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1. Introduction

Soil texture governs essential physical and chemical soil processes
such as soil water storage, nutrient retention, soil structure and stabi-
lity, and soil erosion (Arya and Paris, 1981; Minasny and McBratney,
2007; Wang and Shi, 2017). Hence, accurate information about the
spatial distribution of soil texture at regional, sub-regional and local
scales allows a better understanding of the importance of the soil as a
fundamental resource for agriculture and the environment and is re-
quired for climate, hydrological, ecological and crop models (Arya
et al., 1999; Saxton et al., 1986; Shangguan et al., 2012). However, in
many agricultural regions in the world, particularly in the Argentine
Pampas, this information is scarce (Berhongaray et al., 2013;
McBratney et al., 2003). Hence, it is crucial to optimize and update soil
cartography especially that required for modeling.

In Argentina, the soil cartography generated by the National
Institute of Agricultural Technology (INTA) at a scale of 1:50,000 is the
main source of soil spatial information for the Argentine (INTA, 2013b).
However, this soil dataset is based on limited profile data, which, in
terms of accuracy, scale, coverage and digital format, is not appropriate
to apply in the type of models mentioned above. The cartography
generated by the INTA maps soil types by using polygons of classifi-
cation, without considering the spatial-temporal variability of soil
properties. Thus, there can be a large degree of uncertainty in the ac-
curacy of soil properties labeled in each polygon (Castro Franco et al.,
2015). To overcome this issue, it is necessary to generate a spatial da-
taset of soil texture by using existing information and information that
allows developing continuous and accurate maps of soil texture in di-
gital format.

Digital soil mapping (DSM) techniques offer a promising approach
to generate a spatial dataset of soil properties based on data such as
digital elevation models, remotely sensed data, physical and chemical
attributes obtained through laboratory analysis of soil samples, and
information from existing soil maps (Boettinger, 2010; Hartemink et al.,
2008; McBratney et al., 2003). DSM is defined as the use of quantitative
methods to establish a spatial relationship between soil ancillary vari-
ables (represented by soil-forming factors) and soil properties, ac-
cording to the scale (Cook et al., 2008). These models allow considering

two essential aspects needed to produce soil digital cartography: i) that
spatial predictions of soil properties can be made at unobserved loca-
tions at a defined scale, and ii) that the uncertainty of prediction can be
quantified (Ließ et al., 2012).

Several DSM techniques have been proposed to generate spatial
datasets of soil texture at different scales and world zones (Adhikari
et al., 2013; Akpa et al., 2014; Buchanan et al., 2012; Odeh et al., 2003;
Shangguan et al., 2012). Among these, the machine learning (ML) al-
gorithm stands out because of its accurate prediction of soil texture by
using a limited number of soil samples (Akpa et al., 2014). Specifically,
Cubist model is a ML algorithm frequently used in pedometry due to its
efficiency, classification of important variables, and versatility with a
large number of predictors (Malone et al., 2016). So far, there are no
studies on the use of RF to predict texture and other properties in soils
of the Argentine Pampas at a regional scale, where the demand for soil
information is increasing (Angelini et al., 2016; Domenech et al., 2017).

The aim of this study was to produce a 1-km spatial resolution da-
taset of soil texture in digital format for the southern Argentine Pampas.
To this end, DSM techniques and soil existing information were coupled
to predict soil particle-size fraction and USDA texture classification. We
expect that our soil texture digital maps are suitable for climate, hy-
drological, ecological and crop models. The relevance of DSM techni-
ques offers a novel approach to optimize the predictions of soil prop-
erties in the conditions of the Argentine Pampas.

2. Materials and methods

2.1. Study area

The study area covered 119,155 km2 of the southern Pampean region,
province of Buenos Aires, from 36°–39° S to 56°–63° W (Fig. 1). The land
surface is basically plain, interrupted by Olavarría, Azul and Juárez hills in
the northwest, which correspond to fractions of the Tandilia hilly system,
and by Ventania and Pillahuinco systems towards the center-west. These
hilly systems provide an elevation in the extended plain and are called
Sierras Australes. The climate is mesothermal humid-sub-humid. The
mean temperature is in the range of 10.2–15.8 °C yr−1, while seasonal
rainfall distribution varies from 500 to 950 mm yr−1, with a maximum
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pattern (> 60%) during spring and summer. Rainfall is distributed from
east to west, which leads to a more extreme climatic condition further west
in the region (Amiotti et al., 2001; Blanco and Stoops, 2007). The main
soils are classified as Argiudoll, Haplustoll, Hapludoll and Natraquoll (Soil
Survey Staff, 2014). The soils of the study region are dominated by Ar-
giudolls and are developed over loess sediments with grassland, organic
matter content between 4% and 5.5% in the upper horizon and an argillic
horizon whose clay content decreases with depth (Matteucci, 2012; Pazos,
1984). Below these horizons, there is usually a continuous caliche layer,
locally termed tosca, which has great variability in CaCO3 content, depth,
structure and degree of induration (Pazos and Mestelan, 2002). The main
land uses in the study area are agriculture and livestock. The main crops
are cereals and oilseeds such as maize, sunflower, soybean, wheat and
barley.

2.2. Soil data

Soil profile data were obtained from the Atlas of soil conditions of
Buenos Aires province (MAA, 1965) and INTA conventional carto-
graphy at a 1:50,000 scale (INTA, 2013a), which were generated during
1960 and 1970, respectively. In total, the soil textural data from 813
soil profiles were converted to digital format. Specifically, the clay
(< 0.002 mm), silt (0.002–0.02 mm) and sand (0.2–2 mm) particle-size
fractions at 0–20 cm and 20–40 cm depth were used and expressed in
percentage mass (g 100 g−1). Original geographic coordinates of soil
profiles were transformed from the International 1924 datum to the
UTM coordinate system datum WGS84, using QGIS v2.16.1 (QGIS
v2.16.1 Nodebo, 2016). The USDA was used as the texture classification
system (Soil Survey Staff, 2014).

2.3. Predictors

A total of thirty-seven environmental variables were used as pre-
dictors of particle-size fractions at 0–20 cm and 20–40 cm depth. These

predictors were divided in three types: those obtained from a digital
elevation model (DEM), bioclimatic variables, and spectral indices from
satellite images (Table 1).

A 90-m spatial-resolution DEM obtained from NASA Shuttle Radar
Topography Mission data was used. The DEM was then hydrologically
corrected by identifying and filling the sinks with 0.01° minimum slope
and using Wang and Liu (2006) algorithm. This post-process is im-
portant when working with water flow-related calculation within the
study area (Adhikari et al., 2013). Then, fourteen terrain and hydro-
logical indices were calculated based on the corrected DEM. All pro-
cedures of pre-process and indices calculation were carried out using
the Terrain Analysis module of SAGA-GIS v4.0.1 (SAGA Development
Team, 2016).

The eighteen bioclimatic variables were obtained based on the
WorldClim database (Hijmans et al., 2005a, 2005b). Original raster
layers of these variables were used without modification (Table 1).
Several studies have demonstrated that these bioclimatic variables have
a high accuracy to predict soil properties at regional scale (Cambule
et al., 2013; Hartemink et al., 2008). Hence, they have been useful as
inputs to generate models of DSM, especially where geospatial in-
formation of ancillary soil variables is limited (Vaysse and Lagacherie,
2015).

The spectral vegetative indices used as predictors were satellite-
derived Normalized Difference Vegetation Index (NDVI) from Landsat 5
MSS-TM and Landsat 8 OLI-TIRS images with atmospheric correction
over a time period of four years (Table 1). These indices were calculated
using QGIS v2.16.1 (QGIS v2.16.1 Nodebo, 2016). Various studies have
reported that NDVI properly predicts land cover and has been useful as
ancillary information to predict many soil properties at different scales
(Boettinger et al., 2008; McBratney et al., 2003).

All predictors were adjusted to the UTM coordinate system datum
WGS84. Table 1 shows the mean and range for each predictor within
the study area.

Fig. 1. Spatial distribution of soil profiles (n = 813) over the southern Argentine Pampas.
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2.4. Prediction of particle-size fractions

The Cubist model was used as a regression tool to determine par-
ticle-size fractions based on predictors. This model is a rule-based
model, similar to a regression tree model, which the data are

partitioned into smaller subsets based on the target variable (Quinlan,
1992). Cubist produces a set of “if-then-else” rules, where each condi-
tion is based on a threshold for one or more predictors (Malone et al.,
2014). The result consists of a number of rules each associated with a
multiple regression that only applies when the conditions specified on
the rule are met (Adhikari et al., 2014). Cubist model has been used in
several fields and has been effective for various purposes of soil map-
ping over large areas (Malone et al., 2014; Viscarra Rossel et al., 2015).
For more details on Cubist model, see Quinlan (1992) and Henderson
et al. (2005).

2.4.1. Prediction performance
The Cubist model perform was evaluated on two data sets: cali-

bration (internal evaluation) and validation (external evaluation) data
sets. Calibration data set was generated using five-hundred-sixty-eight
soil profiles (~70%), which were randomly selected from the total data
set. Validation set was generated using two-hundred-forty soil profiles
(~30%), which were randomly excluded from the total data set, as an
independent data set. Internal and external evaluations were calculated
using the following error metrics: Root Mean Square Error (RMSE) (Eq.
(1)), Coefficient of determination (R2) (Eq. (2)) and Lins's Concordance
Correlation Coefficient (rc) (Eq. (3)). These error metrics were calcu-
lated as:

∑= −
=

RMSE
n
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n
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1

2 2 1
1
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1
1

. For all error

metrics equations, x and y are the mean value for samples x (measured
particle-size fraction) and y (predicted particle-size fraction) of size of
number of samples n, xi and yi are paired ith values from the sample x
and y.

RMSE measures is a measurement of the average error (or accuracy)
of the prediction. R2 measures the agreement between measured and
predicted data. Generally, a good model will have a RMSE close to 0
and an R2 close to 1. The rc assess covariation and correspondence
between measured and predicted data. This metric combines measures
of both precision and bias to determine how fat the measured data
deviate from the line of perfect concordance, which is the 1:1. The
value of this metric is scaled between 1 and −1. A value< 0.60 de-
noted poor agreement, value between 0.60 and 0.75 moderate agree-
ment, between 0.75 and 0.90 substantial agreement and value of +1
perfect agreement (Viscarra Rossel et al., 2015).

2.4.2. Estimates of uncertainty
The prediction uncertainties was estimated using the method of

non-parametric bootstrap (Efron and Tibshirani, 1993). This method
has been used in the spatial modeling for three purposes (Viscarra
Rossel et al., 2015). First, provide sets of residuals on which model the
random component. Second, bootstrapping involves repeated random
sampler with replacement of the available data. Then, the spatial
modeling on each bootstrap sample is perform, obtains probability
distributions of the out comes from the modeling at each pixel. The
result is robust estimates by averaging the predictions made on the
different bootstrap samples. And third, with the probability distribu-
tions is possible quantify the uncertainty of the modeling by computing
a prediction interval given a specified level of confidence (Malone et al.,

Table 2
Descriptive statistics of particle-size fractions from total, calibration and validation da-
taset of soil profiles over the southern Argentine Pampas.

Minimum Maximum Mean CV (%) Skewness Kurtosis

0–20 cm soil depth
Clay (%)
Total dataset 4.00 71.00 20.50 29.32 1.18 −0.70
Calibration
dataset

11.30 33.60 20.82 26.61 0.23 −0.93

Validation
dataset

11.62 33.01 19.67 26.76 0.64 −0.58

Silt (%)
Total dataset 5.00 57.00 26.77 35.84 0.13 −0.07
Calibration
dataset

5.00 57.00 26.52 37.01 0.17 −0.04

Validation
dataset

7.00 53.00 27.36 33.20 0.06 −0.20

Sand (%)
Total dataset 1.00 82.00 52.75 21.81 0.15 0.29
Calibration
dataset

1.00 82.00 52.97 22.21 0.01 0.41

Validation
dataset

31.00 82.00 52.24 20.80 0.51 −0.09

20–40 cm soil depth
Clay (%)
Total dataset 9.65 46.10 24.77 27.39 0.02 −0.48
Calibration
dataset

9.65 46.10 24.48 27.16 0.06 −0.42

Validation
dataset

9.88 43.57 25.48 26.62 0.04 −0.54

Silt (%)
Total dataset 2.62 80.80 27.05 38.40 0.29 0.46
Calibration
dataset

2.62 56.22 26.95 37.89 0.16 −0.26

Validation
dataset

4.80 80.80 27.29 39.81 0.54 1.67

Sand (%)
Total dataset 14.18 87.71 48.22 26.31 0.66 0.05
Calibration
dataset

21.27 87.71 48.68 26.01 0.68 0.05

Validation
dataset

14.18 82.51 47.15 26.98 0.61 0.02

†. SD, standard deviation; CV, coefficient of variation.

Table 3
Fitting performance for the particle-size fractions predictive models.

Evaluation Clay Silt Sand

0–20 cm soil depth
Calibration dataset RMSE (%) 4.94 7.85 9.19

R2 0.19 0.35 0.39
rc 0.39 0.56 0.59
Bias −0.23 −0.34 −0.03

Validation dataset RMSE (%) 5.78 8.95 10.86
R2 0.07 0.18 0.18
rc 0.23 0.38 0.40
Bias −0.89 −0.32 −0.36

20–40 cm soil depth
Calibration dataset RMSE (%) 6.20 8.71 10.33

R2 0.17 0.32 0.36
rc 0.36 0.53 0.56
Bias 0.23 −0.35 −0.51

Validation dataset RMSE (%) 6.67 9.51 11.63
R2 0.11 0.15 0.24
rc 0.28 0.36 0.46
Bias −0.29 −0.76 −1.42
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2016).
In this study, 50 bootstrap samples of particle-size fractions and

associated predictors were used. For each bootstrap sample, the Cubist
model was used to predict the values of particle-size fractions. Two
third of the total data set were used to fitting models. The remaining
third was used to model validation.

2.4.3. Uncertainty model validation
The prediction interval coverage probability (PICP) was calculated

to validate the quantifications of uncertainty (Malone et al., 2014,
2016). The PICP is the probability that all observed values fit within
their estimated prediction interval (PI) (Malone et al., 2011; Solomatine
and Shrestha, 2009). The PICP was estimated accordingly for a 90% PI
based on the count of observed values that lie within the PI for each site
at each particle-size fractions. PIs were constructed for various con-
fidence levels ranging from 5% to 99%, to assess the sensibility of the
model by means of reducing the confidence limit sequentially. Ideally,
it is expect the PICP values to be close to the corresponding 100(1-a)%
confidence level.

2.4.4. Mapping of particle-size fractions and their uncertainties
The maps of the predictions of particle-size fractions were estimated

as the product of the spatial modeling. Generally, these predictions
have a level of uncertainty that can be quantified, which is important
for guiding decision-making processes (Akpa et al., 2016). In this study,
the uncertainty of the prediction of particle-size fractions were

estimated by calculating 90% prediction intervals from the individual
bootstrap predictions for each pixel. The 90% PI for each particle-size
fraction were then used to calculate uncertainty of the final prediction.
This generated three maps for each particle-size fraction. The first map
indicating the lower prediction limit; the second map, the mean pre-
diction and the third map, the upper prediction limit.

3. Results and discussion

3.1. Particle-size fractions

Table 2 shows the comparison of descriptive statistics of the ori-
ginal, calibration and validation data set of particle-size fractions, at the
two depths studied. At 0–20 cm soil depth, the range between minimum
and maximum clay content, was considerably higher for calibration and
validation dataset that to the original dataset, whereas for silt content
was similar to all datasets. The range to sand content was considerably
lower for validation dataset that to the original and calibration datasets.
At 20–40 cm soil depth, the range between minimum and maximum
clay content were similar for all datasets, whereas for silt and sand
content, were lower to the original and validation dataset than to the
calibration dataset. The maximum values for sand content were similar
to all datasets, at the two depths. In general, the mean and coefficient of
variation (CV) particle-size fractions were similar between depths,
suggesting a similar sediment genesis (Amiotti et al., 2001). Sand is the
particle-size fraction predominant at both depths. The CV of silt were

Fig. 2. Predictor importance plots based on Cubist regression tree of particle-size fractions.
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higher at both depths, while sand were lower.
Actually, the impact of the intense and long-term volcanic activity

from Andes Mountains at different ages, on the particle-size topsoil
distribution is subject to discussion. Amiotti et al. (2001) argued that
the volcanic materials that were deposited on study area had> 40% of
silt, in detriment of the clay and sand factions (Blanco and Stoops,
2007; Buschiazzo et al., 1990). This volcanic materials were deposited
overlying a petrocalcic horizon, with a gradual transition from east to
west, along with a higher sand content (Gonzalez Uriarte et al., 1990).

3.2. Performance of predictions

The performance of Cubits model in predicting particle-size frac-
tions based on error metrics (Eqs. (1)–(3)) are shown in Table 3. In
general, Cubist predictions were slightly better for 0–20 cm than for
20–40 cm soil depth, corroborating the influence of the depth. At both
depths, R2 for clay content to calibration (internal validation) and va-
lidation (external validation) dataset was lower, whereas for silt and
sand content were higher and similar. In terms of rc, Cubist perfor-
mance was better for silt and sand content that to clay content, for
calibration and validation datasets. RMSE were lower for particle-size
fractions in the calibration dataset and were higher for sand content.

The results indicate that there is a clear deterioration in the Cubist

performance to the validation results. However, numerous DSM studies
also reported similar validation results for particle-size particles and
other soil properties (Bishop et al., 2015; Lacoste et al., 2014; Malone
et al., 2009; Viscarra Rossel et al., 2015). In terms of R2, validation
results were between 7 and 18% and 11–24% for particle-size particles
at 0–20 cm and 20–40 cm soil depth, respectively, indicated that the
predictions were not so good. Alike, in terms of rc, validation results
were between 0.23 and 0.40 and 0.28–0.46% to particle-size fractions
at 0–20 cm and 20–40 cm soil depth, respectively, indicated a moderate
agreement between the predicted and measured particle-size fraction.

There are three possible reasons for these results. The first is that in
the original dataset were collected with ~30 years apart with respect to
predictors. Although it is usual in DSM studies to use legacy soil data to
map contemporaneous conditions (Bishop et al., 2015; Grunwald,
2009), in the study area, it could have led to biases due to changes in
the land use in the last decades and it effect on particle-size fractions in
the topsoil. The second is that the predictors, although they are im-
portant sources of soil variability, failed to capture a significant pro-
portion of the variability of particle-size fractions at the topsoil.
Therefore, it is necessary to explore new predictors that will also ex-
plain their soil texture variability in the topsoil. The third is the scale of
prediction. In the central and southeastern of the study area, the soils
are underlain by an almost continuous caliche, locally termed “tosca”,
which has great variability in depth, and structure (Castro-Franco et al.,
2016; Pazos and Mestelan, 2002). Several studies have reported that the
variability of the tosca had considerable effect on the spatial pattern of
particle-size fractions at field scale (scale> 1:2.000) (Castro-Franco
et al., 2015, 2017; Domenech et al., 2017). Therefore, it is possible that
this effect reduces the predictive capacity of the Cubist models.

3.3. Predictors importance

Fig. 2 shows a comparison of top importance predictors for particle-
size fractions at both depths. In general, these results revealed that
climate indices were more important that terrain indices. Specifically,
predictors related to temperature (BioClim1, BioClim2, BioClim4, Bio-
Clim7 and BioClim9) were the most important to predict particle-size
fractions at 0–20 cm soil depth, while the predictors related to tem-
perature (BioClim1, BioClim2, BioClim5 and BioClim9), rainfall (Bio-
Clim12) and terrain indices (Valley depth and Wind_exp) were the most
important to predict particle-size fractions at 20–40 cm soil depth.

Previous studies have reported different results, where in general,
predictors associated with terrain indices have been reported as the
most importer to predict particle-size fractions at regional scale (Akpa
et al., 2014; Ließ et al., 2012). Is possible that in zones where soil
pedogenesis was determined by erosion or deposition, it is likely that
terrain features have a crucial role and thus terrain attributes have
higher prediction performance for soil texture. However, in zones
where soil pedogenesis was determined by aeolian depositions, as in
this study area, predictors related to climate have higher prediction
performance for soil texture.

3.4. Uncertainly model validation

Fig. 3 shows the comparison of the results of the PICP analysis,
which was used to evaluate the efficacy of the 90% prediction intervals.
In general, the uncertainties quantified from the bootstrapping ap-
proach were acceptably higher (PICP between 78 and 85%) to particle-
size fractions at both soil depths. However, value close 90% were ex-
pected. Despite this, the results of PICP analysis are comparable to other
studies of particle-size fractions predictive mapping. In this respect,
Odgers et al. (2015) reported PICP values< 90% to clay content in a
DSM study across Western and South Australia. These authors con-
cluded that PICP values varied considerably across depth intervals and

Fig. 3. Prediction interval coverage probability (PICP) for particle-size fractions predic-
tions. For a given α, the PICP is the proportion of predicted values that are inside the 100
(1-α) confidence interval.
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texture grades. Tranter et al. (2010) also reported PICP values< 90%
to clay content in a DSM study across New South Wales, Australia.

3.5. Spatial distribution of particle-size fractions and their uncertainties

Maps of particle-size fractions at both depths for the southern

Argentine Pampas are shown in Fig. 3. In general, the spatial dis-
tribution of the particle-size fractions was similar at both depths, sup-
porting the vertical homogeneity of the profiles in the whole study area
at a depth lower than 40 cm. As expected, variations in sand, in detri-
ment of clay and silt, from the east to west, caused an increase in the
sand content further west. Clay and silt contents were higher around

Fig. 4. Maps of particle-size fractions across the southern Argentine Pampas showing, from left to right, the lower, final prediction and upper prediction interval limit.
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and in the middle of hilly zones. (See Fig. 4.)
The spatial pattern of the particle-size fractions may have been

explained for two geomorphic processes (Amiotti et al., 2001). The first
was the deposition, when loess sediments in the Holocene were trans-
ported from the west to the east from the Andes Range to the extra-
Andean Pampean plain, which contributed to concentrating them in the
southeast and proximal to the hills, during several sedimentary pulses
(Blanco and Stoops, 2007). Sediments were deposited over the un-
dulated paleotopography of the tosca layer. The second was the collu-
vial–alluvial processes, which contributed to the distribution of the
particle-size fractions within the study area, especially in unstable to-
pographic positions located near the hilly systems (Blanco et al., 2003).

3.6. Spatial distribution of soil texture

The spatial distribution of textural classes based on the USDA
classification over the study area is shown in Fig. 5. The transition from
coarse to fine textures from west to east at both depths is consistent
with the soil pedogenesis in the study area. In general, soils at 0–20 cm
depth are Sandy loam (~4.1 million ha), Loam (~3.7 million ha), and
Sandy clay loam (~3.1 million ha), while those at 20–40 cm are Sandy
clay loam (~3.7 million ha), Loam (~3.6 million ha), Clay loam
(~2.9 million ha) and Sandy loam (~1.5 million ha). At 20–40 cm
depth, basset with tosca might be common because of the vertical

variability of the petrocalcic horizon at depths lower than 40 cm. Thus,
this condition was classified as no-soil. Percentages of the representa-
tion of texture classes at both depths are presented in Fig. 6. This is a
spatial pattern commonly found in the main Argiudolls of the study
area, as reported by Blanco and Stoops (2007) and Cabria and Culot
(1994).

The percentage comparison of each texture class in each District
studied is shown in Fig. 7. At 0–20 cm depths, Sandy loam soils occu-
pied two zones: the south-center, specifically Tres Arroyos and Coronel
Dorrego Districts and the northwest, Guaminí and Adolfo Alsina Dis-
tricts. Loam soils were mainly in the north of the area, Benito Juarez,
Coronel Suarez, Olavarría and Azul Districts. At 20–40 cm depths,
Sandy clay loam soils were gathered in two zones: the south-center,
Tres Arroyos and San Cayetano, and the west, Puan and Adolfo Alsina
Districts. Loam soils were mainly found in the northern Districts, Clay
loam soils in Benito Juarez, Necochea and Lobería, and Sandy loam
soils in Coronel Suarez. Most of the no-soil zones were found in Bahía
Blanca, Coronel Dorrego, Coronel Pringles and Tandil Districts.

4. Conclusions

A DSM technique was used to provide a spatial dataset of soil tex-
ture for the southern Argentine Pampas. This includes a map of particle-
size fractions at 1-km spatial resolution and a map of the soil texture

Fig. 5. Maps of textural classes based on the USDA (United States Department of Agriculture) classification across the southern Argentine Pampas.
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based on the USDA classification at 0–20 cm and 20–40 cm depths. It
also includes a relationship among textural classes for each District
studied.

The new spatial dataset could be useful for climate, hydrological,
ecological and crop models. Also, maps of particle-size fractions may be
used for soil compaction studies, assessing risks of pesticide pollution or
soil erosion models.

The Cubist model was moderately robust to predict particle-size
fractions. Although some important properties such as soil effective
depth was not included, this model is an acceptable approach of DSM of
particle-size fractions for the southern Argentine Pampas. Further
works exploring new DSM techniques could possibly improve our re-
sults. The salient findings of this study are: (i) the main soils in the
southern Argentine Pampas are: sandy loam, loam, sandy clay loam and
clay loam; (ii) at a depth lower than 40 cm, the soil texture has similar
spatial patterns; (iii) the soil texture varies gradually becoming finer
westward; (iv) predictors related to climate were the most important to
predict particle-size fractions; and (v) Cubist model was able to de-
termine complex spatial relationships between predictors and particle-
size fractions in the southern Argentine Pampas conditions.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found in the
online version, at https://doi.org/10.1016/j.geodrs.2017.11.003.
These data include Google map of the most important areas described
in this article.
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