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Abstract

The landscape paradigm has become a widespread picture within the realm of complex systems. Complex systems include a great variety

of systems, ranging from glasses to biopolymers, which display a common dynamical behavior. Within this framework, the dynamics of a

such a system can be envisioned as the search it performs on its (potential energy) landscape. This approach rests on the belief that the

relaxation behavior depends only on generic features, irrespective of specific details and lies on the validity of a timescale separation scenario

computationally corroborated but not properly validated yet form first principles.

In this work we shall show that the prevalence of activated dynamics over other kinds of mechanisms determines the emergence of

complex dynamical behavior. Thus, complexity and diversity are not intrinsic properties of a system but depend on the kind of exploration of

the landscape. We shall focus mainly on an ample generic context (complex hierarchical systems which have been used as models of glasses,

spin glasses and biopolymers) and a specific one (model glass formers). For the last case we shall be able to reveal (in mechanistic terms) the

microscopic rationale for the occurrence of timescale separation. Furthermore, we shall explore the connections between these two up to now

mostly unrelated contexts and the relation to a variational principle, and we shall reveal the conditions for the applicability of the landscape

approach.
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1. Introduction

Complex systems are systems made up of many strongly

interacting units and which posses a wide range of intrinsic

relaxation timescales. Systems very diverse from a structural

standpoint such as biopolymers, glasses and spin glasses are

included within this broad realm [1,2]. These systems

exhibit a rather universal dynamical behavior suggesting

that the underlying physics might only be sensitive to

nonspecific details. A common feature exhibited by these

systems is the occurrence of nonexponential relaxation laws

(known as Kohlrausch laws) which have been related to an

inhomogeneous scenario for the relaxation. Diversity is
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another attribute of complex systems: the existence of

significantly different states that do not necessarily differ in

energy. This concept, more familiar in biophysics, is also

relevant to other complex systems.

The dominant description for the relaxation of complex

systems is the Landscape Paradigm [3]. This framework

reflects the constraints imposed on the dynamics by the

potential energy surface (PES) and has been articulated by

two main approaches (mostly unrelated up to date): by

means of direct exploration of realistic PES via molecular

dynamics simulations and quenching procedures, the

inherent dynamics approach [3], and by making use of

phenomenological models for the relaxation dynamics

(hierarchical systems) [1,2]. The landscape paradigm

originates in the fact that the potential energy of a complex

system is a function of the positions of the different
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particles, constituting a complicated multidimensional sur-

face (3N+1 coordinates for a system of N particles with no

internal degrees of freedom). Accordingly, conformation

space is made up of many minima or valleys separated by

large energy barriers (which in turn may be arranged

hierarchically) [1,2,4]. Thus, the existence of metastable

states within a broken ergodicity scenario is implied. The

relaxation dynamics of a complex system can therefore be

mapped in the search the system performs of its potential

energy surface. This landscape approach rests on a tenet

introduced long ago (recently computationally corroborated

but not yet properly validated from first principles): the

timescale separation hypothesis [3]. This assumption entails

the fact that local events are fast enough compared to long-

range non-local ones to achieve local thermal equilibrium.

The large scale events might thus be treated as activated

events or defects, governing the long time dynamics.

From the above expounded picture it becomes evident

that the study of the role of activated events in complex

systems is a key factor to understand the dominant

mechanisms for relaxation. Additionally, the knowledge of

the specific ways in which different complex systems

explore their PES (the mechanisms by which they perform

the conformational search and that distinguishes them as

structure seekers or glass formers) is a central question

related to paramount issues as the protein folding problem

and the glass transition [5].

In this work we shall focus on both implementations of

the landscape paradigm (the broken ergodicity construction

of hierarchical systems and the inherent dynamics or

topographic approach, the latter being applied to the PES

of a simple glass former) and we shall relate them to a

variational principle. We shall demonstrate that in both

contexts the onset of timescale separation, which determines

the prevalence of activated dynamics, is the signature of

complex behavior. In the more specific context we shall also

reveal the microscopic foundation of timescale separation.
Fig. 1. Schematic representation of a hierarchical ultrametric system. The

tree structure of the ultrametric space is regular and has branching ratio

K=2.
2. Relaxation in hierarchical systems

The landscape paradigm has been instrumented in a

phenomenological picture grounded on the hierarchical

nature of phase space and the idea of broken ergodicity,

which has been applied to many complex systems like

biopolymers and glasses [1,2]. This approach is based on

phenomenological models of relaxation which lack any

details of the interactions that give rise to the landscape.

To place it in quantitative terms (and to fully relate it to

the inherent dynamics approach) would demand an

exhaustive characterization of the PES, which is only

possible for small systems like small clusters [5] and

simplified model biopolymers [6] with the construction of

disconnectivity graphs. This description implies the fact

that the hilly or rugged nature of phase (or conformation)

space implies a broken ergodicity scenario [1,2]: at each
observational timescale, conformation space can be decom-

posed in components or clusters of sates which are

surrounded by (free) energy barriers, provided the proba-

bility to escape is smaller than certain arbitrarily small

value. Components are internally ergodic but represent

metastable states where the system is effectively confined

within such timescale. As the observational timescale

increases, different components merge into bigger ones

in a hierarchical manner. In this way, the number of

components into which conformation space is decomposed

decreases as relaxation proceeds, until the globally-ergodic

time is reached. Thus, the time evolution of the system

generates a connectivity tree where the number of

components at any observational timescale is given by

the number of branches of the tree present at that time.

Such hierarchical construction has been qualitatively

validated for biopolymers and small clusters [4–6].

A simple caricature of such picture is constituted by

ultrametric spaces [1,2], which were motivated by the

discovery that the ground state of the Sherrington–Kirkpa-

trick (SK) spin glass model is endowed with an ultrametric

topology in the mean-field description. An example of an

ultrametric model of complex system is given in Fig. 1 which

shows the tree structure of the ultrametric space for a

hierarchical system. This is a Cayley tree or Bethe lattice in

which only the upper level represents the states and the rest

of the tree indicates connectivity. The tree of Fig. 1 is regular

and has branching ratio K=2. The distance between any two

given points ism, the level of their common ancestor, and the

dynamics is generated by temperature-assisted hoppings

over potential barriers B=B(m) which are monotonically

increasing functions ofm. Thus, the probability of surmount-

ing a barrier of level m, W(m), is W(m)=exp[�B(m)/R T].

Walks are defined at the upper level (m=0) and initially, the

autocorrelation function is P0(t=0)=1, while Pk(t=0)=0 for

any other state k. This simplified model is representative of a

conformation space hierarchically structured in components

or clusters of states as ergodicity is developed in time: at t=0

the system is confined to one of the states (labeled from 0 to

7 in the schematic Fig. 1; in this case, state 0). When the

observation time is enough on average to surmount a barrier

B(m=1), the states separated by an ultrametric distance m=1

cluster together reflecting the fact that such portion of

conformation space has become accessible and the corres-

ponding cluster is internally ergodic at such timescales. This
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clustering process continues as observation time is increased,

since smaller clusters merge into bigger ones when the

barrier which separates them is surmounted. That is, the

surmounting of a barrier of height m clusters together the

corresponding s=Km states. Finally, beyond certain obser-

vation time terg the whole conformation space becomes

ergodic. This description is also equivalent to a one dimen-

sional array of energy barriers of size B=B(m), separating the

corresponding states [2]. The lowest relevant timescale of

this system is the one dictated by the lowest barriers, that is,

the ones that separate states one hierarchical ultrametric level

apart (states 0 and 1, states 2 and 3, . . .).
There exists a correspondence between this ultrametric

system and a model of hierarchically constrained dynamics

[7] in which Ising-type spins are arranged in hierarchical

levels and constraints are transferred between the different

levels. Constrained dynamics models have gained attention

recently, mainly by the introduction of the concept of

dynamic facilitation for glasses [8].

The dependence of the height of the energy barriers with

the ultrametric distance, B=B(m), represents the key feature

in this model since a variety of relaxation behaviors are

obtained depending on the particular choice [1,2]. If the

barriers scale logarithmically with m, B=Dlnm, the resulting

relaxation behavior conforms to the usual phenomenology

in complex systems: bR(t)N=m(t)~tRT/D; P0(t)~e
�(lnK)tRT/D

where bR(t)N is the distance traveled in the random walk, R

is the gas constant and P0(t) is the probability of return to

the origin (state 0), estimated as the inverse of the number of

states accessible within time t, and K is the branching ratio

(in this case K=2 and is regular). The sum of probabilities

does not converge for values of RTND, and thus, 0bRTbD.

At RT=D, the relaxation behavior is the fastest possible and

implies a Debye exponential law. For lower temperatures,

the resulting relaxation is given by Kohlrausch law with

exponent 0bbb1. Thus, at RT=D we obtain the limit of

convergence of the dynamics or fastest relaxation regime

yielding a stable random walk. We demonstrated [2] that

this limit is prescribed exactly by a brachistochrone or least

overall relaxation time (this variational principle had been

inspired by the relaxation behavior of natural biopolymers,

specifically ribonucleic acid molecules [9]). That is, the

brachistochrone corresponds to the transition from an

activated dynamics regime to a diffusive one (where the

barriers have been overlooked by thermal energy). Thus, for

this system there exists a transition between two dynamical

regimes dictated by the onset of activated dynamics, which

constitutes the signature of complex behavior.

At this point we shall place a question which will also be

stated in the other specific context (the model glass formers

we shall study in next section): what is the origin of this

onset of activated dynamics and thus, of glassy behavior?.

To answer this question we calculate the time employed to

move a distance m apart: t~e�B(m)/RT=mD/RT. Thus, for

RT=D we find that the different hierarchies are equally time

spaced. Accordingly, the timescales of any pair of hierarchi-
cally contiguous components differ in a value that is equal

to the lowest relevant timescale of the system (the one

dictated by the size of the lowest barriers). Thus, the limit of

convergence of the dynamics entails the fact that the

timescales of long range and short range events become

comparable, implying the limit of validity of timescale

separation. Moreover, should the dynamics be faster than

this limit, components would be no more internally ergodic:

fast local equilibration prior to nonlocal transitions would

no longer hold, as required by the timescale separation

hypothesis. Thus, the main lesson from these models is that

timescale separation is the marker of complex behavior.

This result is also valid in situations where deviations

from ultrametrcity are taken into account, since the

relaxation law has been found to be robust with respect to

such deviations [2]. Furthermore, the hierarchical structure

is the relevant feature since completely disordered systems

(a one dimensional array of energy barriers, but with the

barriers randomly placed: chosen from an exponential,

uniform or any other kind of distribution [2]), also posses

on average the same hierarchical structure (as defined by the

clustering process s=Km, where m is now the hierarchical

level and not the ultrametric distance). Thus, this kind of

systems displays qualitatively the same relaxation behavior

[1,2].

The ultrametric system considered above also presents

another relevant dynamical limit, namely, the limit of

compact exploration (the requirement, stronger than local

ergodicty, to visit all the states comprised by a given

component before performing a jump to a hierarchically

higher component) [1,2]. This limit is relevant to the

diffusion on fractal systems. The relaxation law that

emerges (it arises from the fastest scaling law for the

barriers B=Dm, thus implying a change in the structure of

the portion of conformation space explored, as signed by

higher barriers) is the slower power law decay [1,2]: P0

(t)~t�c, with 0bc=RT/Db1. This limit implies a slower

exploration of conformation space and is also given exactly

by the variational principle [2].

2.1. Relaxation dynamics within the topographic approach

The topographic approach [3] is based on the notion

that at low temperatures the dynamics of the system on its

PES, the multidimensional surface generated while con-

sidering potential energy as a function of particle

coordinates, can be decomposed in fast vibrations around

and transitions between different energy minima or dbasins
of attractionT called inherent structures (IS’s, in which

configuration space is partitioned by potential energy

minimizations). Thus, this fact implies a timescale separa-

tion scenario that allows to coarse grain the dynamics at

the IS level. Nevertheless, whilst this timescale separation

hypothesis has been recently computationally corroborated

for a binary LJ system [3], the microscopic rationale

behind it has not been elucidated.
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A system which has been extensively studied by

Molecular Dynamics (MD) and the topographic approach

is a simple fragile glass-former: a binary Lennard–Jones

system (LJ) [3,10,11]. MD simulations of this system at

temperatures, T, close to TC (the mode-coupling temper-

ature) have demonstrated a dynamically heterogeneous

nature, since bmobileQ particles have been found not to be

homogeneously distributed within the sample but to

organize themselves in clusters [10,11]. In turn, these

clusters have been shown to be made up of smaller string-

like clusters of particles [10,11]. These string like move-

ments have been shown to occur localized in narrow time

windows and at different timescales from each other [11].

These string motions are consistent with a defect-diffusion

mechanism as implied in the dynamics facilitation scenario

[8] (grounded on ideas from constrained dynamics models

[1,2,7] which are related to the hierarchical models of the

previous section).

From the study of the Inherent dynamics, it was found

that this system presents three distinct regimes of explora-

tion of the PES depending on temperature [3], a point which

resembles the situation above expounded for the ultrametric

systems. Above certain T the system presents a free

diffusion regime (in which the mean energy of the IS’s

visited is constant for the whole T range) characterized by

an exponential Debye relaxation law, while at lower

temperatures it presents an activated-dynamics or

blandscape influencedQ regime yielding Kohlrausch law.

Thus, the onset of glassy dynamics, signed by Kohlrausch

nonexponential relaxation, corresponds to a change in the

kind of exploration of the PES. In turn, at temperatures

below TC the dynamics is even slower and is termed

blandscape dominatedQ. However, in this regime the relax-

ation law has not been determined so far. It is in fact slower

than Kohlrausch law and also a change in the structure of the

PES explored has been observed around Tc, when the system

is confined to the lower minima [3]. In particular, the size of

the barriers has also been found to increase as the system

goes down in energy. The existence of such distinct

exploration regimes has been related to the degree of

complexity the conformational search is confronted to at

different temperatures: the portion of conformation space

visited is more complex as T is lowered [12].

Within this context, we shall here provide a microscopic

rationale for the occurrence of timescale separation by

studying the temperature behavior of the timescales

corresponding to events of different range. Thus, a timescale

separation scenario implying the dominance of activated

dynamics will enable a mechanistic picture of relaxation in

which ballistic string like movements shall be identified as

two state relevant events in the PES exploration.

We performed a series of MD simulations for the binary

Lennard–Jones system [10,11] consisting of a three-dimen-

sional mixture of 80% of A and 20% of B particles, the size

of the A particles being 10% larger than the B ones (we used

the NPT ensemble with a step size of 0.0025 and a total
number of particles N=500; see [11] for details). The

particles interact by a Lennard–Jones potential (truncated at

r=2.5 rAA) characterized by: eAA=1.0, rAA=1.0, eAB=1.5,
rAB=0.8, eBB=0.5 and rBB=0.88. The MSD plots show the

typical ballistic, caging localization, as denoted by a plateau,

and diffusive regime [10,11]. The extent of the plateau

depends strongly on temperature, increasing considerably as

TC (estimated at 0.435 [10]) is approached. The dynamically

heterogeneous nature of this system is obvious from its

deviation from Gaussian behavior, which is measured by the

bnon-Gaussian parameterQ a(t) [10,11]. The time when a(t)
presents its maximum value, t*, defines the time window [0,

t*] in which the behavior of the system is most dynamically

heterogeneous. The value of t* for this system depends

strongly on temperature as Tc is approached from above,

increasing by almost two orders of magnitude from T=0.55

to T=0.45 [10,11]. The height of the maximum in a(t),
a(t*), also increases as T decreases. We determined the time

t* for each temperature and for each run we identified the

bmobileQ particles as the ones whose displacement at time

t*, Dri(t*)=ri(t*)�ri(0) (where ri(t) is the position of

particle i at time t), was greater than the one predicted by

Brownian motion at such T (from approximately 0.6 to 0.7

rAA depending on T for the range we employed). As

expected, only a small percentage of particles results mobile

(5–10%) and is clustered together in the sample. t*

constitutes a characteristic time for this system and

corresponds to times in the late b–early a relaxation (the

transition from localized to diffusive behavior) and to the

lifetime of such global clusters of mobile particles [10,11].

Strings were dynamically characterized as in [10,11] for

time intervals [0, t*]. We carried out many MD simulation

runs after equilibration for each of a series of temperatures

in the range 0.45VTV0.55. We calculated the distances

Dri ,j(t*)=ri(t*)�rj(0) and recorded the cases when

Dri,j(t*)b0.6. This means that after t* particle j has moved

and particle i has occupied its place to within 0.6 rAA

(represented as iYj). Most of the mobile particles were

organized in different strings. From the study of the time

evolution of these strings, we found that long strings usually

decomposed in more than one short substring movement of

around 3 or 4 particles which move together in short time

intervals. Thus, from now on we shall refer to these

movements as string motions. An important fact is that

these string motions occur in a ballistic fashion. That is,

once a fluctuation in the cage of one of the particles occurs,

the corresponding particle moves ballistically (a distance

typically between 0.5 to 1 rAA) in order to fill this space,

allowing thus for the movement of a neighbor particle, and

so on. Fig. 2 displays an example of this kind of ballistic

string motion. Preliminary results indicate that string

motions which occur close in time are also close in space,

in agreement with dynamics facilitation [8].

We shall define a ballistic time as the time it would take a

particle to perform a ballistic displacement of 1 rAA. This

time unit depends slightly on T and represents around 400



t /(MD step)
18000 19000

∆r
i

0.0

0.5

1.0

406  448     51

Fig. 2. Time evolution of the displacements of the particles of a string in the

region where the string occurs for a MD run at the following conditions of

temperature, pressure and density: T=0.469, P=2.296 and d=1.176. The
string is indicated by the particles taking part 406Y448Y51 (circles,

squares and triangles, respectively). A line indicating perfect ballistic

behavior (with velocity extracted from the mean kinetic energy) is drawn

for comparison. Time is given in MD steps. Reduced time is obtained when

dividing by 0.0025, the timestep used in the simulations.
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MD steps for T=0.47. For low temperatures this ballistic

time is small compared to t* but for T=0.55 (since t*

decreases with T) these two timescales become comparable

(we recall that for all the temperatures studied the number of

mobile particles in [0, t*] was always 5–10% of the total

number of particles and the mean squared displacements,

MSD, at t* did not differ appreciable, being around 0.1

rAA). Fig. 3 shows the temperature dependence of the

ballistic time and of t*. We also show the temperature

behavior of the time when the MSD equals unity, sMSD=1

(the average escape time of the particles from their cages).

We can see that t* (that decreases almost two orders of

magnitude from T=0.451 to T=0.55) approaches the

corresponding ballistic time at temperatures above T=0.55.

The curve for sMSD=1 displays a temperature dependence

similar to t* (sMSD=1 is around an order higher than t* for

the different temperatures) and approaches the ballistic

curve at a higher temperature. This relation between

timescales corresponding to events of different range (the

ballistic time corresponding to small string motions and t*

corresponding to large scale arrangements of global

clusters) provides us, for the first time, a microscopic

rationale for the emergence of timescale separation. This
T
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t 106
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102

Fig. 3. Temperature dependence of the three relevant times, t: ballistic time

(squares), t* (circles) and sMSD=1 (triangles).
fact has important implications to the landscape approach,

as we shall see below, since it marks its range of validity.

To study the Inherent dynamics of the system we

performed periodical quenches of configurations obtained

in a given real MD trajectory by means of potential energy

minimizations using the conjugate-gradient method. This

procedure maps each configuration to its corresponding

Inherent Structure (IS). To locate transitions between IS’s or

jumps, we could monitor the inherent structure energy.

Instead, we used another quantity, namely the mean squared

displacement between successive IS’s (this quantity repre-

sents a better measure in terms of diversity since structurally

distinct IS’s do not necessarily differ appreciably in energy):

DRIS tð Þ ¼ ð
PN

j¼1

�
rISj t þ Dtð Þ � rISj tð Þ

�2Þ1=2 where rj
IS(t) is

the position of particle j in the IS that occurs at time t and Dt

is the interval in MD steps between successive quenching

minimizations. At each time the system performs a jump in

the PES, the time evolution of DRIS would produce a peak.

This is so, since while vibrating around a given IS each

minima would map (by the minimization procedure) to the

bottom of its basin of attraction (the same IS) and DRIS

would be around zero. Thus, a peak would indicate an

interbasin transition (that is, a transition between two

different IS’s).

We performed this study for different trajectories and at

different temperatures. The DRIS(t) curve for the MD

trajectory that contains the string shown in Fig. 2 displays

a series of peaks corresponding to transitions between

successive IS’s. Fig. 4 depicts the DRIS(t) curve for the

region where the string of Fig. 2 takes place. Similar results

were found for other strings of this and other MD

trajectories. A fact that can be learnt from such results is

that at times where the real dynamics shows the occurrence

of string movements, a peak is found in the DRIS(t) curve.

Additionally, most of the string movements entail a single

peak in the DRIS(t) curve, indicating that they occur

between two consecutive IS’s without the presence of

intermediate IS’s. Thus, string movements represent well-

differentiated two-state elementary processes without inter-

mediate steps, corresponding to relevant events in the PES
t / (MD step)

18600 18650 18700
0. 00

0. 50

1. 00

406         448         51

∆R
I

Fig. 4. Time evolution of DRIS for the region where the string of Fig. 2

takes place.
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exploration and making the relaxation process amenable of

mechanistic description. This fact means that the ballistic

time is related to the events responsible for transitions

between IS’s. On the other hand, t* is located at the end of

the b and at the beginning of the a relaxation. The a
relaxation processes have been related to megabasin

transitions (long range rearrangements involving the tran-

sition between groups of similar and related IS’s). Thus,

these two timescales would correspond to events to different

range in the exploration of the PES. At sufficiently low T

(when the ballistic time is much smaller than t*) the

different transitions between IS’s (performed by means of

string movements) are well separated in time from each

other, thus allowing for local equilibration. This separation

of timescales marks the onset of activated dynamics,

concurrent with the appearance of nonexponential Kohl-

rausch laws characteristic of glassy dynamics. This fact is

also reflected in the appearance of diversity (which is not

intrinsic but depends on temperature and thus on the level of

resolution of the conformational search). Thus, diversity is

at the heart of the inhomogeneous nature of the relaxation.

At high T, where the system has enough thermal energy to

visit the whole conformation space, the sampled minima are

high and shallow (as the great majority of the minima) [12].

At lower T deeper minima (which are scarce) separated by

high barriers are explored and at even lower T the system

becomes confined in the deepest minima. Thus, the portion

of conformation space visited is more complex as T is

lowered [12]. At high T all the minima are similar in which

concerns dynamics (since thermal energy is enough to

prevent confinement and the system does not spend much

time around them). In fact, the liquid state does not present

diversity since the sampled minima are all equally unim-

portant from a dynamical perspective. However, at lower T

the system samples (and begins to be confined in) states

very different from structural and dynamical standpoints

(but not necessarily very different in potential energy),

separated by high barriers. Since thermal energy is low,

these minima begin to display their own distinct dynamical

behavior (with their own activation barriers and relaxation

timescales) implying the onset of an inhomogeneous

relaxation scenario and, concurrently, the advent of diver-

sity, complexity and glassiness.
3. Conclusions

We have examined the timescale separation scenario in

two different implementation of the landscape paradigm, a

widespread phenomenological picture in the realm of

complex systems. These two approaches have been relevant

to the study of the relaxation dynamics of a variety of

complex systems, including from glasses to biopolymers. In

this work the results in both schemes have been compared
and related to a generic variational principle. We have

emphasized the fact that the dominance of activated

dynamics over other relaxation mechanisms marks the onset

of complex behavior (including the occurrence of non-

exponential Kohlrausch laws), of diversity and glassiness.

The fact that complex behavior arises as a consequence of

the separation of timescales between events of different

range makes the relaxation process amenable of a (defect-

dominated) mechanistic description. Additionally, for the

specific context of a simple model glass-former we have

demonstrated in this work the microscopic origin of

timescale separation, the main tenet of the landscape

paradigm.
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