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A B S T R A C T

We investigated the impact of combining the pedigree- and genomic-based relationship matrices in a multiple-
trait individual-tree mixed model (a.k.a., multiple-trait combined approach) on the estimates of heritability and
on the genomic correlations between growth and stem straightness in an open-pollinated Eucalyptus grandis
population. Additionally, the added advantage of incorporating genomic information on the theoretical ac-
curacies of parents and offspring breeding values was evaluated. Our results suggested that the use of the
combined approach for estimating heritabilities and additive genetic correlations in multiple-trait evaluations is
advantageous and including genomic information increases the expected accuracy of breeding values.
Furthermore, the multiple-trait combined approach was proven to be superior to the single-trait combined
approach in predicting breeding values, in particular for low-heritability traits. Finally, our results advocate the
use of the combined approach in forest tree progeny testing trials, specifically when a multiple-trait individual-
tree mixed model is considered.

1. Introduction

The magnitude of genetic gain is affected by several factors, in-
cluding the accuracy of individuals’ estimated breeding values and the
extent of additive genetic variance present in the breeding population.
The inclusion of genomic information in quantitative genetics analyses
has resulted in improving the accuracy of individuals’ predicted
breeding value estimates [1]. Higher breeding values accuracy, through
using the marker-based realized kinship (G matrix) in the mixed model
equations (genomic best linear unbiased predictors –GBLUP–; [2]),
have been demonstrated theoretically [3–5] and empirically [6–10] in
several forest tree evaluation scenarios. In forest tree progeny testing
trials, the large number of tested individuals makes genotyping the

entire population unmanageable for financial and logistical reasons,
thus the option of restricting genotyping to only a subset of the testing
population is favourable [11]. Recently, the single-step approach,
which incorporates genomic information of a reduced set of individuals
into the genetic evaluation of a larger un-genotyped progeny testing
trials, was proposed by Misztal et al. [12], Legarra et al. [13], and
Christensen and Lund [14], as a simple and efficient genetic evaluation
method. In this approach, the pedigree and genomic information are
combined to enhance individuals’ genetic and genomic relationships
information during the implementation of the individual-tree mixed
model [15,16]. The simple combined method involves: (1) constructing
the pedigree-based relationship A matrix of genotyped and non-geno-
typed individuals, (2) constructing the marker-based relationship G
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matrix of a sub-set of genotyped individuals, and (3) blending the
pedigree and genomic matrices in the H matrix in the individual tree
mixed model. Since the combined/blended approach uses the tradi-
tional BLUP mixed model equations, then extending to more compli-
cated models used to fit the pedigree-based relationship matrices can be
immediately implemented [17]. The combined approach has been
widely applied in animal breeding with many successful applications
including pigs [18], chickens [19,20], dairy cattle [21], dairy sheep
[22], dairy goat [23], and beef cattle [24]. However, the use of the
combined approach in forest genetic trial is scant [15,16,25] and
somewhat limited as the analyses were restricted to single- rather than
multiple-trait models. For instance, in a recent study using the same
dataset used in the present study (see below), Cappa et al. [16] de-
monstrated that the combined approach is simple to implement in a
traditional single-trait individual-tree mixed model and provided an
easy extension to single-trait individual-tree mixed models with com-
petition effects and/or environmental heterogeneity. However, this
analysis did not consider the simultaneous evaluation of multiple traits
as well as utilizing between the traits phenotypic and genetic correla-
tions.

Multiple-trait mixed models result in improved prediction ac-
curacies of breeding values as the information from correlated traits is
incorporated in the analyses and traits with lower heritability benefit
when analysed in combination with traits with higher heritabilities
[26]. The increase in accuracy is dependent on the absolute difference
between genetic and residual correlations between the traits, i.e., the
larger the differences the greater the gain in accuracy [27]. Multiple-
trait GBLUP approach has shown a higher accuracy of predicted
breeding values than single-trait GBLUP in simulated [28,29] and em-
pirical [30] scenarios in animal studies. Integrating marker information
in multiple-trait models is possible in the combined approach
[18,31–35], but has only been recently considered in plants (oil palm,
[36]; white spruce, [15]). Ratcliffe et al. [15] used multiple-trait
models but did not make comparisons with the single-trait models.

The objectives of this study are to compare the performance of: (1)
the pedigree-based and the combined approaches using the multiple-
trait models and (2) the single- and multiple-trait models using the
combined approach. These comparisons were carried out using two
growth attributes and stem straightness data from an open-pollinated
Eucalyptus grandis breeding population. Genetic parameters (i.e., her-
itability, and additive genetic correlations) and expected gain in pre-
dicted breeding values’ accuracy of parents and offspring were com-
pared.

2. Materials and methods

2.1. Progeny trial data

A total of 164 open-pollinated families originating from native-
forest (148) and two local land-race (16) of Eucalyptus grandis (Hill ex
Maiden) growing in a progeny trial located at Gobernador Virasoro (lat.
28° 02′ S, long. 56° 03′ W alt. 105m), northern Corrientes province,
Argentina, and established by the National Institute of Agricultural
Technology (Instituto Nacional de Tecnología Agropecuaria, INTA),
provided the material for this study (see [37] for details). Briefly, the
progeny trial was established as a randomized compete block design
with 20 replications with one tree per plot at each replication. Five
years from planting, trees were assessed for over the bark diameter at
breast height (1.3 m above the ground level) (DBH, cm), total height
(TH, m), and stem straightness (SS) assessed by a four-point subjective
score after transformation to normal scores [38]. The study included
phenotypic data (DBH, TH, and SS) from 2026 trees. A random sample
of 187 trees originating from 131 families were genotyped with a range
of 1–3 trees per family. The total number of phenotyped trees with at
least one genotyped half-sib was 1650 (see Table 1 for the summary).

2.2. Molecular data

The 187 randomly selected trees were genotyped by 2816 DArT
molecular markers selected from an operational array with 7680 [39]
(Diversity Arrays Technology Pty Ltd., DArT P/L, Canberra, Australia).
The selected markers showed call rate values> 0.8, reproducibility
values> 0.97 (reproducibility of scoring between replicated target as-
says), and minor allele frequency (MAF) > 0.05.

2.3. Statistical models

The three assessed traits were analyzed using the following two
individual-tree mixed models:

1) Single-trait mixed model (ST):

= + +y X Z r +Z a eβ r a (1)

where the vector y contains the phenotypic data; β is the vector of fixed
effects for the nineteen genetic groups formed according to provenance;
r is the vector of random replicate effects, a is the vector of random
additive genetic effects of individual trees (i.e., breeding values); and e
is the vector of random residuals; X, Zr and Za are incidence matrices
relating the observations (y) to the model effects β, r and a, respec-
tively. The vector e is distributed as ∼e 0 IN ( , σ )e

2 and σe
2 is the error

variance. For the pedigree-based approach, the vector a was assumed
distributed as ∼a 0 AN ( , σ )a

2 where σa
2 is the additive genetic variance

and A is the average numerator relationship matrix derived from the
pedigree information and containing the additive relationships among
all trees: 164 mothers without records plus 2026 offspring with data in
y.

1) Multiple-trait mixed model (MT):
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where yi and yj are the vectors of individual tree observation for traits i
and j. The matrices Xi⊕Xj, Zri⊕ Zrj, and Zai⊕ Zaj related the observa-

tion to the means of the genetic groups in⎡
⎣⎢

′ ′⎤
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β βi j , the replicate effects in

′ ′[r r ]i j , and the individual breeding value in ′ ′a a[ ]i j for trait t= i, j. The
vector ′ ′e e[ ]i j is the residual vector. The symbols ⊕ and ' indicate the
direct sum of matrices and the transpose operation, respectively. The
vector of individual breeding values was assumed distributed as:
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where σaii
2 and σajj

2 are the additive genetic variances of traits i and j,

Table 1
Summary statistics of the studied Eucalyptus grandis open-pollinated families including the
number of genotyped and non-genotyped individuals and traits (diameter at breast
height: DBH, total height: TH, stem straightness: SS) means and standard deviations.

N° of
records

Mean (SDa)

DBH (cm) TH (m) SSb (Scale
1–4)

Total of offspring in the
pedigree

2026 18.85
(4.27)

18.87
(2.68)

2.30 (0.69)

Number of trees from
mothers with genotyped
offspring

1650 18.87
(4.24)

18.87
(2.65)

2.31 (0.69)

Number of offspring with
genotype

187 20.81
(3.07)

20.57
(1.67)

2.16 (0.66)

a Standard deviation.
b based on original scale assessment data.
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respectively; and σaij is the additive genetic covariance between traits i
and j. The residual vector is distributed as:
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where σeii
2 and σejj

2 are the residual variance of trait i and j, respectively;
and σeij is the residual covariance between traits i and j.

In the combined approach, the A matrix of the previous mixed
models (1), and (2) was replaced by the combined pedigree- and
marker-based pairwise relationship H matrix of the same dimension as
the pedigree-based matrix.

The inverse of the relationship matrix that combines pedigree and
genomic information (H−1) was derived by Misztal et al. [12], Legarra
et al. [13], Aguilar et al. [21], and Christensen and Lund [14], and
calculated following closely to Cappa et al. [16] as:

⎡
⎣

⎤
⎦

= + −
− −

− −( )H A
0 0
0 G Aλ

1 1
1 1

22

where λ scales differences between genomic and pedigree-based in-
formation, G−1 is the inverse of the genomic-based relationship matrix
and −A 1

22 is the inverse of the pedigree-based relationship matrix for the
genotyped individuals (A22). The weighting factor λ was set to 1.0 for
all models [16].

The genomic relationship matrix G was constructed from the
dominant DArT markers following the formula suggested by Resende
et al. [40]:

= − − ′
∑ −

G M P M P
p p

( )( )
(1 )k k k

where pk is the frequency of the code 1 at locus k, M is a n×m matrix
(n=number of genotyped trees, m=number of DArT markers) that
specifies the genotypes expressed as 0/1 denoting the absence/presence
of the DArT marker, and P is a matrix containing pk in the kth column.
The G matrix was scaled to have the same diagonal and off-diagonal
averages as the corresponding A matrix following closely the work of
Christensen et al. [18]. See further details about the scale of G matrix in
Cappa et al. [16].

Restricted maximum likelihood (REML, [41]) was used to estimate
variances and covariances and to predict the breeding values and their
corresponding standard errors in the mixed models Eqs. (1) and (2), and
were obtained with the ASReml program [42], which uses the average
information algorithm described by Gilmour et al. [43].

Two genetic parameters were compared: (1) heritability for each
trait; and (2) genetic correlations between traits. The heritability of trait
t (for t=DBH, TH or SS) was estimated as = +h σ σ σˆ ˆ ˆ ˆt att att ett

2 2 2 2 , where
σ̂att

2 is the estimated additive genetic variance of trait t, and σ̂ett
2 is the

estimated residual variance of trait t. Meanwhile, the additive genetic
correlation between trait i and j was calculated as =r σ σ σˆ ˆ ˆ ˆa aij aii ajj

2 2 .
Further model comparison was provided by the theoretical accuracy

(r) of the predicted breeding values, which was calculated using the
following expression: = +r F1 -PEV ((1 )σ̂ )i a

2 . The acronym PEV stands
for ‘prediction error variance’ of predicted breeding values, and are
calculated as the square of the standard error, and Fi is the inbreeding
coefficients of tree i. After that, we estimated the expected gain in ac-
curacy of a tree's breeding value for an individual using a linear re-
gression on the trait (DBH, TH or SS), the model (ST or MT), the ap-
proach (pedigree-based A or combined H), and the group to which the
tree belongs (parents or offspring).

3. Results

3.1. Additive genetic relationship matrices

The pairwise relationship coefficients for the genotyped trees

derived from the pedigree- (A22) and the genomic-based (G) relation-
ship matrix and for genotyped and non-genotyped trees derived from
the pedigree- (A) and combined pedigree-genomic (H) relationship
matrix, are presented in Fig. S1. When relationships were estimated
from the pedigree (A22 and A), expected relationships between in-
dividuals from this breeding population were very sparse with only
three relationship classes: 0, 0.25, and 0.50. As expected, a large
number of pairwise relatedness coefficients from pedigree were zero.
On the contrary, realized relationships obtained from the DArT markers
(G and H) showed a continuous distribution with relationship values
from −0.04 to 0.13 between mothers, from −0.15 to 0.38 between
offspring, and from −0.09 to 0.75 between mother and offspring.
Moreover, as noted early Cappa et al. [16] using the same dataset, the
combined relationship matrix H diffused the information from genomic
markers to non-genotyped offspring and mothers, while, as expected,
offspring from mothers with non-genotyped offspring did not produce
any additional information. For example, several pairs of mothers as-
sumed unrelated in A, with a coefficient equal to zero, while appeared
as related in the combined matrix H, with coefficients that varying from
−0.04 to 0.13.

3.2. Heritability estimates and additive genetic correlations between traits

Heritability estimates and additive genetic correlations from the
pedigree- (A matrix) and combined (H matrix) approaches are pre-
sented in Table 2. The combined approach yielded higher heritability
estimates (0.161 vs. 0.152 for TH and 0.337 vs. 0.317 for DBH), except
for SS (0.230 vs. 0.199). The additive genetic correlations based on the
A matrix were strongly positives between the two growth traits (0.892,
DBH-TH), and negative and weak between the two growth traits and
stem straightness (-0.146 for DBH-SS, and −0.077 for TH-SS). How-
ever, last two estimates had large high standard errors, and were did
not significantly different from zero. The genetic correlations based on
the H matrix were 0.913, −0.228, and −0.140 for DBH-TH, DBH-SS,
and TH-SS, respectively. However, only the correlation between TH and
SS did not differ significantly from zero, thus, including genomic in-
formation produced stronger (positive or negative) genetic correlations
and reduced the standard errors in two out of the three correlations
estimates.

3.3. Accuracy of predicted breeding values

The impact of including genomic information in a combined ap-
proach and leveraging other correlated traits in a multiple-trait analysis
on the prediction accuracy of breeding values was also evaluated
(Table 3). The percentages of the expected difference in accuracies for
mother and offspring between the pedigree-based and combined ap-
proaches for single- and multiple-trait models, and between single-trait
and multiple-trait models for the pedigree-based and combined

Table 2
Heritability and genetic correlation estimates from the multiple-trait model determined
by pedigree-based relationship matrix (A) (above diagonal) and the combined genomic
and pedigree-based relationship matrix (H) (below diagonal). Approximate standard er-
rors are in parenthesis.

Trait h2_Aa h2_Ha DBHb THb SSb

DBHb 0.317
(0.071)

0.337
(0.073)

– 0.892
(0.057)

−0.146
(0.175)

THb 0.152
(0.053)

0.161
(0.055)

0.913
(0.051)

– −0.077
(0.219)

SSb 0.230
(0.062)

0.199
(0.058)

−0.228
(0.174)

−0.140
(0.222)

–

a The heritability estimates for each trait and approach are the average of the corre-
sponding estimates from the two bivariate models in which the trait participates.

b See text for traitś abbreviations.
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approaches are summarized in Fig. 1.
The low-heritable trait (TH; h2_A=0.152 and h2_H=0.161) dis-

played the highest expected gains in accuracy of breeding values when
using the multiple-trait combined (H) rather the pedigree-based (A)

approach, even higher than those from the single-trait approach (Fig. 1;
Table 3). The improvements for the most heritable trait (DBH;
h2_A=0.317 and h2_H=0.337) were smaller, albeit the largest gains
were under a single-trait model. However, these improvements were

Table 3
Means and standard deviations of estimated theoretical accuracies for the predicted breeding values of mother and offspring based on the pedigree-based and combined approaches for
diameter at breast height (DBH), total height (TH), and normal score of stem straightness (SS) in Eucalyptus grandis using single-trait (ST) and multiple-trait (MT) individual-tree mixed
models. See text for modelś abbreviations.

Method of
genetic
evaluation

DBH TH SS

ST MTTH MTSS ST MTDBH MTSS ST MTTH MTDBH

Pedigree
Mothers 0.851 ± 0.029 0.852 ± 0.029 0.851 ± 0.029 0.807 ± 0.023 0.827 ± 0.025 0.808 ± 0.023 0.828 ± 0.026 0.829 ± 0.024 0.828 ± 0.026
Offspring 0.788 ± 0.044 0.790 ± 0.045 0.789 ± 0.045 0.757 ± 0.026 0.773 ± 0.036 0.758 ± 0.027 0.771 ± 0.034 0.772 ± 0.031 0.771 ± 0.034

Average 0.791 ± 0.045 0.793 ± 0.046 0.792 ± 0.046 0.759 ± 0.028 0.776 ± 0.037 0.760 ± 0.029 0.773 ± 0.036 0.775 ± 0.032 0.774 ± 0.036
Combined
Mothers 0.855 ± 0.029 0.855 ± 0.029 0.855 ± 0.029 0.810 ± 0.023 0.833 ± 0.025 0.810 ± 0.023 0.818 ± 0.025 0.818 ± 0.026 0.819 ± 0.025
Offspring 0.792 ± 0.047 0.793 ± 0.047 0.793 ± 0.047 0.759 ± 0.027 0.779 ± 0.039 0.760 ± 0.028 0.765 ± 0.031 0.765 ± 0.035 0.765 ± 0.031

Average 0.795 ± 0.048 0.796 ± 0.048 0.795 ± 0.048 0.761 ± 0.029 0.781 ± 0.040 0.762 ± 0.030 0.767 ± 0.032 0.767 ± 0.037 0.767 ± 0.032

Fig. 1. Expected average percent increases of the accuracy of breeding values for mothers and offspring from (a) the combined approach (H matrix) with respect to the pedigree-based
approach (A matrix) by single-trait (ST) and multiple-trait (MT) individual-tree mixed model, and from (b) the MT model with respect to the ST model by approach (A and H). In both
cases, results are further classified by trait: diameter at breast height (DBH), total height (TH), and normal score of stem straightness (SS).
*Significant expected percent increment with t-test (p < 0.05).
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not observed for the trait SS (h2_A=0.230 and h2_H=0.199) where
the accuracy of predicted breeding values from the combined approach
was lower than from the pedigree-based approach. This reduction in
accuracy was a consequence of the reduced estimation of the additive-
genetic variance under the combined approach, most likely due to the
underlying quantitative nature of the trait. In summary, the expected
accuracies of breeding values were marginally higher for DBH and TH,
and lower for SS when the H matrix was used in both multiple- and
single-trait models (Table 3).

The expected gains in accuracy for the three studied traits were
higher (from 0.06 to 3.78%) when we compared the single- and mul-
tiple-trait models with H matrix (and A matrix), especially for TH, the
trait with the lowest heritability (h2_H=0.161) (Fig. 1; Table 3).
Moreover, higher correlations between traits showed higher gains in
accuracies for the multiple-trait combined approach as compared to the
accuracies from the single-trait model. For example, with a correlation
of 0.913 (between TH-DBH, Table 2) the average accuracy of breeding
values for TH was 0.781 using the combined approach (Table 3); while
with a correlation of −0.140 (between TH-SS, Table 2) the average
accuracy decreased to 0.762, only marginally higher than the average
accuracy under the single-trait model; (0.761; Table 3). In contrast, for
the high-heritable trait (DBH), the differences in accuracies were mar-
ginal, decreasing from 0.796 to 0.795 (Table 3) when the correlation
decreased from 0.913 (between DBH-TH) to −0.228 (between DBH-SS)
(Table 2).

The results from the multiple-trait vs. single-trait for the pedigree-
based approach were similar to those from the combined approach in
terms of accuracy of predicted breeding values (Fig. 1; Table 3).

4. Discussion

Traditionally, the BLUP-predicted breeding values for the E. grandis
INTA improvement program are obtained through the use of the clas-
sical pedigree-based single- or multiple-trait approach based on joint
phenotypic and pedigree data [37,44]. This study demonstrated the
utility of the joint use of a multiple-trait mixed model with pheno-
typing, and blending both pedigree and genomic information for the
analysis of correlated traits. The joint use of multiple-trait models and
genomic information by means of the combined approach is a simple
and effective tool for estimating heritabilities and genetic and en-
vironmental correlations in forestry progeny testing trials. Our results
suggest that the benefit of using the multiple-trait combined approach
will be greater for data sets with traits with larger differences in her-
itability and genetic correlations between traits than in the one used
herein. The multiple-trait combined models would also be advanta-
geous to predict a trait when trees have been measured for other traits,
especially in situations where missing information occurs due to, for
example, tree damage or, practical and technical problems with data
recollection.

4.1. Genetic parameters

Knowledge of genetic parameters is required to formulate breeding
strategies as well as predicting parents and offspring breeding values,
and estimating gains from selection. Certainly, a key objective trait for
eucalypts breeding is fast growth, typically measured by diameter and/
or height. The present study’s DBH and TH heritability estimates
(Table 2) are similar to those previously reported for the same E. grandis
population using the single-trait model with the A and H matrices [16]
and to those reported by Marcó & White [37], Gapare et al. [45] and
Harrand et al. [44] using the classical pedigree-based approach. How-
ever, heritability estimates for SS were higher than those reported by
Marcó & White [37] using the A matrix and based on the categorical
observed scale, possibly attributed to the normal score transformation
used in our study. Cappa and Varona [46] observed that heritability
estimates based on a transformation of categorical data to normal score

are often higher than those based on the categorical observed scale.
Strong genetic correlations were observed between growth traits

(DBH and TH), indicating that selection for anyone would give a high
correlated response to the other. These high and positive correlations
confirm previous observations on Eucalyptus species (e.g. [45,47,48])
using the pedigree-based approach. However, low and negative genetic
correlations were found between growth and stem straightness, an
unfavorable state for breeding purposes. Although the precision of these
estimates was somewhat low, the literature showed variable results for
this relationship. For instance, in E. grandis and Eucalyptus viminalis
Labill ssp. viminalis estimates of 0.37–0.80 and −0.09 to 0.70 were
reported by Gapare et al. [45] and Cappa et al. [49], respectively.

In theory, genetic correlation from the classical pedigree-based
analysis is expected to capture the expected genetic correlation,
whereas marker-based analysis captures the realized genetic covaria-
tion that is traced by the markers [34]. Stem straightness appeared to
be independent from height growth when the A matrix was fitted;
however, a small and negative correlation is noted when the H matrix
was implemented. Slightly higher and negative correlations were ob-
served between DBH and SS when the A or H matrices were fitted
(Table 2). Such differences in the genetic correlation between traits
could be due to the different source from which the genetic correlation
arises. In a recent study using the multiple-trait combined approach,
Momen et al. [34] examined the impact of combining A and G matrices
varying the weight assigned to each source of information from 0 (only
A) to 1 (only G) on the genetic correlations between three traits mea-
sured in broiler chickens. These authors concluded that estimates of
genetic correlations were affected by the weight placed on the source of
information used to build the H matrix; however, the scaling was trait-
dependent. When the pedigree-based method is used, the genetic cor-
relation between traits arises mainly due to either a single gene or
closely linked block of functionally related genes that have an effect on
both traits (pleiotropy), or due to linkage disequilibrium (LD) between
genes that affecting different traits [50]. Meanwhile, when marker-
based methods are used, marker-QTL LD and LD relationships among
markers intervene in the genomic correlation. According to Momen
et al. [34] these estimates may also differ due to chance or other rea-
sons, such as the extent of LD between markers and the unknown QTL,
or LD between QTLs.

The observed lower standard errors for the genetic correlations
obtained from the combined approach is in accordance with previous
findings in animal breeding [33,51]. More precise genetic correlations
may be explained by the fact that the relationship between relatives
from pedigree and marker information are described more precisely
than pedigree-based matrices, given that the former reflects the actual
relationships that may deviate from their expectation because of Men-
delian sampling (e.g. [52,53]).

4.2. Multiple-trait models comparison between pedigree-based and the
combined approach

The difference between the pedigree-based and combined approach
concerning the predicted accuracy of breeding values was evaluated in
the context of a multiple-trait model. In general, the combination of the
pedigree- and genomic-based matrices in a multiple-trait mixed model
yielded higher expected accuracy than the pedigree-based approach
(Table 3). Earlier studies using empirical data in animals [18,31,33,34]
and forest trees [15] have also demonstrated the superiority of the
multiple-trait combined prediction over the pedigree-based alternative.
Aguilar et al. [31] indicated that the inclusion of genomic information
using the combined approach resulted in approximately doubling the
accuracy. In a recent study on white spruce, Ratcliffe et al. [15] found
higher accuracies in offspring breeding values for increased genotyping
efforts (0, 25, 50, 75, 100%) using a multiple-trait combined approach
which ranged from 0.474 to 0.536 and 0.605–0.661 for height and
wood density, respectively. Marker-based methods could achieve
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higher breeding values accuracies given that they are not only con-
tributed by the expected genetic relationship between trees (as in the
pedigree-based approach), but also by linkage disequilibrium (LD) and
co-segregation to capture relationship at QTL [50].

4.3. Combined approach comparison between single- and multiple-trait
models

Bivariate genomic selection models have been already used in tree
breeding populations [9,15]. However, this is the first study to in-
vestigate the benefit of using multiple-trait genomic models in forest
tree breeding. Therefore, our second objective to quantifying the im-
provement that can be attained by the multiple- vs. single-trait model
using a combined approach has been fulfilled. From our empirical E.
grandis data, we found that the expected accuracy of breeding values
was higher in a multiple-trait combined approach than in single-trait
models, with a particularly high gain for low-heritability traits. Similar
to the classical pedigree-based multiple-trait approach, traits with low-
heritability can borrow/utilize information from correlated and high-
heritability traits, achieving higher prediction accuracy [30]. Using the
multiple-trait combined approach produced better breeding values
prediction accuracies for several traits in a US Holstein [32], Danish
Duroc pigs [17], Holstein dairy cattle [31], and oil palm [36] popula-
tions.

Our results indicated that higher correlations between traits pro-
duced improved accuracies for the multiple-trait combined approach
when compared to the single-trait model (Table 2), confirming the
importance of the absolute differences in the genetic correlation be-
tween traits in accuracy gain. In a simulation study, where the pre-
diction accuracy was calculated as the correlation between observed
and the predicted phenotype, Jia and Jannink [30] showed that for low-
heritability (h2= 0.1) the multiple-trait genomic selection approach
greatly increased the prediction accuracy, but only when the genetic
correlation between the related traits was higher than 0.7. Meanwhile,
for a high heritable trait (h2= 0.5), these accuracies remain stable
across a range of genetic correlation of 0.1–0.9. Our findings are also in
agreement with Calus and Veerkamp [54], who reported for an animal
simulation study that the magnitude of accuracy increase was higher
when the genetic correlation was higher than 0.5.

On average and across the three studied traits, the multiple-trait
combined model produced higher gain in accuracy than those from the
single-trait combined approach. However, these gains in accuracy were
lower when we compared to the combined and pedigree-based ap-
proaches for the multiple-trait models. Therefore, the gain obtained by
using the multiple-trait models was higher than those from the use of
the genomic information. This may be due to the small number of
genotyped trees (187 out of 2026) and the relatively low number of
marker assayed (2816 DArT markers). Nonetheless, this empirical data
set clearly demonstrated the benefits of multiple-trait combined ap-
proach in increasing the accuracy of breeding values.

Across single- and multi-trait models, the average accuracy of pre-
diction of breeding values based on the pedigree and combined ap-
proaches were higher for mothers than the corresponding values for
offspring (Table 3). However, there were a lower expected gain in ac-
curacy for mothers than that for offspring (Fig. 1); i.e., the additional
information generated by including the genomic information in the
combined approach have a higher impact on the accuracies of the
predicted breeding values of offspring than that of the mothers. These
results are expected, given that mothers with numerous offspring gen-
erally have sufficient information from the phenotypic and pedigree
data to achieve acceptable accuracies.

5. Conclusion

To our knowledge, this is the first study to investigate the potential
benefit of the multiple-trait model that simultaneously makes full use of

the pedigree and genomic information in forest breeding data. Our
empirical study using E. grandis population suggests that it is possible to
use the combined approach for estimating heritability and additive
genetic correlation estimates in forest trees multiple-trait evaluations.
Moreover, the results from this study highlighted the potential benefit
in terms of gain in accuracy by implementing multiple-trait combined
approach, even though the genotyping efforts used was low (less than
10% of the trees) and dominant bi-allelic DArT markers are less in-
formative than the widely used co-dominant single-nucleotide poly-
morphisms (SNP) markers. As noted in earlier studies, the benefit of
using multiple-trait combined analysis has been found to be more re-
levant for traits with low-heritability and high genetic correlations
between traits. Here we considered a bivariate multiple-trait mixed
model, but the method could easily be extended to a higher number of
traits.
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