieck model, the interactions decrease the quantum entropy with respect to

the noninteracting case. In turn, it is shown the universal behavior of the von Neu-

mann entropy for different free quantum fields, that depends on the logarithm of

the dimensionless parameter m4TV
ǫ and some particular constants. The first-order

contributions to the entropy of the fermion and photon fields are considered and

the results are computed in terms of complex integrals. The formalism introduced

can be useful to characterize the entanglement entropy that interactions introduce.

In turn, the entanglement can be understood as unobserved field excitations which

are traced out.
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Appendix A

In order to get closer the ideas of this paper and the general boundary formalism

only for boundaries defined by spacelike hyperplanes consider the quantum scalar

field

φ0(x) =

∫

d3p

(2π)3
1

√

2Ep

(

ape
ipx + a†pe

−ipx
)

, (A.1)

then consider this quantum field as the coordinate representation of a ket |φ0(x1)〉
in the space–time coordinate x1 and another quantum field in the space–time co-

ordinate x2, that is |φ0(x2)〉, where the time component of x1 is smaller than the

time component of x2 (see Ref. 35, Eq. (3)). If we suppose that the time-component

of x1 is smaller than the time component of x2 and the space coordinates can vary

over a spacelike hyperplane, then we can define the quantum density operator

ρ0 = |φ0(x1)〉〈φ0(x2)| (A.2)

then is not difficult to show that

〈Ω0|ρ0|Ω0〉 = ∆0(x1 − x2) (A.3)

that is, the coefficient of the quantum operator of Eq. (31) in Ref. 25 is the vacuum

expectation value of the quantum density operator defined in Eq. (A.2), that is
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ρ =
∫

〈Ω0|ρ0|Ω0〉|x1〉〈x2|d3r1 d3r2, where the time components of x1 and x2 are

fixed and not integrated. This quantum operator is suitable for processes where a

preparation is done in t1 and a measurement is done in t2 or more simpler a creation

and a later annihilation of a field excitation.m For virtual processes, this quantum

state is not suitable because the perturbation expansion demands that an integra-

tion
∫

d4y must be computed (is the superposition principle, see Ref. 48, p. 94).

For external points it is not possible to restrict the quantum operator to a single

time slice because the time component of x1 must be smaller than the time com-

ponent of x2 and in turn t1 and t2 must be fixed. For virtual propagations, there is

no restriction and can be the case in which t2 = t1, that is, the quantum operator

is restricted to a single time slice. The procedure done in Ref. 25 manifest this

virtual process as a real propagator ∆(y1 − w1) between two arbitrary space–time

coordinates y1 and w1 and a sum over all the possible space–time coordinates y1
and w1 must be done. This sum is provided by the lack of measurement of these

two space–time points by introducing the Dirac delta distribution δ(y1 − w1) as

the internal part of the observable. From this point of view, there is an identifi-

cation of virtual propagation with real propagation by opening the loop y1 → y1
to y1 → w1.

n This happens only when interactions are turned on. Processes as

propagation or scattering events happen inside a space–time region, which is the

space–time region relevant for the experiment, in the sense that the particle inflow

and detection happens on the boundary of this space–time region. The interaction

term in the Lagrangian is turned on only inside the boundary. The particles de-

tected on the boundary should be considered as free. In this sense, the formalism

introduced above treats observables as located in space–time regions and giving rise

to linear maps from the region’s boundary Hilbert space to complex numbers. The

boundary Hilbert space is a tensor product of the preparation and measurement

Hilbert spaces. For no interactions, the quantum state is not mixed, it only consists

of the tensor product of the prepared quantum state and the measured quantum

state. When interactions are turned on, the quantum state cannot be written as a

tensor product, but not because of the bulk effects on the boundary but rather by

the entanglement between the real and the virtual states. This virtual state can be

translated to the boundary, but it must remain unobserved. The lack of observa-

tion (lack of preparation or measurement of this new state) implies to compute the

partial trace over the degrees of freedom of the total quantum density operator.

Then, a relationship between the interaction terms in the Lagrangian and the un-

determined metric of space–time in the bulk of the boundary defined by the prepa-

ration and measurement can be done. For example, if we consider two time-slices in

mIn turn, this quantum density operator manifest naturally the in–out duality, which blurs the
distinction between preparation and observation proper in the measurement33 due to the inter-
change of in and out coordinates. This is in turn what the LSZ reduction manifest, where the
correlation functions written in the momentum space do not depends on the choice of incoming
and outgoing momentum.
nThe order of the coordinates is irrelevant.
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flat space–time, S = S1∪S2 with S1 at t1 and S2 at t2, the bulk is the region between

the time-intervals [t1, t2]. That is, the boundary metric is fixed and defined by the

observers, but nothing can be said about the interior of the boundary.33 In Ref. 41,

the distinction between pure and mixed states is weakened in the general covariant

context when finite spatial regions are considered. In the model introduced in this

paper, the quantum state is mixed when interactions are turned on. The mixture

is due to the entanglement of the virtual state in the bulk with the real states in

the boundary. In turn, for free fields there is a priori distinction between the pure

and mixture states because we can distinguish between the past and future parts

of the boundary. Moreover, the observables acts in the infinite past and infinite

future. In this sense, it seems that the model introduced in this work is a particular

case of the general boundary formalism with the incorporation of the interactions

treated in a perturbative manner and allowing these virtual states to be defined in

the whole space–time.

Appendix B

To solve Eq. (36), we can note that if two matrices A and B commute, then

ln(AB) = ln(A) + ln(B), then

ln

(

/pE +m0

p2E +m2
0

)

= ln

(

1

p2E +m2
0

)

I + ln(/pE +m0) (B.1)

the second term of last equation can be written as

ln
(

/pE +m0

)

= ln(m0) + ln

[

/pE
m0

+ I

]

. (B.2)

Using the Mercator expansion ln(I +K) =
∑+∞

n=1
(−1)n+1

n Kn, where K =
/pE

m0
and

using that /pE/pE = (−i/p)2 = p2E , then K
2 =

(

pE

m0

)2
, K3 =

/pE

m0

(

pE

m0

)2
, K4 =

(

pE

m0

)4
,

K5 =
/pE

m0

(

pE

m0

)4
, K6 =

(

pE

m0

)6
, etc. last equation can be written aso

ln

[

/pE
m0

+ I

]

=
/pE
m0

+∞
∑

n=1

1

2n− 1

(

pE
m0

)2n−2

−
+∞
∑

n=1

1

2n

(

pE
m0

)2n

(B.3)

using that
∑+∞

n=1
1

2n−1x
2n−2 = 1

2x ln
(

1+x
1−x

)

and
∑+∞

n=1
1
2nx

2n = − 1
2 ln(1 − x2), last

equation read

ln

[

/pE
m0

+ I

]

=
/pE
2pE

ln

(

m0 + pE
m0 − pE

)

+
1

2
ln

(

m2
0 + p2E
m2

0

)

. (B.4)

oMust be stressed that the Mercator expansion converges to ln(K + I) for
∣

∣

p
m0

∣

∣ < 1, but an
analytical continuation to the entire complex plane can be applied.
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Collecting all the terms from Eq. (B.1) we obtain

ln

(

/pE +m0

p2E +m2
0

)

= −1

2
ln

(

p2E +m2
0

)

I +
/pE
2pE

ln

(

m0 + pE
m0 − pE

)

. (B.5)

This result has been used in Sec. 2.
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