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A B S T R A C T

In recent years, the use of forage crop sequences (FCS) has been increased as a main component into the animal
rations of the Argentinian pasture-based livestock systems. However, it is unclear how year-by-year rainfall
variability and interactions with soil properties affect FCS dry matter (DM) yield in these environments.
Biophysical crop models, such as Agricultural Production Systems Simulator (APSIM), are tools that enable the
evaluation of crop yield variability across a wide of environments. The objective of this study was to evaluate the
APSIM ability to predict forage DM yield and water productivity (WP) of multiple continuous FCS. Thirteen
continuous FCS, including winter and summer crops, were simulated by APSIM during two/three growing
seasons in five locations across the Argentinian Pampas. Our modelling approach was based on the simulation of
multiple continuous FCS, in which crop DM yields depend on the performance of the previous crop in the same
sequence and the final soil variables of the previous crop are the initial conditions for the next crop. Overall,
APSIM was able to accurately simulate FCS DM yield (0.93 and 3.2 Mg ha−1 for concordance correlation
coefficient [CCC] and root mean square error [RMSE] respectively). On the other hand, the model predictions
were better for annual (CCC = 0.94; RMSE = 0.4 g m−2 mm−1) than for seasonal WP (CCC = 0.71;
RMSE = 1.9 g m−2 mm−1), i.e. at the crop level. The model performance to predict WP was associated with
better estimations of the soil water dynamics over the long-term, i.e. at the FCS level, rather than the short-term,
i.e. at the crop level. The ability of APSIM to predict WP decreased as seasonal WP values increased, i.e. for low
water inputs. For seasonal water inputs,< 200 mm, the model tended to under-predict WP, which was directly
associated with crop DM yield under-predictions for frequently harvested crops. Even though APSIM showed
some weaknesses in predicting seasonal DM yield and WP, i.e. at the crop level, it appears as a potential tool for
further research on complementary forage crops based on multiple continuous FCS in the Argentinian livestock
systems.

1. Introduction

Worldwide food demand is expected to increase by 60–100% by
2050 (Tilman et al., 2011; Valin et al., 2014), which include the
growing demand for meat and milk (Bouwman et al., 2005; Zhang
et al., 2017). This will drive an increase in forage production to supply

animal feed. This increase could be achieved, at least in part, through
forage crop intensification, i.e. the production of more fodder crop per
unit of cultivated land (Mueller et al., 2012; Teixeira et al., 2014).
Likewise, to optimize the increasingly limited land use and to avoid
adverse environmental impacts, future yield increases should focus on
increasing the environmental resources use efficiency, in particular
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water (Caviglia et al., 2004).
The Argentinian Pampas is an important livestock production region

(Solbrig and Viglizzo, 1999), in which animal feed is predominantly
based on forage crops sequences (FCS, i.e. sequences based on annual
forage crops for silage, hay or grazing) and perennial pastures (Ojeda
et al., 2016). In recent years, the sowing area of forage crops (annual
and perennial) has decreased significantly in the face of the advance of
grain and oilseed cropping (annual crops like soybean, wheat, barley,
and sunflower) in this region. However, the decreasing area of per-
ennial pastures has been off-set by a doubling of the area sown to an-
nual forage crops in the last 24 years (200000 v. 100000 ha year−1,
respectively) (INDEC, 1988; FAOSTAT, 2013). Likewise, the sowing
area of annual silage crops has increased ∼300% from 2006 to 2014,
with maize (Zea mays L.) accounting for 67% of this increase (Opacak,
F., personal communication, CACF).

Annual forage crops are fed during periods of low growth rates of
perennial pastures has been widely used to improve and stabilize the
balance between supply and forage demand (Rawnsley, 2007; Rawnsley
et al., 2013), productivity per unit area (Garcia et al., 2008) and, water
and nitrogen (N) use efficiency (Garcia et al., 2008; Neal et al., 2011).
Likewise, there is an increasing interest to integrate perennial pastures
with FCS in order to improve livestock systems productivity and sta-
bility under predicted scenarios of climate variability (Chapman et al.,
2008a, 2011). Although the FCS are important forage resources, it is
unclear how year-by-year rainfall variability and the interaction with
soil type affect dry matter (DM) yield in these environments. This in-
formation is required to guide the adoption of management practices
oriented to increase the livestock systems stability facing up the in-
creasing frequency of extreme climatic events (Pembleton et al., 2016).

To study the spatio-temporal variability of FCS DM yield, long-term
field experiments are needed which require considerable time and
funding resources. An alternative is to use biophysical crop models to
evaluate the FCS DM yield variability across a wide of environments to
identify the most successful systems prior to field evaluation. Several
simulation models have been used to predict crop growth for the eva-
luation of pasture-based livestock systems (Chapman et al., 2008a,b;
Cullen et al., 2009; Rawnsley et al., 2009). The Agricultural Production
Systems Simulator (APSIM) is a crop simulation model that integrates
through sub-modules, agronomic management with climatic data in a
mechanistic way to simulate growth and development of crops, as well
as the dynamics of soil water and N (Keating et al., 2003; Holzworth
et al., 2014). Although APSIM was initially created to predict crop grain
yield in Australia, in the past years it has appeared to be promissory to
simulate forage crop DM yield across several environments (e.g. Can-
terbury plains, New Zealand [Teixeira et al., 2010, 2015], south-eastern
Australia (Pembleton et al., 2013, 2016; Islam et al., 2015) and the
Argentinian Pampas (Ojeda et al., 2016)).

Crop modelling studies in the Argentinian Pampas also have been
mainly focused on grain production using Decision Support System for
Agrotechnology Transfer (DSSAT) (Monzon et al., 2007; Mercau et al.,
2007; Caviglia et al., 2013). However, recent advances have been re-
ported simulating perennial pastures in the last years. For example,
Berger et al. (2014) examined DairyMod's ability to predict tall fescue
(Festuca arundinacea Schreb.) DM yield under contrasting seasons, N
fertilizations and soil water availability at Balcarce, Argentina. Also, a
recent study reported by Laulhe (2015) demonstrated the DSSAT ca-
pacity to simulate the fescue DM yield in two locations in the south-
eastern of Buenos Aires. However, there are no reported modelling
studies using annual forage crop sequences for this region.

A useful approach to study the impact of the interaction between
climate variability and soil type on FCS DM yield is the water pro-
ductivity (WP), estimated as the ratio between DM yield and rainfall (or
rainfall plus irrigation water, where relevant). This metric has been
widely used in natural grasslands (Noy-Meir, 1973; Le Houerou, 1984;
Sala et al., 1988; Lauenroth and Sala, 1992; Paruelo et al., 1999;
Huxman et al., 2004; Verón et al., 2005), agricultural cropping systems

(Pereira et al., 2002; Sadras, 2002; Molden et al., 2003; Caviglia et al.,
2004; Passioura, 2006; Van Opstal et al., 2011) and could be also used
in forage systems (Zhang et al., 2017).

Before APSIM could be used as a possible predictor of DM yield in
multiple continuous FCS in different Argentinian Pampas environ-
ments, an exhaustive validation process is required. Particularly, the
evaluation of the model ability to accurately simulate possible effects of
previous crops and initial soil conditions on the following crops into the
sequence. Likewise, an analysis of the WP year-by-year variability
would allow the analysis of DM yield variation due to water inputs, i.e.
rainfall and irrigation. The objective of this study was to evaluate the
APSIM ability to predict forage DM yield and water productivity (WP)
of multiple continuous FCS in five locations across the Argentinian
Pampas under a range of inputs and crop management system.

2. Materials and methods

The model validation was carried-out following the subsequent
steps: (i) climate data and practices management were provided to
APSIM, (ii) soil parametrization was generated for each experiment
(Table 1), (iii) graphical comparison and statistical analyses of observed
and modelled crop and FCS DM yields and WP. A complete description
of data used for APSIM validation is provided in Table 2.

2.1. Experimental locations and forage growth

The FCS DM yields were collected in five locations across
Argentinian Pampas: Rafaela (31°11′S, 61°30′O), Pergamino (33°56′S
60°33′O), General Villegas (35°01′S 63°01′O), Trenque Lauquen
(36°04′S 62°45′O) and Balcarce (37°45′S 58°18′O). Data for APSIM
validation were collected from experimental stations of the Argentinian
National Institute of Agriculture (INTA), except at Trenque Lauquen
where were collected from experiments located at the farm level. The
dataset included thirteen FCS DM yields of annual crops (annual rye-
grass [Lolium multiflorum Lam.], oats [Avena sativa L.], wheat [Triticum
aestivum L.], barley [Hordeum vulgare L.], soybean [Glycine max L.] and
maize) from 2009 to 2015 (Fig. 1; Table 2). Each sequence was com-
prised of two crops per year except for the wheat-soybean-maize se-
quence at Rafaela where it included three crops per year (Fig. 1). All
field experiments were carried-out under dryland conditions, except at
Pergamino where some sequences were irrigated (Table 2).

2.2. Climate data

The climate characteristics of each location are provided in Fig. 2.
Daily meteorological data (daily minimum and maximum air tem-
perature [at 1.5 m height], solar radiation and rainfall) for each loca-
tion were obtained from a meteorological station, except at Trenque
Lauquen where they were provided by the Climate and Water Institute
of INTA (CIRN) and by local researchers. Any missing daily solar ra-
diation, minimum and maximum temperature data were obtained from
the NASA Prediction of Worldwide Energy Resource (POWER) – Cli-
matology Resource for Agroclimatology (NASA, 2013). This database
provides information on historical climatic series of interest locations
based on geographical coordinates (latitude and longitude). Recent
assessments of NASA-POWER's predictive capacity showed good pre-
dictions of maximum and minimum air temperature in different US
(White et al., 2008; Ojeda et al., 2017) and Argentinian environments
(Aramburu Merlos et al., 2015).

The maximum mean air temperature range was from 4.0 to 46.3 °C
and the minimum mean air temperature from −11.1 to 28.2 °C (Fig. 2).
Average cumulative annual rainfall ranged from 793 to 1002 mm for
Trenque Lauquen and Pergamino, respectively (Fig. 2). Similarly, the
maximum soil water storage capacity between locations ranged from
113 mm at Trenque Lauquen (from 0 to 1.3 m soil depth) to more than
the double at Rafaela (264 mm, from 0 to 1.6 m soil depth) (Table 1).
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2.3. Soil data

The configuration of soil N and C modules (SoilN) and water balance
(SoilWat) were carried-out following the next steps. Soil water para-
meters required to the model such as drained lower limit (LL), drained
upper limit (DUL), bulk density (BD) and organic carbon were provided
by the Soils Institute of INTA (CIRN) (Table 1). Also, for each soil, air
dry (AD), saturated volumetric water (SAT), total porosity (PO), drai-
nage coefficient (SWCON) and soil pH were estimated according to the
reported by Ojeda et al. (2017) for US environments. In addition, the
water extraction coefficient (KL) was set at 0.08 mm d−1 (Robertson
et al., 1993a,b; Dardanelli et al., 1997, 2004) for each soil layer. The
root exploration factor (XF) was set as 1 for up to 1 m depth and then
decreased exponentially to 0.6 at the maximum soil depth (Monti and
Zatta, 2009). To initialize the soil nitrogen pool, a 10-year simulation of
previous management at the experimental locations (oats-maize se-
quence), the location-specific climate, and soil data were used (Ojeda
et al., 2017).

Initial simulations shown that was required the inclusion of soil
water from water table at Rafaela. This additional water was included
into the model following Ojeda et al. (2016).

2.4. APSIM configuration

All simulations were performed using APSIM (version 7.5) (Keating
et al., 2003; Holzworth et al., 2014). Oats, wheat, barley, soybean and
maize were simulated with the respective plant modules (APSIM-Oats,
−Wheat, −Barley, Soybean and −Maize, respectively; Carberry et al.,
1989; Keating et al., 2003; Wang et al., 2003; Peake et al., 2008).

Annual ryegrass was simulated with the APSIM-Weed module (Deen
et al., 2003; Pembleton et al., 2013) re-parameterized by Ojeda et al.
(2016) using the late flowering genotype. Simulations were performed
at the crop sequence level, i.e. the initial soil condition for a specific
crop was the final soil condition of the previous crop. The sequences are
shown in Fig. 2. Since genotypes used in the field experiments were not
available into APSIM, we used the genotypes that best reflected the
maturity type/crop development among the available genotypes in the
model. The actual crop management such as sowing date, plant density,
row spacing, nitrogen fertilization and irrigation were set in the model
to mimic the practices applied in the field (Table 2). The harvest rule
was set to remove the aerial biomass at a height of 0.03 m (Ojeda et al.,
2016). Seasonal WP was calculated as the ratio between the DM yield in
each crop harvest and seasonal rainfall in the same period. Likewise,
the annual WP was calculated as the ratio between the annual DM yield
for each FCS and the annual rainfall.

2.5. Evaluation of APSIM performance

First, the model performance was assessed to predict crop and FCS
DM yield. After that, APSIM's ability to sense spatio-temporal variability
in the FCS DM yield and WP was evaluated. The assessment was based on
the comparison between observed and modelled values by scatter plots
(Piñeiro et al., 2008) for crops and FCS DM yield in all locations.

The evaluation of model performance described in Tedeschi (2006)
was used to statistically evaluate APSIM to predict crop and FCS DM
yields. The statistical parameters used were: observed and modelled
mean and standard deviation, coefficient of determination (R2), root
mean square error (RMSE) and the concordance correlation coefficient

Table 1
Soil parameters used to configure Agricultural Production Systems Simulator (APSIM).

Location Soil typea Soil series Depth Texture class BD Air Dry LL DUL SAT PO SWCON OC pH

sand silt clay
m % % % Mg m−3 mm mm−1 (0–1) day−1 % 1:5

RAF Typic Argiudoll Rafaela 0–0.2 2 72 26 1.26 0.066 0.132 0.295 0.328 0.52 0.34 1.47 6.2
0.2–0.35 3 69 28 1.29 0.098 0.140 0.300 0.333 0.50 0.33 0.90 6.3
0.35–0.63 2 60 38 1.37 0.144 0.180 0.310 0.342 0.47 0.32 0.51 6.5
0.63–0.93 2 58 41 1.35 0.165 0.183 0.319 0.352 0.48 0.31 0.37 6.7
0.93–1.15 2 65 33 1.31 0.167 0.185 0.305 0.337 0.50 0.33 0.24 7.2
1.15–1.4 1 68 31 1.28 0.158 0.175 0.292 0.322 0.51 0.34 0.17 7.4
1.4–1.6 5 65 30 1.28 0.135 0.150 0.284 0.313 0.51 0.35 0.11 8.2

PER Typic Argiudoll Pergamino 0–0.13 13 65 23 1.27 0.089 0.178 0.326 0.362 0.51 0.31 1.69 5.9
0.13–0.25 12 65 23 1.32 0.125 0.178 0.327 0.363 0.49 0.31 1.48 6.1
0.25–0.34 13 57 30 1.33 0.155 0.193 0.356 0.393 0.49 0.28 0.87 6.2
0.34–0.75 9 48 44 1.33 0.204 0.226 0.418 0.461 0.49 0.24 0.64 6.3
0.75–0.95 13 56 30 1.33 0.174 0.193 0.355 0.392 0.49 0.28 0.35 6.5
0.95–1.6 18 66 17 1.33 0.145 0.160 0.293 0.323 0.49 0.34 0.24 6.4

GV Typic Hapludoll Blaquier 0–0.2 69 19 12 1.26 0.038 0.075 0.174 0.193 0.52 0.57 1.29 6.3
0.2–0.28 69 18 13 1.29 0.055 0.078 0.164 0.182 0.50 0.61 1.17 6.3
0.28–0.57 66 19 15 1.37 0.061 0.076 0.163 0.180 0.47 0.61 0.60 6.0
0.57–0.89 75 14 11 1.35 0.059 0.065 0.143 0.158 0.48 0.70 0.18 6.5
0.89–1.25 77 14 10 1.31 0.056 0.062 0.125 0.138 0.50 0.80 0.07 6.8
1.25–1.6 77 14 10 1.28 0.056 0.062 0.125 0.138 0.51 0.80 0.07 6.8

TL Entic Hapludoll Piedritas 0–0.28 61 25 15 1.37 0.035 0.070 0.170 0.189 0.47 0.59 1.29 7.1
0.28–0.47 65 21 15 1.38 0.031 0.061 0.182 0.202 0.47 0.55 0.86 8.3
0.47–0.84 64 24 12 1.22 0.023 0.045 0.133 0.147 0.53 0.75 0.35 8.3
0.84–1.08 75 13 12 1.30 0.033 0.065 0.121 0.134 0.50 0.83 0.13 8.8
1.08–1.3 70 21 9 1.22 0.049 0.097 0.209 0.231 0.53 0.48 0.09 9.3

BAL Petrocalcic Paleoudoll Balcarce 0–0.23 33 41 26 1.15 0.085 0.169 0.280 0.393 0.56 0.36 3.28 7.0
0.23–0.31 35 39 26 1.15 0.105 0.150 0.276 0.387 0.56 0.36 2.26 7.4
0.31–0.54 36 29 35 1.27 0.142 0.178 0.351 0.498 0.51 0.28 1.59 7.4
0.54–0.70 45 31 24 1.27 0.194 0.215 0.427 0.507 0.51 0.23 0.82 7.8
0.70–1.2 50 31 19 1.35 0.179 0.199 0.396 0.450 0.48 0.25 0.64 7.8

RAF, Rafaela; PER, Pergamino; GV, General Villegas; TL, Trenque Lauquen; BAL, Balcarce; BD, Bulk density; LL, lower drainage limit (i.e. permanent wilting point); DUL, upper drainage
limit (i.e. field capacity); SAT, saturated volumetric water.

a Soil Survey Staff, 2010.
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(CCC). The CCC integrates precision through Pearson’s correlation
coefficient, which represents the proportion of the total variance in the
observed data that can be explained by APSIM, and accuracy by bias
which indicates how far the regression line deviates from the line (1:1).

The crop model performance was categorically judged based on the
values of CCC as proposed by Stöckle et al. (1998). Upper and lower
statistical limits were set as: “very good” when CCC > 0.90, “sa-
tisfactory” when 0.80 < CCC < 0.90, “acceptable” when 0.70 < C-
CC < 0.80 and “poor” with other values.

3. Results

3.1. Dry matter yield

The observed crop DM yield ranged from 1.4 Mg ha−1 (annual
ryegrass) to 14.9 Mg ha−1 (maize). The difference between observed
and modelled crop mean DM yield was 0.2 Mg ha−1, being higher in
crops with lowest number of observations (wheat and barley, Table 3).
A better model accuracy to predict DM yield was found when maize DM

Fig. 1. Schematic representation of forage crop sequences growing in Rafaela (RAF), Pergamino (PER), General Villegas (GV), Trenque Lauquen (TL) and Balcarce from 2009 to 2015.
Superscript 1 and 2 indicates annual ryegrass with successive harvests and with only one harvest, respectively.

Fig. 2. Historical climate data in Rafaela (RAF), Pergamino (PER), General Villegas (GV), Trenque Lauquen (TL) and Balcarce (BAL) from 1983 to 2013. Black points indicate long-term
averages. Numbers for the x-axis in panels a, b, c, d and e indicates the month of the year from January (1) to December (12) and error bars are the standard error for the period. Grey
points are individual daily values during the 30-year period from 1-January (Julian day 1) to 31-December (Julian day 365). Cumulative annual rainfall (CAR).

J.J. Ojeda et al. European Journal of Agronomy 92 (2018) 84–96

89



yields from 2010/11 were deleted. In this year, the maximum tem-
peratures during summer were extreme (> 40 °C; Fig. 2) and the ex-
tractable soil water was close to LL (Fig. 4). After removing these data,
the CCC increased from 0.80 to 0.86 and the RMSE decreased from 4.1
to 3.4 Mg ha−1. Likewise, better model predictions were obtained by

simulating crops for silage, i.e. only one harvest for wheat, soybean and
maize, than when crops were harvested successively (annual ryegrass,
oats and barley) (Fig. 3; Table 3).

The crop DM yield at Pergamino dryland and irrigated, Rafaela and
Balcarce was simulated more accurately compared to the crop DM yield
modelled at General Villegas and Trenque Lauquen (Table 3; Fig. 3).
Likewise, the model accuracy in simulating DM yield under irrigated
conditions at Pergamino was slightly lower compared to dryland con-
ditions. However, the observations at Pergamino irrigated (n = 26)
were less than half that the observations at Pergamino dryland
(n = 60).

Overall, the model had a very good ability to simulate DM yields of
FCS. The performance of the model in predicting FCS DM yield is
highlighted in Figs. 5 and 6 and confirmed by the summary statistics in
Table 4 (CCC = 0.83–0.95, RMSE = 2.3–5.0 Mg ha−1). The observed
FCS DM yield ranged from 4.3 Mg ha−1 (Trenque Lauquen) to
28.7 Mg ha−1 (Rafaela) among locations (Table 4) and from
16.2 Mg ha−1 (third year of the sequence) to 19.1 Mg ha−1 (first year
of the sequence) among years (Table 4). The difference between ob-
served and modelled mean FCS DM yield was less than 0.2 Mg ha−1,
being the lowest under irrigation at Pergamino (0.7 Mg ha−1; Table 4)
and the highest at Rafaela (3.7 Mg ha−1; Table 4). The sequences an-
nual ryegrass-maize (AR-M) and barley-soybean (B-S) at General Vil-
legas and the sequences oats-soybean (O-S) and barley-maize (B-M) at
Trenque Lauquen had the lowest observed and modelled FCS DM yield

Table 3
Statistical summary indicating the performance of the Agricultural Production Systems Simulator in predicting the crop DM yield.

Crop Location Total

annual ryegrassa oats barley wheat soybean maize RAF PER PERI GV TL BAL

No. Obs. 34 47 5 4 13 24 16 60 26 11 6 8 127
Observed mean (Mg ha−1) 1.4 1.5 2.7 4.8 5.9 14.9 12.6 2.8 4.2 1.9 2.4 8.7 4.6
Modelled mean (Mg ha−1) 1.2 1.2 4.4 5.9 6.5 13.7 11.0 2.7 3.9 2.5 3.6 8.9 4.4
Observed SD (Mg ha−1) 0.7 0.8 1.5 1.6 2.5 6.1 6.2 3.9 5.6 1.5 1.1 9.4 5.9
Modelled SD (Mg ha−1) 0.8 0.8 1.3 2.2 3.2 6.2 4.0 4.1 6.4 1.9 1.2 10.0 5.7
RMSE (Mg ha−1) 0.7 0.6 1.7 1.6 1.4 3.4 3.3 0.9 1.7 1.1 1.5 2.0 1.7
CCC 0.46 0.77 0.90 0.79 0.90 0.86 0.84 0.98 0.96 0.84 0.53 0.98 0.96

Abbreviations;: No. Obs.Number of observations; SDstandard deviation; RMSEroot mean square error; CCCconcordance correlation coefficient; RAFRafaela; PER Pergamino dryland;
PERIPergamino irrigated; GVGeneral Villegas; TLTrenque Lauquen; BALBalcarce.

a For this analysis was used the re-parametrized APSIM Weed module by Ojeda et al. (2016).

Fig. 3. Observed v.modelled crop dry matter (DM) yield in (a) Rafaela, (b)
Pergamino dryland, (c) Pergamino irrigated, (d) General Villegas, (e)
Trenque Lauquen and (f) Balcarce. The diagonal line represents the line
1:1, i.e. y = x. The vertical bars indicate the standard deviation of the
mean.

Fig. 4. Daily maximum (dotted black line) and minimum air temperature (dotted dark
grey line), modelled extractable soil water (esw, solid grey line) and rain (black bars)
from May-2010 to May-2011 in General Villegas. Numbers for the x-axis indicates the
month of the year from January (1) to December (12). Solid black and dark grey lines
represent the historical daily maximum and minimum air temperature, respectively.
Dotted grey lines represent the lower and upper drainage limits for the Typic Hapludoll
soil at this location.
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(Fig. 5a) while the highest DM yields were found for maize-maize (M-
M) and wheat-soybean-maize (W-S-M) at Rafaela and oats-maize (O-M)
at Balcarce (Fig. 5a). Due to the small number of observations that were
available for Trenque Lauquen and Balcarce, no statistical analyses of
DM yield at the level of FCS were performed (Table 4). The FCS DM
yield under irrigation at Pergamino was simulated more accurately than
in the same site without irrigation, Rafaela and General Villegas
(Table 4; Fig. 3). The model over-predicted the FCS DM yield at Rafaela,
mainly due to the over-prediction of maize DM yield (Figs. 5 b; 6 a).
There were no discernible groupings based on years in the data points
for all sequences. For all FCS, DM yield was better simulated as the
crops progressed in their development (Fig. 6), except in some specific
cases. For example, maize into the sequence wheat-maize (W-M) at
Rafaela during 2011 (Fig. 6a) and barley into the sequence barley-
maize (B-M) at Trenque Lauquen during 2010 (Fig. 6d).

3.2. Water productivity

Very good agreement between observed and modelled seasonal WP
was found at Balcarce (CCC = 0.90, RMSE = 0.7 g m−2 mm−1;
Table 5). However, the model’s ability to predict seasonal WP was ac-
ceptable at Pergamino under both dryland and irrigated conditions
(CCC = 0.73–0.74, RMSE = 2.0–2.5 g m−2 mm−1; Table 5) and poor
at Rafaela (CCC = 0.55, RMSE = 1.3 g m−2 mm−1), Trenque Lauquen
(CCC = 0.51, RMSE = 1.0 g m−2 mm−1) and General Villegas (CC-
C = 0.42, RMSE = 1.4 g m−2 mm−1) (Table 5). At Pergamino, dryland
and irrigated, the observed seasonal WP shown extreme values because
seasonal rainfall between oats and annual ryegrass harvests was scarce
(< 20 mm, Fig. 8a). For seasonal water inputs (i.e. rainfall + irrigation)
less than 200 mm, the model under-predicted WP values more than
over-predicted (Fig. 7a). However, the model predictions on an annual
basis were very good (Fig. 7b).

The model predicted annual WP with very good accuracy, as de-
monstrated by CCC = 0.91–0.96 and RMSE = 0.2–0.5 g m−2 mm−1

for the total observations (Table 5), except for Rafaela where the model
under-predicted (0.5 g m−2 mm−1; 12%) the annual WP (CCC = 0.62,
RMSE = 0.7 g m−2 mm−1). Likewise, the observed and modelled sea-
sonal WP were on average 95 and 21% superior at Rafaela, Pergamino
under both dryland and irrigated conditions and Balcarce than at
General Villegas and Trenque Lauquen, except for the modelled WP at
Pergamino (Table 5). However, the observed and modelled annual WP
at Rafaela was higher than Pergamino and, in turn higher at Pergamino
than at General Villegas and Trenque Lauquen (Table 5).

There was a better fit for the observed than for the modelled WP
data (Fig. 8a; Table 6) in the regression of the WP as a function of
seasonal water inputs (cumulative rainfall + irrigation) (P < 0.001;
Table 6). Likewise, a better fit was found for winter crops (oats, annual
ryegrass, barley and wheat) and soybean than for maize (Fig. 8a;
Table 6). Similarly, there was a curvilinear relationship between annual
WP and water inputs (p < 0.001) for both observed and modelled data
(Fig. 8b; Table 6). At low annual water inputs (< 800 mm), in General
Villegas and Trenque Lauquen the WP, on average, was only a third
than in other locations (Fig. 8b).

4. Discussion

In this study, 13 FCS including winter (oats, annual ryegrass, barley
and wheat) and summer crops (soybean and maize), were simulated by
APSIM across five Argentinian locations. Our objective was to evaluate
the APSIM ability to predict DM yield and water productivity (WP) of
multiple continuous FCS. Overall, the results showed that APSIM was
able to simulate better DM yield and WP on an annual basis, i.e. at the
FCS level, than at a seasonal basis, i.e. at the crop level.

The ability of APSIM to predict crops DM yield in the Argentinian
Pampas was similar to annual forage crop modelling efforts reported in
south-eastern Australia (Pembleton et al., 2013, 2016; Islam et al.,
2015) and New Zealand (Teixeira et al., 2010, 2015). The model ac-
curacy was higher when predicting soybean and maize DM yield than
the other crops. The APSIM-Oats module had an acceptable perfor-
mance since it is has received scarce development efforts compared to
the other modules used in this study (Peake et al., 2008; Pembleton
et al., 2013). The very good and satisfactory model accuracy when
predicting soybean and maize DM yields, respectively, was not sur-
prising, since both modules (APSIM-Soybean and APSIM-Maize) have
been widely evaluated across diverse environments for their ability to
predict grain and DM yield (Robertson and Carberry, 1998; Denner
et al., 1998; Shamudzarira and Robertson, 2002; Lyon et al., 2003;
Teixeira et al., 2010; Mohanty et al., 2012; Liu et al., 2013; Pembleton
et al., 2013; Archontoulis et al., 2014a,b). However, the model under-
predicted maize DM yields at Rafaela mainly during the first year of
simulation (Figs. 3 a and 6). Surprisingly, the N fertilization rate to this
crop at Rafaela was relatively low (0.075 Mg N ha−1) for the high re-
corded mean DM yield (17.5 Mg ha−1). Although previous studies have
reported that APSIM-Sugarcane module was scarcely sensitive to var-
iations in the initial soil N at US environments (Ojeda et al., 2017), our
study demonstrated a high model response for maize in this location of
the Argentinian Pampas (Fig. A1 in the Supplementary material). The
mentioned under-predictions of maize DM yield at Rafaela could be
attributed to the under-estimation of initial soil N at this location be-
cause of the soil initialization method used in this study based on a 10-
year sequence simulation of oats-maize as previous crops. In fact,
Teixeira et al. (2015) reported the importance to choose representative
initialization values for soil water and N in studies that often consider
several soil types. On the other hand, Ojeda et al. (2017) found that
APSIM predictions of Miscanthus DM yield were more sensitive to
changes in the initial organic carbon on a sandy soil than in a silty soil
at US. Collectively, this reinforces the importance of the initial soil
conditions on the accuracy of DM yield and WP simulations of different
FCS under several input intensities. Therefore, further research should
be addressed to clarify the extent of under or over-estimation of initial
soil parameters on the predictions of continuous FCS DM yield and WP
using APSIM.

Although APSIM had a very good accuracy when predicting barley
DM yield (CCC = 0.90; Table 3), the model over-predicted the barley
DM yield (5 out of 5 observations) as was demonstrated by the differ-
ence between observed and modelled mean DM yield (1.7 Mg ha−1;
Table 3). Previous studies in southern Queensland, Australia, found that

Fig. 5. Observed v. modelled forage crop sequences dry matter (DM) yield
by (a) sequence type, (b) location and (c) year. The diagonal line re-
presents the adjusted line 1:1, i.e. y = x. The vertical bars indicate the
standard deviation of the mean. O-M, oats-maize; O-S, oats-soybean; AR-
M, annual ryegrass-maize; AR-S, annual ryegrass-soybean; B-M, barley-
maize; B-S, barley-soybean; W-M, wheat-maize; W-S-M, wheat-soybean-
maize; M-M, maize-maize; RAF, Rafaela; PER, Pergamino dryland; PERI,
Pergamino irrigated; GV, General Villegas; TL, Trenque Lauquen; BAL,
Balcarce; Y1, year 1; Y2, year 2 and Y3, year 3.

J.J. Ojeda et al. European Journal of Agronomy 92 (2018) 84–96

91



the APSIM-Barley module was able to explain 91 and 82% of the var-
iation observed in total biomass at maturity and grain yield, respec-
tively (Manschadi et al., 2006). However, their study was based on the
calibration of only one Australian barley genotype (Grimmet). Prob-
ably, the low fit between observed and modelled mean DM yield at
General Villegas and Trenque Lauquen (Fig. 3d and e) would be due to
genotypic differences between the currently available genotypes into
the model and those used in the field experiments as well as the method
of soil initialization as mentioned above.

The model accuracy to predict silage DM yield of individual crops
(barley, wheat, soybean and maize), i.e. a single harvest by season, was
better than to predict DM yield of frequently harvested crops (annual
ryegrass, oats and barley), i.e. several harvest by season (Fig. 3). This
model response was not surprising as APSIM was initially developed to
simulate grain crops managed with only one final harvest at maturity.
The main reason for this model's inability would be related to the ab-
sence of APSIM calibrations using forage crop phenology data and with
the model settings related to the biomass remaining after each harvest
which is directly involved in the following forage regrowth (Ojeda
et al., 2016).

The predictions of FCS DM yield across the Argentinian Pampas
were very good (Fig. 5; Table 4), which were similar to the APSIM si-
mulations reported by Teixeira et al. (2010) in New Zealand using
double crops (wheat and triticale [X. triticosecale, Wittmack] as winter
crops and maize and kale [Brassica oleracea L.] as summer crops). In the
same way, our results were comparable with modelling efforts reported
by Islam et al. (2015) for FCS DM yield in dairy systems in south-eastern
Australia. Similarly, these authors found high DM yield achieved from
maize-based FCS compared with FCS based on other summer crops
(soybean and forage sorghum [Sorghum bicolor (L.) Moench]) due to the
high yield potential of maize.

Soil variables required as model inputs to initialization of the si-
mulation (e.g. water, C and N) are habitually re-initialized (i.e. are set in
each simulation using constant values based on regional knowledge)
(Teixeira et al., 2015). Despite the soil variables were set only once
previous to the first crop sowing into the FCS the first year of the si-
mulation, APSIM demonstrated high robustness to simulate DM yield of
several FCS (Fig. 5) in wide edaphoclimatic and temporal conditions in
the Argentinian Pampas. This modelling approach considers that the
crop DM yields in the FCS depend on the previous crop in the same
sequence, carrying the final soil variables of the previous year as the
initial ones for the next year. White et al. (2011) reported that from 166
modelling papers that considered adaptation strategies (i.e. sowing
date, fertilization rate, irrigation, cultivars and crop rotations), only 11
papers compared crop rotations. In fact, most crop modelling assess-
ments consider simulations of the same crop over consecutive years
(White et al., 2011). However, there are only a few studies that used the
FCS approach, i.e. simulating crop rotations. For example, Teixeira et al.
(2015) evaluated the effects to use different APSIM simulation (at the
individual crop and sequence level) on DM yield, soil water and N in the
Canterbury plains of New Zealand. These authors reported greater
model sensitivity to the simulation when the crops grown under re-
strictive soil water and N levels. Therefore, they proposed that a more
detailed representation of the simulations at the sequences level would
be key to accurately simulating crop growth under limited resources
conditions, where the sequence effect would have greater influence on
the subsequent crops growth.

The use of complementary forage systems based on FCS as an option
to maximize WP was reported in south-eastern Australia under non-
limiting N and water conditions by Garcia et al. (2008) and Islam and
Garcia (2012) winter crops/maize triple crops (forage rape, persian
clover [T. resupinatum L.], and field peas [Pisum sativum L.] as winter
crops). These authors reported WP values ranging 3.4–6.1 g m−2 mm−1

for different N rates and sowing dates. The WP range modelled in our
study (1.0–4.0 g m−2 mm−1) was consistent with values reported by
Caviglia et al. (2004, 2013) for wheat-soybean sequences at Balcarce

Fig. 6. Modelled (solid black line) and observed (grey points) dry matter (DM) yield for
selected forage crop sequences (FCS): (a) wheat-maize in Rafaela, (b) maize-oats in
Pergamino dryland, (c) soybean-oats in Pergamino irrigated (d) barley-soybean in
General Villegas, (e) barley-maize in Trenque Lauquen and (f) maize-oats in Balcarce.
Capped vertical bars represent the range in observed values where such data were
available. W, wheat; M, maize; O, oats; B, barley.
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(calculated using DM yield on an annual basis). However, there is no
study in the literature on modelling that analyze the WP variations of
FCS in the Argentinian Pampas, despite that WP has been widely re-
ported for grain crops sequences in this region.

The results showed that APSIM was able to predict with better ac-
curacy the annual (very good) than seasonal WP (acceptable) (Table 5)
as was demonstrated by the CCC and RMSE for the annual (0.71;
0.4 g m−2 mm−1) and seasonal WP (0.94; 1.9 g m−2 mm−1), respec-
tively (Table 5). This model response could be due to the annual esti-
mation which considers the rainfall in a year period (from 1 July to 31
May) while seasonal estimation only considers rainfall occurred in
short-time periods, i.e. from sowing to harvest and between two con-
secutive harvests (in some cases< 20 d), and therefore the soil water
storage is not accounted. Likewise, the model’s ability to predict sea-
sonal WP was not acceptable for all locations (Table 5). These results
suggest that, in environments such as Trenque Lauquen characterized
by a low cumulative annual rainfall (793 mm) and low maximum soil
water storage capacity (113 mm), soil water conditions carried by the
model from one crop to the next, would play an important role to obtain
better FCS DM yield predictions, even more under soil water stress
conditions.

The highest seasonal WP, both observed and modelled, were ob-
tained at Rafaela (Table 5), which can be attributed to the highest
proportion of maize in the FCS (Fig. 1), which is a C4 species with a
high-water use efficiency (Neal et al., 2011; Zhang et al., 2017). The use
of the double crop maize-maize (M-M) in this location was related with
the climate characteristics, where the optimal solar radiation and

temperature conditions allow to grow two summer crops (Monzon
et al., 2014) in the same season (Fig. 2).

The lowest observed and modelled WP values at General Villegas
and Trenque Lauquen (Fig. 8b) were probably associated with the re-
duction in DM yield of maize due to the high temperatures and low
rainfall during the spring-summer period (Fig. 4). Therefore, the FCS
DM yield was highly dependent on maize performance in these loca-
tions. In fact, the WP was lower in these locations than in Rafaela or
Balcarce (Fig. 8b), which had more favourable climate conditions
during spring-summer period (not shown). Thus, maize DM yield seems
to be critical to maximize WP in FCS.

The model's accuracy decreased when seasonal WP values were
higher, i.e. for low water inputs (Fig. 7a). For seasonal water inputs
(rainfall + irrigation) less than 200 mm, the model tended to under-
predict WP (Fig. 7a). This model response was directly associated with
crop DM yield under-predictions for crops with frequent harvests. Si-
milarly, high APSIM under-predictions were reported by Ojeda et al.
(2016) for the first harvest of annual ryegrass in the period during the
crop establishment at Pergamino and General Villegas, Argentina. This
model weakness to under-predict DM yield of frequently harvested
crops directly affect the model performance to predict WP at this en-
vironments. A deeper discussion of this model limitation is provided in
Ojeda et al. (2016), who mentioned the predictions of DM yield of
annual ryegrass improved substantially when several key model para-
meters (e.g. shoot_lag, shoot_rate, leaf_no_at_emerg and transp_eff_c) were
well calibrated. Therefore, important modelling efforts are still required
for simulate a wide range frequently harvested crop using APSIM, since

Table 4
Statistical summary indicating the performance of Agricultural Production Systems Simulator in predicting the dry matter yield of forage crop sequences.

RAF PER PERI GV TL BAL Y1 Y2 Y3 Total

No. Obs. 7 11 6 4 3 2 14 13 6 33
Observed mean (Mg ha−1) 28.7 15.8 19.7 5.2 4.3 27.9 19.1 16.9 16.2 17.7
Modelled mean (Mg ha−1) 25.0 16.0 20.4 7.6 6.7 26.5 18.2 18.0 14.8 17.5
Observed SD (Mg ha−1) 7.6 4.3 5.4 1.3 0.4 6.3 11.4 9.1 7.4 9.7
Modelled SD (Mg ha−1) 4.9 4.9 6.9 1.5 2.1 10.2 9.3 7.8 6.5 8.1
RMSE (Mg ha−1) 5.0 2.4 2.3 2.5 3.1 – 3.4 3.2 2.7 3.2
CCC 0.83 0.86 0.93 0.86 – – 0.95 0.93 0.93 0.93

Abbreviations: No. Obs., Number of observations; SD, standard deviation; RMSE, root mean square error; CCC, concordance correlation coefficient; RAF, Rafaela; PER Pergamino dryland;
PERI, Pergamino irrigated; GV, General Villegas; TL, Trenque Lauquen; BAL, Balcarce; Y1, year 1; Y2, year 2; Y3, year 3.

Table 5
Statistical summary indicating the performance of Agricultural Production Systems Simulator in predicting seasonal and annual Water Productivity (WP).

Seasonal WP

RAF PER PERI GV TL BAL Y1 Y2 Y3 Total

No. Obs. 16 60 26 11 6 8 51 45 31 127
Observed mean (g m−2 mm−1) 4.3 3.4 3.3 2.3 1.2 3.5 3.6 3.7 2.3 3.3
Modelled mean (g m−2 mm−1) 3.8 2.6 2.0 3.1 1.8 3.7 2.7 3.1 2.0 2.7
Observed SD (g m−2 mm−1) 1.5 3.1 3.8 0.8 0.4 1.5 3.1 2.9 2.5 2.9
Modelled SD (g m−2 mm−1) 1.0 2.0 1.8 1.6 1.1 1.8 1.8 1.8 2.0 1.9
RMSE (g m−2 mm−1) 1.3 2.0 2.5 1.4 1.0 0.7 2.0 2.2 1.1 1.9
CCC 0.55 0.74 0.73 0.42 0.51 0.90 0.72 0.58 0.89 0.71

Annual WP

RAF PER PERI GV TL BAL Y1 Y2 Y3 Total

No. Obs. 7 11 6 4 3 2 14 13 6 33
Observed mean (g m−2 mm−1) 4.1 1.8 1.9 0.8 0.7 4.3 2.3 2.4 2.0 2.3
Modelled mean (g m−2 mm−1) 3.6 1.8 1.8 1.2 1.1 4.0 2.1 2.5 1.7 2.2
Observed SD (g m−2 mm−1) 0.7 0.5 0.9 0.3 0.2 0.1 1.5 1.4 1.3 1.4
Modelled SD (g m−2 mm−1) 0.3 0.6 1.1 0.4 0.4 0.6 1.2 1.2 1.1 1.2
RMSE (g m−2 mm−1) 0.7 0.2 0.4 0.4 0.5 – 0.4 0.4 0.4 0.4
CCC 0.62 0.96 0.93 0.91 – – 0.95 0.94 0.98 0.94

Abbreviations: No. Obs., Number of observations; SD, standard deviation; RMSE, root mean square error; CCC, concordance correlation coefficient; RAF, Rafaela; PER Pergamino dryland;
PERI, Pergamino irrigated; GV, General Villegas; TL, Trenque Lauquen; BAL, Balcarce; Y1, year 1; Y2, year 2; Y3, year 3.
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it model was originally developed for simulate crops with a single
harvest by season.

Our results showed that APSIM predicted WP better on an annual
basis (Fig. 7b) than for a seasonal basis (Fig. 7a). It is likely that the
model is better at estimating soil water dynamics over the long-term
rather than the short-term. Likewise, the high seasonal WP values at
low water inputs (Fig. 8a) reflect more a weakness of the WP concept
than of the model performance, i.e. high DM yields (observed or mod-
elled), which are reached by using soil water storage, results in elevated
WP values at low seasonal water inputs.

We also have presented evidence that when annual water inputs are
high, the annual WP is low (Fig. 8b; Table 6). Likewise, a better fit was
found for crops with photosynthetic metabolism C3 (wheat, annual
ryegrass, oats, barley and soybean) than for C4 (maize; Fig. 8a;
Table 6). This response was not surprising because WP reductions
against water inputs increments has been well established in Bangla-
desh (Ali and Talukder, 2008) in the South-eastern Pampas (Caviglia
et al., 2013), in the Loess Plateau region of China (Zhang et al., 2017)
and in several environments across the world (Zhang et al., 2001). Also,
we found higher WP values for maize than C3 species for the same
water input from ∼200 to 900 mm (Fig. 8a) directly linked with the
high photosynthetic capacity of maize to convert water into DM yield
(Neal et al., 2011). This highlights the importance of including maize as
a part of FCS to increase the WP in the Argentinian livestock systems,

although the impact of their inclusion may vary among locations ac-
cording soil water holding capacity, rainfall and the high temperature
stress during summer season.

The APSIM model will be a useful resource for further research on
complementary forage crops based on multiple continuous FCS and
perennial crops in the Argentinian and alike livestock systems. In ad-
dition, in this work we found evidence that the maize inclusion as a part
of a FCS was very important to maximize DM yield and WP in some
locations. However, it may increase the year-by-year variability of both
DM yield and WP, particularly in locations with low soil water holding
capacity, high temperatures stress and low rainfall during the spring-
summer period, such as south-western Pampas.

5. Conclusions

In this paper, we evaluated the APSIM ability to predict forage DM
yield and WP of multiple continuous FCS. Even though APSIM showed
some weaknesses to reasonably predict seasonal DM yield and WP, i.e.
at the crop level, it appears as a potential tool for further research on
complementary forage crops based on multiple continuous FCS in the
Argentinian livestock systems. The impact of initial soil conditions on
the accuracy of DM yield and WP simulations seems to be critical to
improve APSIM performance, especially under water-limited growth
conditions.

Fig. 7. Water productivity (WP) deviation values from the observed values
v. rainfall + irrigation on a seasonal- and annual-base during 7 years
(2009–2015) for different forage crop sequences growing in the
Argentinian Pampas.

Fig. 8. Observed (closed symbols) and modelled (open symbols) Water
Productivity (WP) v. rainfall + irrigation on a (a) seasonal- and (b) an-
nual-base. Solid and dotted lines represent the regression lines for ob-
served and modelled data, respectively. The regression line shown in panel
b was calculated excluding data from General Villegas and Trenque
Lauquen. The regression equations are shown in Table 6.
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The model accuracy to predict silage DM yield of individual crops
(barley, wheat, soybean and maize), i.e. a single harvest by season, was
better than to predict DM yield of frequently harvested crops (annual
ryegrass, oats and barley), i.e. several harvest by season.

Acknowledgments

The authors thank the different contributors to the dataset which
allowed model validation: O.D. Bertín, J.A. Castaño, M. Maekawa, M.C.
Sardiña, L.A. Romero, J. Villar. The field experiments were funded by
INTA (Instituto Nacional de Tecnología Agropecuaria) (Project AEFP-
262921 and PNPA-11260714). The present work is a part of the thesis
submitted by J.J. Ojeda to the Postgraduate program of FCA-UNMdP.
J.J. Ojeda held a postdoctoral research fellowship and O.P. Caviglia is a
member of CONICET, the National Research Council of Argentina.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.eja.2017.10.004.

References

Ali, M.H., Talukder, M.S.U., 2008. Increasing water productivity in crop production-a
synthesis. Agric. Water Manage. 95, 1201–1213. http://dx.doi.org/10.1016/j.agwat.
2008.06.008.

Aramburu Merlos, F.A., Monzon, J.P., Mercau, J.L., Taboada, M., Andrade, F.H., Hall,
A.J., Jobbagy, E., Cassman, K.G., Grassini, P., 2015. Potential for crop production
increase in Argentina through closure of existing yield gaps. Field Crop Res. 184,
145–154. http://dx.doi.org/10.1016/j.fcr.2015.10.001.

Archontoulis, S.V., Miguez, F.E., Moore, K.J., 2014a. A methodology and an optimization
tool to calibrate phenology of short-day species included in the APSIM PLANT model:
application to soybean. Environ. Modell. Softw. 62, 465–477. http://dx.doi.org/10.
1016/j.envsoft.2014.04.009.

Archontoulis, S.V., Miguez, F.E., Moore, K.J., 2014b. Evaluating APSIM maize, soil water,
soil nitrogen, manure, and soil temperature modules in the Midwestern United States.
Agron. J. 106, 1025–1040. http://dx.doi.org/10.2134/agronj2013.0421.

Berger, H., Machado, C.F., Agnusdei, M., Cullen, B.R., 2014. Use of a biophysical simu-
lation model (DairyMod) to represent tall fescue pasture growth in Argentina. Grass
Forage Sci. 69, 441–453. http://dx.doi.org/10.1111/gfs.12064.

Bouwman, A.F., Van Der Hoek, K.W., Eickhout, B., Soenario, I., 2005. Exploring changes
in world ruminant production systems. Agric. Syst. 84, 121–153. http://dx.doi.org/
10.1016/j.agsy.2004.05.006.

Carberry, P.S., Muchow, R.C., McCown, R.L., 1989. Testing the CERES-maize simulation
model in a semi-arid tropical environment. Field Crop Res. 20, 297–315. http://dx.
doi.org/10.1016/0378-4290(89)90072-5.

Caviglia, O.P., Sadras, V.O., Andrade, F.H., 2004. Intensification of agriculture in the
south-eastern Pampas: I. Capture and efficiency in the use of water and radiation in
double-cropped wheat-soybean. Field Crop Res. 87, 117–129. http://dx.doi.org/10.
1016/j.fcr.2003.10.002.

Caviglia, O.P., Sadras, V.O., Andrade, F.H., 2013. Modelling long-term effects of cropping
intensification reveals increased water and radiation productivity in the South-
eastern Pampas. Field Crop Res. 149, 300–311. http://dx.doi.org/10.1016/j.fcr.
2013.05.003.

Chapman, D.F., Kenny, S.N., Beca, D., Johnson, I.R., 2008a. Pasture and forage crop
systems for non-irrigated dairy farms in southern Australia 2. Inter-annual variation
in forage supply, and business risk. Agric. Syst. 3, 126–138. http://dx.doi.org/10.
1016/j.agsy.2008.02.002.

Chapman, D.F., Kenny, S.N., Beca, D., Johnson, I.R., 2008b. Pasture and crop options for
non-irrigated dairy farms in southern Australia. 1. Physical production and economic
performance. Agric. Syst. 97, 108–125. http://dx.doi.org/10.1016/j.agsy.2008.02.
001.

Chapman, D.F., Kenny, S.N., Lane, N., 2011. Pasture and forage crop systems for non-
irrigated dairy farms in southern Australia: 3. Estimated economic value of additional
home-grown feed. Agric. Syst. 104, 589–599. http://dx.doi.org/10.1016/j.agsy.
2011.06.001.

Cullen, B.R., Johnson, I.R., Eckard, R.J., Lodge, G.M., Walker, R.G., Rawnsley, R.P.,
McCaskill, M.R., 2009. Climate change effects on pasture systems in south-eastern
Australia. Crop Pasture Sci. 60, 933–942. http://dx.doi.org/10.1071/CP09019.

Dardanelli, J.L., Bacheier, O.A., Sereno, R., Gil, R., 1997. Rooting depth and soil water
extraction patterns of different crops in a silty loam Haplustoll. Field Crop Res. 54,
29–38. http://dx.doi.org/10.1016/S0378-4290(97)00017-8.

Dardanelli, J.L., Ritchie, J.T., Calmon, M., Andriani, J.M., Collino, D.J., 2004. An em-
pirical model for root water uptake. Field Crop Res. 87, 59–71. http://dx.doi.org/10.
1016/j.fcr.2003.09.008.

Deen, W., Cousens, R., Warringa, J., Bastiaans, L., Carberry, P., Rebel, K., Riha, S.,
Murphy, C., Benjamin, L.R., Cloughley, C., Cussans, J., Forcella, F., Hunt, T.,
Jamieson, P., Lindquist, J., Wang, E., 2003. An evaluation of four crop: weed com-
petition models using a common data set. Weed Res. 43, 116–129. http://dx.doi.org/
10.1046/j.1365-3180.2003.00323.x.

Denner, M.T., James, A.T., Robertson, M.J., Fukai, S., 1998. Optimum soybean cultivars
for possible expansion area: a modelling approach. In: Proceedings 10th Australian
Soybean Conference. Brisbane, Australia. pp. 137–141.

FAOSTAT, 2013. Food and Agriculture Data. http://www.fao.org/faostat/en/#home/
(Accessed 10 November 2013).

Garcia, S.C., Fulkerson, W.J., Brookes, S.U., 2008. Dry matter production, nutritive value
and efficiency of nutrient utilization of a complementary forage rotation compared to
a grass pasture system. Grass Forage Sci. 63, 1–17. http://dx.doi.org/10.1111/j.
1365-2494.2008.00636.x.

Holzworth, D., Huth, N.I., DeVoil, P.G., Zurcher, E.J., Herrmann, N.I., McLean, G., Chenu,
K., van Oosterom, E., Snow, V., Murphy, C., Moore, A.D., Brown, H., Whish, J.P.M.,
Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman, Z., Thorburn,
P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A.,
Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., Wang, E., Hammer, G.L.,
Robertson, M.J., Dimes, J., Whitbread, A.M., Hunt, J., van Rees, H., McClelland, T.,
Carberry, P.S., Hargreaves, J.N.G., MacLeod, N., McDonald, C., Harsdorf, J.,
Wedgwood, S., Keating, B.A., 2014. APSIM-evolution towards a new generation of
agricultural systems simulation. Environ. Modell. Softw. 62, 327–350. http://dx.doi.
org/10.1016/j.envsoft.2014.07.009.

Huxman, T.E., Smith, M.D., Fay, P.A., Knapp, A.K., Shaw, M.R., Loik, M.E., Smith, S.D.,
Tissue, D.T., Zak, J.C., Weltzin, J.F., Pockman, W.T., Sala, O.E., Haddad, B.M., Harte,
J., Koch, G.W., Schwinning, S., Small, E.E., Williams, D.G., 2004. Convergence across
biomes to a common rain-use efficiency. Nature 429, 651–654. http://dx.doi.org/10.
1038/nature02561.

INDEC, 1988. Censo Nacional Agropecuario. Instituto Nacional de Estadísticas y Censos,
Buenos Aires (152 p).

Islam, M.R., Garcia, S.C., 2012. Effects of sowing date and nitrogen fertilizer on forage
yield, nitrogen- and water-use efficiency and nutritive value of an annual triple-crop
complementary forage rotation. Grass Forage Sci. 67, 96–110. http://dx.doi.org/10.
1111/j.1365-2494.2011.00825.x.

Islam, M.R., Garcia, S.C., Clark, C.E.F., Kerrisk, K.L., 2015. Modelling pasture-based au-
tomatic milking system herds: grazeable forage options. Asian Austr. J. Anim. 28,
703–715. http://dx.doi.org/10.5713/ajas.14.0384.

Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth,
D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K.,
Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S.,
Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.J., 2003. An overview of
APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18, 267–288.
http://dx.doi.org/10.1016/S1161-0301(02)00108-9.

Lauenroth, W.K., Sala, O.E., 1992. Long-term forage production of North American
shortgrass steppe. Ecol. Appl. 2, 397–403. http://dx.doi.org/10.2307/1941874.

Laulhe, I., 2015. Modelación de la sustentabilidad productiva y económica de sistemas
agrícolas, mixtos y ganaderos en el sur de Buenos Aires. Tesis Magíster Scientiae en

Table 6
Statistical summary of the linear regression between the observed and modelled Water
Productivity (WP) of winter crops (oats, wheat, annual ryegrass and barley) and soybean,
and maize v. cumulative seasonal annual rainfall plus irrigation and between the observed
and modelled Water Productivity (WP) of forage crop sequences v. cumulative seasonal
annual rainfall plus irrigation.

Seasonal WP v. cumulative seasonal rainfall + irrigation

winter crops + soybean maize

No. Obs. 107 20

Observed data
Adjusted logarithmic regression y = 385.56x−0.668 y = 10414x−0.916

R2 0.605 0.808
P value <0.001 <0.001

Modelled data
Adjusted logarithmic regression y = 151.6x−0.488 y = 3379x−0.754

R2 0.424 0.696
P value <0.001 <0.001

Annual WP v. cumulative annual rainfall + irrigation
forage crop sequences

No. Obs. 26a

Observed data
Adjusted logarithmic regression y = 8.65e−0.002x

R2 0.448
P value <0.001

Modelled data
Adjusted logarithmic regression y = 9.12e−0.002x

R2 0.531
P value <0.001

Abbreviations: No. Obs., Number of observations.
a The regression functions were calculated excluding data from General Villegas and

Trenque Lauquen (see Fig. 8).

J.J. Ojeda et al. European Journal of Agronomy 92 (2018) 84–96

95

http://dx.doi.org/10.1016/j.eja.2017.10.004
http://dx.doi.org/10.1016/j.agwat.2008.06.008
http://dx.doi.org/10.1016/j.agwat.2008.06.008
http://dx.doi.org/10.1016/j.fcr.2015.10.001
http://dx.doi.org/10.1016/j.envsoft.2014.04.009
http://dx.doi.org/10.1016/j.envsoft.2014.04.009
http://dx.doi.org/10.2134/agronj2013.0421
http://dx.doi.org/10.1111/gfs.12064
http://dx.doi.org/10.1016/j.agsy.2004.05.006
http://dx.doi.org/10.1016/j.agsy.2004.05.006
http://dx.doi.org/10.1016/0378-4290(89)90072-5
http://dx.doi.org/10.1016/0378-4290(89)90072-5
http://dx.doi.org/10.1016/j.fcr.2003.10.002
http://dx.doi.org/10.1016/j.fcr.2003.10.002
http://dx.doi.org/10.1016/j.fcr.2013.05.003
http://dx.doi.org/10.1016/j.fcr.2013.05.003
http://dx.doi.org/10.1016/j.agsy.2008.02.002
http://dx.doi.org/10.1016/j.agsy.2008.02.002
http://dx.doi.org/10.1016/j.agsy.2008.02.001
http://dx.doi.org/10.1016/j.agsy.2008.02.001
http://dx.doi.org/10.1016/j.agsy.2011.06.001
http://dx.doi.org/10.1016/j.agsy.2011.06.001
http://dx.doi.org/10.1071/CP09019
http://dx.doi.org/10.1016/S0378-4290(97)00017-8
http://dx.doi.org/10.1016/j.fcr.2003.09.008
http://dx.doi.org/10.1016/j.fcr.2003.09.008
http://dx.doi.org/10.1046/j.1365-3180.2003.00323.x
http://dx.doi.org/10.1046/j.1365-3180.2003.00323.x
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0085
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0085
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0085
http://www.fao.org/faostat/en/#home/
http://dx.doi.org/10.1111/j.1365-2494.2008.00636.x
http://dx.doi.org/10.1111/j.1365-2494.2008.00636.x
http://dx.doi.org/10.1016/j.envsoft.2014.07.009
http://dx.doi.org/10.1016/j.envsoft.2014.07.009
http://dx.doi.org/10.1038/nature02561
http://dx.doi.org/10.1038/nature02561
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0110
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0110
http://dx.doi.org/10.1111/j.1365-2494.2011.00825.x
http://dx.doi.org/10.1111/j.1365-2494.2011.00825.x
http://dx.doi.org/10.5713/ajas.14.0384
http://dx.doi.org/10.1016/S1161-0301(02)00108-9
http://dx.doi.org/10.2307/1941874
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0135
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0135


Producción Animal. Facultad de Ciencias Agrarias, Universidad Nacional de Mar del
Plata, Balcarce, Argentina (pp. 144).

Le Houerou, H.N., 1984. Rain use efficiency: a unifying concept in arid-land ecology. J.
Arid Environ. 7, 213–247.

Liu, Z., Hubbard, K.G., Lin, X., Yang, X., 2013. Negative effects of climate warming on
maize yield are reversed by the changing of sowing date and cultivar selection in
Northeast China. Glob. Change Biol. 19, 3481–3492. http://dx.doi.org/10.1111/gcb.
12324.

Lyon, D.J., Hammer, G.L., Mclean, G.B., Blumenthal, J.M., 2003. Simulation supplements
field studies to determine no-till dryland corn population recommendations for
semiarid western Nebraska. Agron. J. 95, 884–891. http://dx.doi.org/10.2134/
agronj2003.8840.

Manschadi, A.M., Hochman, Z., Mclean, G., DeVoil, P., Holzworth, D., Meinke, H., 2006.
APSIM-Barley model – adaptation of a wheat model to simulate barley growth and
development. In: 13th Australian Agronomy Conference. Perth, Australia. pp.
239–243. http://www.regional.org.au/au/asa/2006/poster/technology/4609_
manschadia.htm.

Mercau, J.L., Dardanelli, J.L., Collino, D.J., Andriani, J.M., Irigoyen, A., Satorre, E.H.,
2007. Predicting on-farm soybean yields in the pampas using CROPGRO-soybean.
Field Crop Res. 100, 200–209. http://dx.doi.org/10.1016/j.fcr.2006.07.006.

Mohanty, M., Probert, M.E., Reddy, K.S., Dalal, R.C., Mishra, A.K., Subba Rao, A., Singh,
M., Menzies, N.W., 2012. Simulating soybean–wheat cropping system: APSIM model
parameterization and validation. Agric. Ecosyst. Environ. 152, 68–78. http://dx.doi.
org/10.1016/j.agee.2012.02.013.

Molden, D., Murray-Rust, H., Sakthivadivel, R., Makin, I., 2003. A Water-Productivity
Framework for Understanding and Action. Water Productivity in Agriculture: Limits
and Opportunities for Improvement. International Water Management Institute,
Colombo, Sri Lanka (18 pp). http://publications.iwmi.org/pdf/H032632.pdf.

Monti, A., Zatta, A., 2009. Root distribution and soil moisture retrieval in perennial and
annual energy crops in Northern Italy. Agric. Ecosyst. Environ. 132, 252–259. http://
dx.doi.org/10.1016/j.agee.2009.04.007.

Monzon, J.P., Sadras, V.O., Abbate, P.A., Caviglia, O.P., 2007. Modelling management
strategies for wheat-soybean cropping systems in the Southern Pampas. Field Crop.
Res. 101, 44–52. http://dx.doi.org/10.1016/j.fcr.2006.09.007.

Monzon, J.P., Mercau, J.L., Andrade, J.F., Caviglia, O.P., Cerrudo, A.G., Cirilo, A.G.,
Vega, C.R.C., Andrade, F.H., Calviño, P.A., 2014. Maize-soybean intensification al-
ternatives for the Pampas. Field Crop Res. 162, 48–59. http://dx.doi.org/10.1016/j.
fcr.2014.03.012.

Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A., 2012.
Closing yield gaps through nutrient and water management. Nature 490, 254–257.
http://dx.doi.org/10.1038/nature11420.

NASA, 2013. Prediction of Worldwide Energy Resource. http://power.larc.nasa.gov
(Accessed 12 May 2013).

Neal, J.S., Fulkerson, W.J., Hacker, R.B., 2011. Differences in water use efficiency among
annual forages used by the dairy industry under optimum and deficit irrigation.
Agric. Water Manage. 98, 759–774. http://dx.doi.org/10.1016/j.agwat.2010.11.011.

Noy-Meir, I., 1973. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst.
4, 25–51. http://dx.doi.org/10.1146/annurev.es.04.110173.000325.

Ojeda, J.J., Pembleton, K.G., Islam, M.R., Agnusdei, M.G., Garcia, S.C., 2016. Evaluation
of the agricultural production systems simulator simulating Lucerne and annual
ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia. Agric.
Syst. 143, 61–75. http://dx.doi.org/10.1016/j.agsy.2015.12.005.

Ojeda, J.J., Volenec, J.J., Brouder, S.M., Caviglia, O.P., Agnusdei, M.G., 2017. Evaluation
of Agricultural Production Systems Simulator (APSIM) as yield predictor of Panicum
virgatum and Miscanthus × giganteus in several US environments. Glob. Change Biol.
Bioenergy 9, 796–816. http://dx.doi.org/10.1111/gcbb.12384.

Paruelo, J.M., Lauenroth, W.K., Burke, I.C., Sala, O.E., 1999. Grassland precipitation-use
efficiency varies across a resource gradient. Ecosystems 2, 64–68. http://dx.doi.org/
10.1007/s100219900058.

Passioura, J., 2006. Increasing crop productivity when water is scarce-from breeding to
field management. Agric. Water Manage. 80, 176–196. http://dx.doi.org/10.1016/j.
agwat.2005.07.012.

Peake, A., Whitbread, A., Davoren, B., Braun, J., Limpus, S., 2008. The development of a
model in APSIM for the simulation of grazing oats and oaten hay. In: Unkovich, M.
(Ed.), Global Issues. Paddock Action. Proceedings of 14th Agronomy Conference.
Adelaide, Australia. (4 p). http://www.regional.org.au/au/asa/2008/poster/
farming-uncertain-climate/5846_peakeas.htm.

Pembleton, K.G., Rawnsley, R.P., Jacobs, J.L., Mickan, F.J., O’brien, G.N., Cullen, B.R.,
Ramilan, T., 2013. Evaluating the accuracy of the Agricultural Production Systems
Simulator (APSIM) simulating growth, development, and herbage nutritive char-
acteristics of forage crops grown in the south-eastern dairy regions of Australia. Crop
Pasture Sci. 64, 147–164. http://dx.doi.org/10.1071/CP12372.

Pembleton, K.G., Cullen, B.R., Rawnsley, R.P., Harrison, M.T., Ramilan, T., 2016.
Modelling the resilience of forage crop production to future climate change in the
dairy regions of Southeastern Australia using APSIM. J. Agric. Sci. 154, 1131–1152.
http://dx.doi.org/10.1017/S0021859615001185.

Pereira, L.S., Oweis, T., Zairi, A., 2002. Irrigation management under water scarcity.
Agric. Water Manage. 57, 175–206. http://dx.doi.org/10.1016/S0378-3774(02)
00075-6.

Piñeiro, G., Perelman, S., Guerschman, J.P., Paruelo, J.M., 2008. How to evaluate models:
observed vs predicted or predicted vs. observed? Ecol. Modell. 216, 316–322. http://
dx.doi.org/10.1016/j.ecolmodel.2008.05.006.

Rawnsley, R.P., Cullen, B.R., Turner, L.R., Donaghy, D.J., Freeman, M., Christie, K.M.,
2009. Potential of deficit irrigation to increase marginal irrigation response of

perennial ryegrass (Lolium perenne L.) on Tasmanian dairy farms. Crop Pasture Sci.
60, 1156–1164. http://dx.doi.org/10.1071/CP08446.

Rawnsley, R.P., Chapman, D.F., Jacobs, J.L., Garcia, S.C., Callow, M.N., Edwards, G.R.,
Pembleton, K.P., 2013. Complementary forages-integration at a whole-farm level.
Anim. Prod. Sci. 53, 976–987. http://dx.doi.org/10.1071/AN12282.

Rawnsley, R.P., 2007. A review of fodder crops grown in Tasmania, Invited Paper. In:
Grasslands Society of Southern Australia 16th Annual Conference. Tasmanian Branch
Launceston, Australia. pp. 31–37.

Robertson, M.J., Carberry, P.S., 1998. Simulating growth and development of soybean in
APSIM. In: Proceedings 10th Australian Soybean Conference. Brisbane, Australia. pp.
15–17.

Robertson, M.J., Fukai, S., Ludlow, M.M., Hammer, G.L., 1993a. Water extraction by
grain sorghum in a sub-humid environment. I. Analysis of the water extraction pat-
tern. Field Crop Res. 33, 81–97. http://dx.doi.org/10.1016/0378-4290(93)90095-5.

Robertson, M.J., Fukai, S., Ludlow, M.M., Hammer, G.L., 1993b. Water extraction by
grain sorghum in a sub-humid environment. II. Extraction in relation to root growth.
Field Crop Res. 33, 99–112. http://dx.doi.org/10.1016/0378-4290(93)90096-6.

Sadras, V.O., 2002. Interaction between rainfall and nitrogen fertilisation of wheat in
environments prone to terminal drought: economic and environmental risk analysis.
Field Crop Res. 77, 201–215. http://dx.doi.org/10.1016/S0378-4290(02)00083-7.

Sala, O.E., Parton, W.J., Joyce, L.A., Lauenroth, W.K., 1988. Primary production of the
central grassland region of the United States. Ecology 69, 40–45. http://dx.doi.org/
10.2307/1943158.

Shamudzarira, Z., Robertson, M.J., 2002. Simulating response of maize to nitrogen fer-
tilizer in semi-arid Zimbabwe. Exp. Agric. 38, 79–96. http://dx.doi.org/10.1017/
S0014479702000170.

Solbrig, O.T., Viglizzo, E.F., 1999. Sustainable Farming in the Argentine Pampas: History,
Society, Economy and Ecology. DRCLAS, Working Papers on Latin America (Paper
No. 99/00-1). Harvard University, Cambridge, MA (pp. 45). http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.202.7923&rep=rep1&type=pdf.

Stöckle, C.O., Bellocchi, G., Nelson, R., 1998. Evaluation of the weather generator
ClimGen for several world locations. In: 7th Int. Congr. for Comp. Tech. in Agric.
15–18 November, Florence, Italy. pp. 34–41.

Tedeschi, L.O., 2006. Assessment of the adequacy of mathematical models. Agric. Syst.
89, 225–247. http://dx.doi.org/10.1016/j.agsy.2005.11.004.

Teixeira, E.I., Brown, H., Chakwizira, E., De Ruiter, J., 2010. Predicting yield and biomass
nitrogen of forage crop rotations in New Zealand using the APSIM model. In: Dove,
H., Culvenor, R.A. (Eds.), Food Security from Sustainable Agriculture. Proceedings of
15th Agronomy Conference. Lincoln, New Zealand. pp. 1–4. http://www.regional.
org.au/au/asa/2010/pastures-forage/forage-crops/7073_teixeiraei.htm.

Teixeira, E.I., George, M., Herreman, T., Brown, H.E., Fletcher, A., Chakwizira, E., De
Ruiter, J., Maley, S., Noble, A., 2014. The impact of water and nitrogen limitation on
maize biomass and resource-use efficiencies for radiation, water and nitrogen. Field
Crop Res. 168, 109–118. http://dx.doi.org/10.1016/j.fcr.2014.08.002.

Teixeira, E.I., Brown, H.E., Sharp, J., Meenken, E.D., Ewert, F., 2015. Evaluating methods
to simulate crop rotations for climate impact assessments-A case study on the
Canterbury plains of New Zealand. Environ. Modell. Softw. 72, 304–313. http://dx.
doi.org/10.1016/j.envsoft.2015.05.012.

Tilman, D., Balzer, C., Hill, J., Befort, B.L., 2011. Global food demand and the sustainable
intensification of agriculture. Proc. Natl. Acad. Sci. U. S. A. 108, 20260–20264.
http://dx.doi.org/10.1073/pnas.1116437108.

Valin, H., Sands, R.D., van der Mensbrugghe, D., Nelson, G.C., Ahammad, H., Blanc, E.,
Bodirsky, B., Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Mason-
D'Croz, D., Paltsev, S., Rolinski, S., Tabeau, A., van Meijl, H., von Lampe, M.,
Willenbockel, D., 2014. The future of food demand: understanding differences in
global economic models. Agric. Econ. 45, 51–67. http://dx.doi.org/10.1111/agec.
12089.

Van Opstal, N.V., Caviglia, O.P., Melchiori, R.J.M., 2011. Water and solar radiation
productivity of double-crops in a humid temperate area. Aust. J. Crop Sci. 5,
1760–1766. http://search.informit.com.au/documentSummary;dn=
005430436841146;res=IELHSS.

Verón, S.R., Oesterheld, M., Paruelo, J.M., 2005. Production as a function of resource
availability: slopes and efficiencies are different. J. Veg. Sci. 16, 351–354. http://dx.
doi.org/10.1658/1100-9233(2005)016[0351:PAAFOR]2.0.CO;2.

Wang, E., Van Oosterom, E.J., Meinke, H., Asseng, S., Robertson, M., Huth, N., Keating,
B., Probert, M., 2003. The new APSIM-Wheat model-performance and future im-
provements. In: Unkovich, M., O’leary, G. (Eds.), Solutions for a Better Environment.
Proceedings of the 11th Australian Agronomy Conference. Geelong, Victoria.
Australia. . http://www.regional.org.au/au/asa/2003/p/2/wang.htm.

White, J.W., Hoogenboom, G., Stackhouse, P.W., Hoell, J.M., 2008. Evaluation of NASA
satellite-and assimilation model-derived long-term daily temperature data over the
continental US. Agric. For. Meteorol. 148, 1574–1584. http://dx.doi.org/10.1016/j.
agrformet.2008.05.017.

White, J.W., Hoogenboom, G., Kimball, B.A., Wall, G.W., 2011. Methodologies for si-
mulating impacts of climate change on crop production. Field Crop. Res. 124,
357–368. http://dx.doi.org/10.1016/j.fcr.2011.07.001.

Zhang, L., Dawes, W.R., Walker, G.R., 2001. Response of mean annual evapotranspiration
to vegetation changes at catchment scale. Water Resour. Res. 37, 701–708. http://dx.
doi.org/10.1029/2000WR900325.

Zhang, Z., Whish, J.P., Bell, L.W., Nan, Z., 2017. Forage production, quality and water-
use-efficiency of four warm-season annual crops at three sowing times in the Loess
Plateau region of China. Eur. J. Agron. 84, 84–94. http://dx.doi.org/10.1016/j.eja.
2016.12.008.

J.J. Ojeda et al. European Journal of Agronomy 92 (2018) 84–96

96

http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0135
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0135
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0140
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0140
http://dx.doi.org/10.1111/gcb.12324
http://dx.doi.org/10.1111/gcb.12324
http://dx.doi.org/10.2134/agronj2003.8840
http://dx.doi.org/10.2134/agronj2003.8840
http://www.regional.org.au/au/asa/2006/poster/technology/4609_manschadia.htm
http://www.regional.org.au/au/asa/2006/poster/technology/4609_manschadia.htm
http://dx.doi.org/10.1016/j.fcr.2006.07.006
http://dx.doi.org/10.1016/j.agee.2012.02.013
http://dx.doi.org/10.1016/j.agee.2012.02.013
http://publications.iwmi.org/pdf/H032632.pdf
http://dx.doi.org/10.1016/j.agee.2009.04.007
http://dx.doi.org/10.1016/j.agee.2009.04.007
http://dx.doi.org/10.1016/j.fcr.2006.09.007
http://dx.doi.org/10.1016/j.fcr.2014.03.012
http://dx.doi.org/10.1016/j.fcr.2014.03.012
http://dx.doi.org/10.1038/nature11420
http://power.larc.nasa.gov
http://dx.doi.org/10.1016/j.agwat.2010.11.011
http://dx.doi.org/10.1146/annurev.es.04.110173.000325
http://dx.doi.org/10.1016/j.agsy.2015.12.005
http://dx.doi.org/10.1111/gcbb.12384
http://dx.doi.org/10.1007/s100219900058
http://dx.doi.org/10.1007/s100219900058
http://dx.doi.org/10.1016/j.agwat.2005.07.012
http://dx.doi.org/10.1016/j.agwat.2005.07.012
http://www.regional.org.au/au/asa/2008/poster/farming-uncertain-climate/5846_peakeas.htm
http://www.regional.org.au/au/asa/2008/poster/farming-uncertain-climate/5846_peakeas.htm
http://dx.doi.org/10.1071/CP12372
http://dx.doi.org/10.1017/S0021859615001185
http://dx.doi.org/10.1016/S0378-3774(02)00075-6
http://dx.doi.org/10.1016/S0378-3774(02)00075-6
http://dx.doi.org/10.1016/j.ecolmodel.2008.05.006
http://dx.doi.org/10.1016/j.ecolmodel.2008.05.006
http://dx.doi.org/10.1071/CP08446
http://dx.doi.org/10.1071/AN12282
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0265
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0265
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0265
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0270
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0270
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0270
http://dx.doi.org/10.1016/0378-4290(93)90095-5
http://dx.doi.org/10.1016/0378-4290(93)90096-6
http://dx.doi.org/10.1016/S0378-4290(02)00083-7
http://dx.doi.org/10.2307/1943158
http://dx.doi.org/10.2307/1943158
http://dx.doi.org/10.1017/S0014479702000170
http://dx.doi.org/10.1017/S0014479702000170
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.7923%26rep=rep1%26type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.7923%26rep=rep1%26type=pdf
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0305
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0305
http://refhub.elsevier.com/S1161-0301(17)30150-8/sbref0305
http://dx.doi.org/10.1016/j.agsy.2005.11.004
http://www.regional.org.au/au/asa/2010/pastures-forage/forage-crops/7073_teixeiraei.htm
http://www.regional.org.au/au/asa/2010/pastures-forage/forage-crops/7073_teixeiraei.htm
http://dx.doi.org/10.1016/j.fcr.2014.08.002
http://dx.doi.org/10.1016/j.envsoft.2015.05.012
http://dx.doi.org/10.1016/j.envsoft.2015.05.012
http://dx.doi.org/10.1073/pnas.1116437108
http://dx.doi.org/10.1111/agec.12089
http://dx.doi.org/10.1111/agec.12089
http://search.informit.com.au/documentSummary;dn=005430436841146;res=IELHSS
http://search.informit.com.au/documentSummary;dn=005430436841146;res=IELHSS
http://dx.doi.org/10.1658/1100-9233(2005)016[0351:PAAFOR]2.0.CO;2
http://dx.doi.org/10.1658/1100-9233(2005)016[0351:PAAFOR]2.0.CO;2
http://www.regional.org.au/au/asa/2003/p/2/wang.htm
http://dx.doi.org/10.1016/j.agrformet.2008.05.017
http://dx.doi.org/10.1016/j.agrformet.2008.05.017
http://dx.doi.org/10.1016/j.fcr.2011.07.001
http://dx.doi.org/10.1029/2000WR900325
http://dx.doi.org/10.1029/2000WR900325
http://dx.doi.org/10.1016/j.eja.2016.12.008
http://dx.doi.org/10.1016/j.eja.2016.12.008

	Modelling forage yield and water productivity of continuous crop sequences in the Argentinian Pampas
	Introduction
	Materials and methods
	Experimental locations and forage growth
	Climate data
	Soil data
	APSIM configuration
	Evaluation of APSIM performance

	Results
	Dry matter yield
	Water productivity

	Discussion
	Conclusions
	Acknowledgments
	Supplementary data
	References




