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Abstract 

A series of Zn thiosacharinates complexes with nitrogen donor co-ligands were synthesized: 

[Zn(tsac)2(o-phen)], [Zn(tsac)2(TMDP)]n, [(4,4’-bipy)H2][Zn(tsac)4] [Zn(tsac)2(2,2’-bipy)], 

[Zn(tsac)2(2,2’-bquin)], (tsac, thiosaccharinate anion: 1,1-dioxo-1,2-benzisothiazole-3-thiolato, 

C7H4NO2S2
-
, o-phen: 1,10’-phenantroline, TMDP: trimethylenedipyridine, 2,2’-bipy: 2,2’-

bipyridine, 4,4’-bipy: 4,4’-bipyridine, 2,2’-bquin: 2,2’-biquinoline). They were fully 

characterized by means of FTIR, 
13

C and 
1
H NMR, elemental analysis and conductivity 

measurements. Three of them, [Zn(tsac)2(o-phen)], [(4,4’-bipy)H2][Zn(tsac)4], 

[Zn(tsac)2(TMDP)]n were also characterized by X-ray single crystal diffractometry and their 

crystal structures are described herein. DFT geometry optimization for the [Zn(tsac)2(o-phen)] 

complex was performed and its vibrational spectra was predicted. Moreover, we studied the 

effects of the five complexes on cell proliferation, thus providing preliminary evidence for their 

therapeutic potential as anti-cancer drugs. 

 

Keywords: Zinc, thionate, biological activity, crystal structure, nitrogenated ligands, cell 

proliferation inhibition 

Introduction 

 

Zn shows an indispensable role and it is considered as a fundamental trace element for living 

organisms. An increased amount in the published research shows the importance of this metal 

complexes and refutes its “boring element” tag. It acts as a divalent cation when it binds to 

enzymes and other proteins on its biochemical functions. Moreover, coordination complexes 

with the presence of Zinc (II) ion are essential in the function of several bio-molecules. It acts as 

the active site of enzymes (it is vital for the functionality of more than 300 enzymes) [1,2]. 

Diverse metabolic paths that are dependent on this metal have been recognized and studied so 

far. Additionally, several Zinc based compounds have been used as antifungal and antibacterial 

[3,4]. On the other hand, the coordination chemistry of different types of poly-dentate organic 

nitrogen–sulfur ligands is an interesting and developing field of research and has generated 
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considerable recent interest [5,6]. Complexes of these systems are involved in the catalysis of 

different biological processes and thus, they receive attention nowadays. For all these reasons, 

sulfur-rich zinc sites in metallo-proteins could be better understood with the synthesis and 

characterization of ternary Zinc-thionate complexes. Among the different possible co-ligands, 

bi-pyridyl ligands are good building blocks that allow the construction of a variety of complexes 

with defined geometry and symmetry and could enable the formation of strong complexes. 

These type of N,N-bidentate ligands are also of importance due to their possible activity against 

different types of bacteria. 

Because of the bulky S atom with the vicinity of the amide N atom, considerable bridging 

capabilities are found for heterocyclic thionates, the deprotonated form of thiones. As other 

heterocyclic chalcogenones, thiosaccharine (the thione form of saccharin, C6H4S(O)2NHC(S), 

1,1-dioxo-1,2-benzisothiazole-3-thione) can bind a metal ion in its anionic form either as 

monodentate species either via the thionate sulphur atom or the thioamido nitrogen atom, or as 

an ambidentate ligand via a variety of bonding modes. The coordination chemistry of 

thiosaccharine with several transition metals (Cd, Tl, Pd, Pt, Ag, Au, Cu, Bi) has been 

previously investigated and reported in detail [7,8,9 and references therein]. So far, the 

versatility of this anion has been extensively demonstrated in the different complexes described. 

At this point, surprisingly, the coordination of Zn to this thionate remains unexplored.  

For this reason, in the present work, we report the synthesis and full characterization of a series 

of Zn thiosaccharinates with N ancillary aromatic co-ligands, [Zn(tsac)2(o-phen)] (1), 

[Zn(tsac)2(TMDP)]n (2), [(4,4’-bipy)H2][Zn(tsac)4] (3), [Zn(tsac)2(2,2’-bipy)] (4) and 

[Zn(tsac)2(2,2’-bquin)] (5). Moreover, we inform here their effects on cell proliferation 

inhibition, thus providing preliminary evidence for their therapeutic potential as anti-cancer 

drugs. 

 

2. Experimental 

2.1. General remarks 

All reagents were of commercial analytical quality and used without further purification. The 

solid thiosaccharin (Hthiosaccharinate) in its α-form was synthesized when Lawesson’s reagent 

(3.64 g; Fluka) reacted with acid saccharin (3.00 g; Mallinckrodt) in toluene solution (25 mL), 

following the technique published by Schibye et al. [10]. The FTIR spectra of the substances as 

KBr dispersions were registered in the 4000–400 cm 
-1

 range on a Thermo Scientific Nicolet 

iS50 FTIR-NIR spectrometer. Nuclear magnetic resonance (NMR) spectra were recorded on a 

Bruker ARX-300 spectrophotometer using the residual solvent peak as an internal reference. 

The NMR studies were performed in deuterated dimethylsulfoxide, DMSO-d
6
 solutions. The C, 

H, and N elemental analyses were performed with a CE440 Elemental Analyzer. and were 

found to be in good agreement with the calculated values. Conductivity measurements were 

performed with a digital OAKTON conductimeter, which was calibrated with a KCl aqueous 

solution (744.7 ppm, 1413 µS). The conductivity measurements were performed in DMSO. 

2.2 Synthesis of the complexes  

 

[Zn(tsac)2(o-phen)] (1) 

The [Zn(tsac)2(o-phen)] complex was prepared by addition of a dissolution of Zn(NO3)2·6H2O 

(14.85 mg, 0.049 mmol, 2 mL) into a thiosaccharine solution (20 mg, 0.1 mmol/ ethanol:water 

1:1, 2 mL). A o-phenantroline solution was finally added drop by drop (ethanol:water 1:1, 2 

mL) and a yellow power was obtained. The resulting yellow solid was filtered and washed 



  

with cold water. Crystals suitable for X-ray diffraction studies were produced by slow 

diffusion of diethyl ether to the mother solution. Yield: 74 % Molar Conductivity (µS M
-1
) = 

22.4. Calculated analytical percent composition for C26H16N4O4S4Zn: C=48.516%; H=2.267%; 

N=8.592%; Found: C= 48.638%; H=2.511%; N=8.725%. Soluble in dimethyl sulfoxide and 

dimethyl formamide. Non-soluble in other solvents (methanol, chloroform, dichloromethane, 

acetone, water). UV-Visible [DMSO, λmax nm]: 341 
1
H NMR (300 MHz, DMSO) δ 8.72-9.21 (m, 1H), 8.94 (m, 1H), 8.31 (m, 1H), 8.03-8.21 (m, 

1H), 7.91 (m, 1H), 7.57-7.72 (m, 3H). 
13

C NMR (75 MHz, DMSO) δ 191.81 (C1), 149.09 (C8), 
140.02 (C10), 139.36 (C12), 137.94 (C7), 136.52 (C2), 132.12 (C4), 130.91 (C5), 128.70 (C11), 

127.37 (C13), 125.10 (C3), 125.81 (C9), 119.03 (C6). 

 

[Zn(tsac)2(TMDP)]n (2)  

The complex was synthesized by addition of 4,4′-trimethylenedipyridine (6.2 mg, 0.031 mmol) 

and thiosaccharine (12.7 mg, 0.0638 mmol), respectively, to a solution of Zn(NO3)2∙6H2O (10.2 

mg, 0.0342 mmol) in ethanol:water (4 ml), and kept under mechanical stirring at room 

temperature. The resulting yellow solid was filtered off and washed with cold water. By slow 

evaporation of the mother solution single crystals appeared. They were washed with water and 

analysed using X-ray diffraction. Yield: 82%. Molar conductivity (µS M
-1

) = 28.3. Analytical 

percent composition calculated for C27H22N4O4S4Zn: C=49.127%; H=3.359%; N=8.487%. 

Found:C=48.811%; H=2.981%; N=8.378%. 

 Soluble in DMSO and DMF. Slightly soluble in water, ethanol, methanol, chloroform. 

Insoluble in acetone and methane dichloride. UV-Visible [DMSO, λmax nm]: 347 
1
H NMR (300 MHz, DMSO) δ 8.46 (dd, 4H), 7.92 (m, 2H), 7.58-7.72 (m, 6H), 7.28 (dd, 4H), 

2.64 (t, 4H), 1.93 (m, 2H). 
13

C NMR (75 MHz, DMSO) δ 191.71 (C1), 151.07 (C10), 149.31 

(C8), 137.98 (C7), 136.56 (C2), 132.05 (C4), 130.82 (C5), 125.07 (C3), 124.04 (C9), 119.01 

(C6), 33.80 (C11), 30.12 (C12). 

 

[(4,4’-bipy)H2][Zn(tsac)4] (3) 

It was obtained by addition of 4,4'-bipyridine (7.7 mg, 0.049 mmol) and thiosaccharine (20.3 

mg, 0.102 mmol), to a dissolution of Zn(NO3)2·6H2O (15.2 mg, 0.0511 mmol) in water/ethanol 

1:1, with mechanical stirring at ambient temperature. The resulting yellow precipitate was 

washed with water and dried. Yellow crystals, suitable for X-ray diffraction studies were 

obtained. Yield: 26.9%. Molar Conductivity (µS M
-1

) = 138.7. 

Analytical percent composition calculated for C38H26N6O8S8Zn: C=44.901%; H=2.580%; 

N=8.270%. Found: C=45.996%; H=2.473%; N=8.446%.  

Soluble in dimethyl sulfoxide and dimethyl formamide. Slightly soluble in water, ethanol, 

methanol and chloroform. Insoluble in acetone and dichloromethane. UV-Visible [DMSO, λmax 

nm]: 340 
1
H NMR (300 MHz, DMSO) δ 8.98 (dd, 4H), 8.30 (dd, 4H), 7.87-8.02 (m, 4H), 7.73-7.81 (m, 

4H), 7.35-7.72 (m, 10H). 
13

C NMR (75 MHz, DMSO) δ 191.56 (C1), 148.94 (C8), 145.88 

(C10), 137.88 (C7), 136.35 (C2), 132.28 (C4), 131.11 (C5), 125.16 (C3), 122.38 (C9), 119.15 

(C6). 

 

[Zn(tsac)2(2,2’-bipy)] (4) 

This complex was prepared in a similar way as (1): Zn(NO3)2·6 H2O (11 mg, 0.037 mmol in 2 

ml de ethanol-water) were added to a thiosaccharine dissolution (20 mg, 0.1 mmol / 2 ml 

ethanol-water 1:1). A 2,2’-bipyridine dissolution was then added (5.8 mg, 0.0371 mmol/ 2 ml 

de ethanol-water). A light yellowish precipitate was formed and filtered. It was washed with 



  

distilled water. By slow diffusion of ethyl ether to a saturated ethanol-water solution very thin 

needles appeared. Yield: 85%. Molar conductivity (µS M
-1

) = 18.2. Analytical percent 

composition calculated for C24H16N4O4S4Zn: C=46.642%; H=2.6093%; N=9.0648%. Found: 

C=46.422%; H=2.335%; N=8.893%.  

Soluble in dimethyl sulfoxide and dimethylformamide. Slightly soluble in water, ethanol, 

methanol, acetone and chloroform. UV-Visible [DMSO, λmax nm]: 343 
1
H NMR (300 MHz, DMSO) δ 8.60-8.90 (d, 1H), 8.73 (d, 1H), 8.34 (t, 1H), 7.94 (m, 1H), 7.83 

(m, 1H), 7.58-7.75 (m, 3H). 13C NMR (75 MHz, DMSO) δ 191.73 (C1), 148.47 (C9), 141.43 

(C10), 137.81 (C7), 137.75 (C12), 136.33 (C2), 132.19 (C4), 131.03 (C5), 127.09 (C8), 125.14 

(C3), 122.79 (C11), 119.07 (C6). 

 

[Zn(tsac)2(2,2'-bq)] (5) 

A Zn(NO3)2·6H2O dissolution (10.3 mg, 0.0346 mmol / 2 ml ethanol:water 1:1) was added to 

another dissolution of thiosaccharine (12.3 mg, 0.062 mmol / 2 ml ethanol:water 1:1). Finally, 

solid 2,2’-biquinoline was added (9.4 mg, 0.0367 mmol / 2 ml ethanol:water 1:1). A pale yellow 

powder was then obtained. Yield: 90%. Molar conductivity (µS M
-1

) = 26.3. Analytical percent 

composition calculated for C32H20N4O4S4Zn: C=53.520%; H=2.807%; N=7.801%. Found: 

C=53.884%; H=2.761%; N=7.698%. 

Soluble in DMSO and DMF. Almost insoluble in water, ethanol, methanol, acetone, 

dichloromethane and chloroform. [DMSO, λmax nm]: 339 
1
H NMR (300 MHz, DMSO) δ 8.80 (dd, 1H), 8.58 (dd, 1H), 8.19 (dd, 1H), 8.08 (dd, 1H), 7.89-

7.95 (m, 1H), 7.85 (td, 1H), 7.53-7.73 (m, 4H). 
13

C NMR (75 MHz, DMSO) δ 191.54 (C1), 

155.21 (C16), 147.16 (C8), 137.80 (C7), 137.36 (C14), 136.32 (C2), 132.16 (C4), 130.99 (C5), 

130.18 (C10), 129.31 (C12), 128.16 (C13), 128.03 (C11), 127.42 (C9), 125.10 (C3), 119.05 
(C6), 118.87 (C15). 

 

2.3 X-ray crystallography 

Single crystal X-ray diffraction measurements of (1), (2) and (3) were carried out with 

Mo Ka radiation using an Xcalibur, Eos, Gemini diffractometer. Absorption was 

corrected for by multi-scan methods, CrysAlis PRO (Rigaku OD, 2015). H-atom 

parameters were constrained. Computer programs used: CrysAlis PRO (Rigaku OD, 

2015) [Diffractometer control and data reduction], SHELXS97 (Sheldrick, 2008) 

[Structure resolution], SHELXL2014/6 (Sheldrick, 2015) [Model refinement], XP in 

SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) [Analysis of the results]. 

 

2.4 Cell line culture and proliferation assays 

SVEC cell line stably expressing the viral G protein couple receptor was used (vGPCR cells). 

vGPCR cells injected into immunosuppressed mice promotes tumour formation; thus inducing 

angiogenic lesions similar to those developed in Kaposi sarcoma [11,12]. These transfected 

cells were cultured in DMEM 2.5% foetal bovine serum (FBS) and selected with 500 µg/mL 

G418 (Cellgro, Manassas, VA). For proliferation studies, cells were seeded in 24-well plates 

at a density of 12,000 cells per well. After overnight growth, cells were treated with each 

ternary Zn(II) complexes (1,2,3, 4 and 5) or vehicle (DMSO, 0.1%) in triplicate during 48 h. 

The time was selected based on the duplication cells time for these growth conditions 



  

and is appropriate to visualize an inhibition of the cell proliferation. At the end of the 

treatment, cells were harvested and counted in a Neubauer chamber; proliferation was 

quantified as the percentage of living cells [12]. 

 

2.5 Theoretical calculations  

 

The theoretical calculations were performed with Gaussian09 [13]. The initial geometry 

optimization of complex 1 was performed with the semi empirical PM3 method. The geometry 

thus obtained was used as starting point for the density functional theory (DFT) [14] 

calculations, that were performed with the B3LYP functional [15], which is known to be an 

appropriate methodology for the study on metal thiosacharinates complexes with nitrogen donor 

co-ligands [9]. Zero point energy was computed at the 6-31+G* level for C, H, S, N and O 

atoms and employing the LANL2DZ effective core potential basis set for Zn. The 

characterization of the stationary point was done by Hessian matrix calculations of geometries 

obtained with full optimization for a minimum. The vibrational frequency analysis showed no 

imaginary frequencies. All calculations were performed in gas phase. The structure figure (see 

Supp. Info S22) was built with the VMD program. 

 

3. Results and Discussion 

3.1 Crystal structures 

Table 1 summarizes crystal data, data collection procedures, structure determination 

methods and refinement results for complexes (1), (2) and (3). Table 2 presents some 

selected distances and angles, and Table 3 shows the most relevant H-bonding 

interactions. 

Figures 1-3, in turn, show molecular representations of the complexes. Full structural 

information has been deposited in cif format at the Cambridge Crystallographic Data 

Centre, under deposition numbers CCDC 1812462 (1), CCDC 1812463 (2) and CCDC 

1812464 (3).  

Table 1.  Crystal and refinement data 

 

 [Zn(tsac)2(o-phen)] 

(1) 

[Zn(tsac)2(TMDP)]n 

(2) 

[(4,4’-bipy)H2][Zn(tsac)4] 

(3) 

Crystal data 

Chemical formula C26H16N4O4S4Zn C27H22N4O4S4Zn C38H26N6O8S8Zn 

Mr 642.04 660.09 1016.50 

Crystal system, 

space group 

Monoclinic, I2/a Monoclinic, P21/c Orthorhombic, Fddd 

Temperature (K) 293 295 293 

a, b, c (Å) 15.0832 (4), 

10.4741 (3), 

16.6559 (6) 

11.8808 (5), 

16.0116 (7), 

15.4802 (5) 

10.2455 (6), 26.4252 (9), 

29.2967 (11) 



  

 (°) 90, 91.275 (3), 90 90, 96.684 (3), 90 90, 90, 90 

V (Å
3
) 2630.69 (14) 2924.79 (19) 7931.8 (6) 

Z 4 4 8 

 (mm
-1

) 1.29 1.17 1.10 

Crystal size (mm) 0.32 × 0.22 × 0.18 0.18 × 0.18 × 0.14 0.28 × 0.20 × 0.16 

 

Data collection 

 Tmin, Tmax 0.72, 0.78 0.73, 0.81 0.72, 0.86 

No. of measured, 

independent and 

 observed [I > 

2s(I)] reflections 

5737, 2851, 2213   25094, 6761, 4812   14567, 2430, 1932   

Rint 0.021 0.066 0.036 

(sin )max (Å
-1

) 0.675 0.670 0.685 

 

Refinement 

R[F
2
 > 2(F

2
)], 

R(F
2
), S 

0.034,  0.090,  1.01 0.068,  0.210,  1.01 0.035,  0.091,  0.98 

No. of reflections 2851 6761 2430 

No. of parameters 177 361 140 

ρmax, ρmin (e Å
-3

) 0.27, -0.34 1.34, -0.82 0.37, -0.26 

 

Table 2 

Selected bond distances and angles [Å,°] 

(1)     

 Zn1—N1B 2.0723 (19) S2A—C7A 1.698 (2) 

 Zn1—N1B (calculated) 2.144 S2A—C7A 

(calculated) 

1.735 

 Zn1—S2A 2.2952 (7) N1A—C7A 1.308 (3) 

 Zn1—S2A (calculated) 2.415 N1A—C7A 

(calculated) 

1.306 

     

 N1B—Zn1—N1Bi 80.81 (11) N1B—Zn1—S2Ai 110.50 (5) 

 N1B—Zn1—N1B
i
 

(calculated) 

117.1 N1B—Zn1—S2A
i
 

(calculated) 

 

 N1B—Zn1—S2A 120.16 (5) S2A—Zn1—S2Ai 111.91 (4) 

 N1B—Zn1—S2A  S2A—Zn1—S2Ai 107.2 



  

(calculated) (calculated) 

Symmetry code:  (i) -x+1/2, y, -z+1. 

     

(2)     

 Zn1—N2Ci 2.030 (3) S2A—C7A 1.701 (4) 

 Zn1—N1C 2.049 (3) N1A—C7A 1.310 (5) 

 Zn1—S2A 2.3085 (14) S2B—C7B 1.703 (4) 

 Zn1—S2B 2.3220 (12) N1B—C7B 1.312 (5) 

     

 N2Ci—Zn1—N1C 107.60 (13) N2Ci—Zn1—S2B 108.39 (10) 

 N2Ci—Zn1—S2A 109.38 (10) N1C—Zn1—S2B 104.34 (9) 

 N1C—Zn1—S2A 109.52 (10) S2A—Zn1—S2B 117.15 (5) 

Symmetry code:  (i) x+1, y, z. 

     

(3)     

 Zn1—S2  2.3598 (6) N1—C7 1.311 (3) 

 S2—C7 1.695 (2)   

     

 S2—Zn1—S2i 96.75 (3) S2—Zn1—S2iii 123.25 (3) 

 S2—Zn1—S2ii 109.53 (3)   

Symmetry codes:  (i) -x+1/4, -y+1/4, z;  (ii) x, -y+1/4, -z+1/4;  (iii) -x+1/4, y, -z+1/4. 

 

Table 3 

Hydrogen-bond geometry (Å, º)  

  D—H···A D—H H···A D···A D—H···A 

(1)      

 C2A—H2AA···O1A
ii
 0.93 2.36 3.072 (3) 134 

 C2B—H2BA···S2A
iii

 0.93 2.74 3.538 (3) 144 

Symmetry codes: (ii) -x, y-1/2, -z+1/2;  (iii) x-1/2, -y+1, z. 

      

(2)      

 C2B—H2B···O2Ai
i
 0.93 2.44 3.330 (6) 159 

 C10C—H10C···S2A
iii

 0.93 2.95 3.777 (4) 149 

Symmetry codes: (ii) x+1, -y+1/2, z+1/2;  (iii) -x, y-1/2, -z+1/2. 



  

      

(3)      

 N11—H11N···O1
iv
 0.86 2.47 3.134 (3) 134 

 C11—H11···O2
iv
 0.93 2.35 3.137 (3) 142 

 C21—H21···O2
v
 0.93 2.47 3.149 (3) 130 

 C6—H6···O1
vi
 0.93 2.55 3.400 (3) 152 

Symmetry codes: (iv) x+1/4, -y+1/2, z-1/4;  (v) -x+5/4, y, -z+1/4;  (vi) -x+3/4, -y+3/4, z. 

 

 

 

Figure 1: Molecular representation of [Zn(tsac)2(o-phen)] (1) 

Symmetry code:  (i) -x+1/2, y, -z+1. 

 

 



  

 

Figure 2. Molecular representation of [Zn(tsac)2(TMDP)]n (2) 

Symmetry code:  (i) x+1, y, z. 

 

 

 

Figure 3. Molecular representation of [(4,4’-bipy)H2][Zn(tsac)4] (3) 



  

Symmetry codes:  (i) -x+1/4, -y+1/4, z; (ii) -x+1/4, y, -z+1/4, (iii) x, -y+1/4, -z+1/4. 

 

[Zn(tsac)2(o-phen)] (1) 

The solid state structure of complex [Zn(tsac)2(o-phen)] consists in discrete molecular species, 

bisected by a twofold rotation axis, with the Zn atom being located in the center of a distorted 

tetrahedron, surrounded by two thiosaccharinate anions and by a molecule of ortho-

phenanthroline. The two thiosaccarinate anions monocoordinate through the exocyclic sulfur 

atom to the metal center. The o-phenanthroline molecule quelates the metal atom through both 

pyridinic N atoms. Bond distances around the Zn atom can be seen in Table 2. Figure 1 is a 

molecular representation of the complex. The phenantroline molecule and the two anions 

presented almost planar structures, as expected. A comparison of the metal–ligand bond 

distances in complex (1) with the distances in other mixed ligand Zn thionates with ortho-

phenantroline, show that they are average Zn-S (Zn-Stsac 2.2952 (7) Å) and Zn-N (Zn-Nphen 

2.0723 (19) Å) bond distances for this type of complexes [16, 17]. The tetrahedral deviation is 

evidenced by the deviation of the bond angles from the ideal angle of a tetrahedral geometry 

(109.5°): N1B—Zn1—S2A
i
 (110.50 (5)), N1B—Zn1—N1B

i
 (80.81 (11)), N1B—Zn1—S2A 

(120.16 (5)) and S2A—Zn1—S2A
i
 angles (111.91 (4)). This deviation is attributed to the 

steric demand of the chelating di-pyridinic ligands. The Zn-Npy is within the range reported by 

García Vazquez for similar complexes with pyridine-2-thione. 

 

[Zn(tsac)2(TMDP)]n (2) 

In the [Zn(tsac)2(TMDP)]n complex the metal center adopts a slightly distorted tetrahedral 

geometry (angles around the metal center 110.5, 117.7, 107.8 and 105.9º). The anion is 

monocoordinated through the exocyclic S atom. The trimetilenedipyridine molecule coordinates 

through the nitrogen atoms, bridging two metal centers. In this complex, [Zn(tsac)2(TMDP)], 

the Zn-S bond distances (Zn-S(1) 2.326 Å y Zn-S(2) 2.302 Å) are longer than the bond 

distances in [Zn(tsac)2(o-phen)] (2.296 Å) but shorter than the distances presented by [(4,4’-

bipy)H2][Zn(tsac)4] (2.357 Å). Regarding the Zn-Npy bond distances (Zn-N(1) 2.071 Å and Zn-

N(2) 2.049 Å) they are within the range reported by Zheng et al. for other Zn complexes 

coordinated with similar nitrogenated ancillary ligands [18]. 

 

[(4,4’-bipy)H2]
2+

[Zn(tsac)4]
2-

] (3) 

Among the different zinc complexes reported in the literature, 4,4 -bipyridine has been used as a 

two connector in many studies to construct transition metal networks having a wide variety of 

structures. The thiosaccharinate complex shows an ionic structure, with the metal center located 

at a highly symmetric site (the intersection of three orthogonal two fold axis). This Zn atom is 

located in a tetrahedral geometry, surrounded by four symmetry related thiosaccharinate anions, 

builds up the anion. The four thionates are coordinated to the metal through the sulfur atom. 

Each of the four anions presents a cuasi planar structure.  The structure of the complex is 

completed by a di-protonated 4,4’-bipyridine molecule, acting as counter anion. In the literature, 

4,4’-bipyridine is reported in several Zn compounds as a neutral connector, building polymeric 

complexes (as reviewed by A. Erxleben [19]). However, there are also reports of different 

compounds with the nitrogenated ligand acting mono-protonated, [(4,4’-bipy)H]
 +

 [20] and di-

protonated, [(4,4’-bipy)H2]
2+

 [21]. The bond distance between the thiocarbonilic S and the Zn 

metal atom is longer than the same distance in the complexes (1) and (2), where the Zn atoms 



  

are surrounded by only two thiosaccharinates (2.357 Å in (3) vs 2.296 Å in (1) or 2.326/2.302 Å 

in (2)). 

The analysis and comparison of the thiocarbonilic moieties within the three different Zn 

thiosacharinates show that this group suffers different modifications after the coordination. 

These changes are not only related to the coordinated atoms but also to the pka of the di-

pyridines. Whereas complexes (1) and (2) have the same coordination sphere, ZnS2N2, complex 

(3) has a different structure, surrounded by four sulfur atoms, ZnS4. The thiocarbonilic S-C 

distance varies from (1.698 Å complex (1) to 1.684 Å in (3) and a very similar value for 

complex (2) S-C bond distance, 1.685 Å). Linked to this value, the C-N bond distances is 

shortened for complex (1) (1.305 Å),but enlarged in complex (2) and (3) respectively (1.305 Å 

and 1.312 Å). The C1–S1 bond distance in the “free” thiosaccharinate anion, reported in 2006 

[23 d], (1.678(2) Å) is shorter than the three C-S thiocarbonilic bond distances observed for the 

Zn thiosacharinates, confirming the coordination.  The N-C thiocarbonilic bond distance for the 

free anion, (1.324 Å) is in the middle of the range of the values observed for the Zn 

thiosacharinates. 

In all three compounds (1), (2) and (3), the H-bonding schemes (summarized in Table 3) lead to 

weakly connected 3D structures. 

 

Ali et al summarized the molar conductance ranges of metal complexes in different solvents 

[22]. The values measured for our Zn complexes, as expected, are in agreement with the crystal 

structures found. Ali stated that the molar conductance for non-electrolytic complexes, in 

DMSO, should be <50µS M
-1

. The values found for (1), (2), (3) and (4) are respectively 22.4, 

28.3, 18.2 and 26.3 µS M
-1

, which supports non-electrolytic behavior in solution. For complex 

(3), the molar conductivity of 138.7 µS M
-1 

clearly indicates an electrolytic behavior. The range 

reported for 1:1 electrolyte, 50-90 µS M
-1
, is lower than the value found for (3). This is due to 

the fact that complex (3) [(4,4’-bipiyH2][Zn(tsac)4] is a 1:1, anion:cation, electrolyte with [(4,4’-

bipiyH2]
++ 

and ][Zn(tsac)4]
=
. 

 

3.2. Vibrational and electronic spectra 

The five complexes were characterized by FTIR spectroscopy. All the bands due to the ligands 

are present in the spectra. A selection of the thiosaccharinate characteristic bands and some of 

the co-ligands and their assignments are presented in Table 4. The assignments have been made 

considering the theoretical calculations performed for complex previous published theoretical 

vibration analysis [23] and based on our previous studies on metallic and ionic thiosaccharinates 

[9 and references therein]. The vibrational spectra of complexes (1), (2) and (3) are consistent 

with their X-ray structure. The most interesting bands of these compounds are those related to 

the five-member ring of the thiosaccharinate anions, located between 1500 and 400 cm
-1

. The 

thione benzene ring vibrations show no significant differences compared with the thione 

benzenic ring vibrations of Htsac or PNP(tsac) (bis(triphenylphosphine)-iminium 

thiosaccharinate) [24]. The bands attributable to the N-H bond vibrations, namely (NH) and 

δ(NH) modes, which in the thiosaccharine molecule appear at 3341 and 1376 cm
-1

, respectively, 

are absent in the spectra of the five new complexes. The (SH) absorption region is also free of 

bands (between 3000 and 2550 cm
-1

). The stretching motion of the reinforced C-N bonds bands 

appear in all the complexes at higher wavenumbers compared to the values found for the 

thiosaccharinate in PNPtsac (in which the thiosaccharinate is considered as a free anion). Those 

bands due to the weakened stretching of the C-S bonds shift (1003, 1006, 1002 and 977 cm
-1

) to 

lower frequencies (for PNP(tsac) (CN):1365, and (CSexo):1010 cm
-1

). These frequency 



  

movements reproduce the changes in the strength of the bonds within the thioamidate groups 

after the coordination. Complex (3) spectrum shows the 4,4’-bipyridine’s N-H stretching band 

at 3080 cm
-1
, in accordance with the reported values for the protonated bipyridine [25]. It is 

interesting to note that for complexes (4) and (5), which could not be crystallized, the bands 

assigned to the (CSexo) are red shifted for both complexes if compared to the other three. This 

fact may be indicating that the anions in these complexes are coordinating in a different mode, 

with a weakened CSexo bond. Therefore, we postulate that the thiosaccharinate anion in this 

complexes are bridging two metal centers with long Zn-S bonds, as in complex [Ag(tsac)(o-

phen)]n [26] and consequently weakening the Sexo-C bond, which in turn is reflected in the shift 

of the (C-Sexo). Thus, based on the elemental analysis and on the FTIR spectra, we propose that 

complexes (4) and (5) could be formed by polymeric structures, in which the S atoms bridged 

two different Zn atoms, and the nitrogenated coligands quelate to the metal center, as expected. 

 

Table 4. FTIR selected vibration frequencies (cm
-1

) and mode assignments of complexes 1-5 

 

Assignations 1 
Experimental 

1 
Calc.(intensity) 

2 3 4 5 

(CN)pi 1601m 1529 (289) 1619m 1600m 1598m 1593m 

(CN)(S) 1423s  1431s 1405s 1441m 1470m 

as(SO2) 1306vs 1326 (170) 1306vs 1273vs 1310vs 1325vs 

(CH) (CC) 1242m 1249 (406) 1234m 1226vs 1230m 1234m 

s(SO2) (CC) 1161vs 1158 (177) 1158vs 1150vs 1157vs 1164vs 

(CS) (CNS) 1006m 1007 (248) 1003m 1002m 997m 997m 

(NS)(CCC) 805vs  802vs 819vs 808vs 825vs 

(CH)pi 772vs 772 (224) 768vs 768vs 771vs 790vs 

(SO2) 592vs  587vs 593vs 587vs 587vs 

(SO2)(CS) 558m  555m 552m 553m 553m 

(SO2) 522m  534m 535vw 541m 539m 

(CCC)pi 429vw  430vw 432m 431m 431m 

: stretching, : in plane bending, γ: out of plane bending, : bencenic ring, as: asymmetric, s: symmetric, iso: 

isoindolic ring, vs: very strong, s: strong, m: medium, w: weak. Normal modes wavenumbers calculated with 

Gaussian 

 

In the electronic spectra of the five complexes recorded in DMSO solutions, only bands due to 

the → * transitions of the C–Sexocyclic group were observed. The rest of the expected bands 

(e.g. the bands due to the → * transitions of the phenyl rings of the anion or of the other 

ligands) where overlapped by the absorption bands of the DMSO solvent. 

 

3.3. 
1
H and

 13
C NMR spectral studies  

The NMR spectra of the new complexes, in DMSO-d
6
 solutions, were studied and compared to 

the NMR responses of other metal thiosaccharinates with nitrogenated ligands. The numbering 

scheme of the anions are shown in Scheme 1.  

Scheme 1. Atoms numbering for the NMR signals assignments 



  

(1) (2) (3)  (4) (5)  

In the 
1
H-NMR spectra of [Zn(tsac)2(o-phen)], complex (1), the characteristic signals of orto-

phenantroline appear at 9.18 (d, 1H, H8), 8.93 (d, 1H, H10), 8.31 ppm (m, 1H, H13) and the 

other proton (H9) appears between 8.03-8.21 ppm. These values are shifted if compared with 

those reported by Pazderski et al) [27] (9.11 and 7.79 ppm respectively). Regarding the 

thiosaccharinate protons the characteristic signals appear at 7.57-7.72 (m, 3H, H4/H5/H6) and 

7.91 (m, 1H, H3) ppm. Those are values well in the range of other metal thiosaccharinates 

previously reported [9]. For complex (2), [Zn(tsac)2(TMDP)], the TMDP proton signals appear 

at 8.46 ppm (dd, 4H, H8), 7.28 ppm (dd, 4H, H9), 2.64 ppm (t, 4H, H11) and 1.93 ppm (m, 2H, 

H12). The thiosaccharinate anions show their proton resonances at 7.92 ppm (m, 2H, H3) and 

7.58-7.72 ppm (m, 6H, H4/H5/H6). The 
1
H-NMR spectra of complex (3), [(4,4’-

bipy)H2][Zn(tsac)4], show the characteristic signals of the 4,4’-bipy: 8.98 ppm (dd, 4H, H8) and 

8.30 ppm (dd, 4H, H9). The thiosaccharinate protons appear at 7.87-7.08 ppm (m, 4H, H3), 

7.73-7.81 ppm (m, 4H, H6) and 7.35-7.72 (m, 10H, H4/H5/H11). Complex (4) NMR spectra, 

shows the 2,2’-bipyridine signals at 8.60-8.90 (m, 1H, H9), 8.73 (d, 1H, H11), 8.34 (t, 1H, 

H10), 7.83 (m, 1H, H8). For the thiosaccharinate anions, the characteristic signals appear at 7.94 

(m, 1H, H3) and 7.58-7.75 (m, 3H, H4/H5/H6). These signals are shifted if compared with the 

values obtained for [Ag2(tsac)2(2,2’-bipy)2], reported in 2007 by Dennehy et al. The 2,2’-bipy 

appear for that compound at 7.59, 7.98 (dt,4H), 8.20 (dd,4H) and 8.80 (dd,4H) ppm and the 

thiosaccharinate bands are observed at 7.78 (m,1H), 7.90 (d,1H) and 8.11 (d,1H) [28]. In the 
1
H 

NMR spectra of [Zn(tsac)2(2,2’-bq)]n (5), the 2.2’-bq signals appear at 8.80 ppm (dd, 1H, H15), 

8.58 ppm (dd, 1H, H14), 8.19 ppm (dd, 1H, H12), 8.08 ppm (dd, 1H, H11), 7.85 (td, 1H, H10) 

and 7.53-7.73 (m, 1H, H9). The signals due to the thiosaccharinate protons appear at 7.89-7.95 

ppm (m, 1H, H3) and 7.53-7.73 ppm (m, 3H, H4/H5/H6). The 
13

C NMR spectrum of all 

complexes show the expected chemical shifts of the coordinated thioamidic C1 atom around 

190 ppm (C1 (1): 191.81(2): 191.71 (3): 191.56 (4):191.73 (5):191.54 ppm). Besides, in order to 

assign completely and correctly all the signals of 
1
H and 

13
C for each structure, we registered the 

2D-HSQC RMN spectra for the complexes (See Supplementary Information I). 

3.4 Theoretical calculations 

DFT methods were applied to establish the correlation between the physical parameters found 

experimentally for the complex 1 and those calculated. The gas phase geometric structure of this 

complex was optimized and the vibrational spectrum was predicted. The distances obtained are 

a good reproduction of the experimentally observed structural parameters. The observed 

differences are in the range of those previously reported for other silver thiosaccharinates [9]. 

The differences among calculated and experimental angles are due to the packing in the solid 

state. The nature of the vibration modes corresponding to complex were in good agreement with 

the calculated (see Tables 2 and 4). 

3.5 Proliferation assays  

It was mentioned in the introduction that several Zinc based compounds have antifungal and 

antibacterial uses. This prompted us to test whether the complexes synthetized here have anti-

proliferative actions in endothelial tumor cells. We used endothelial cells transformed by the 



  

viral G protein coupled receptor (vGPCR) of Kaposi’s Sarcoma-Associated Herpesvirus, a key 

molecule to develop Kaposi’s sarcoma disease. Thus, cells were treated with each ternary Zn(II) 

complexes (1,2,3,4 and 5) or vehicle (DMSO, 0.1%) at different final concentrations during 48 

hours (Figure 4 a-c). Then, proliferation was measured as was described in methods’ section 

and results were expressed as percentage of cell number of each complex versus molar 

concentration. As is observed in Figure 4 A, .Complex (1) seems to have more anti-proliferative 

activity. Gao et al. [29] recently reported the use of two Zn complexes with two chelating 

agents, 1,10’-phenantroline and 2,2’-bipyridine and found that both complexes exhibited 

important cancer cell inhibitory rate but lower cytotoxicity toward the normal cell lines. 

Compound (2) has a polymeric structure in a solid state, within the cell environment this 

structural may disrupt into solvated molecular units resulting in terminal mono coordinated 

TMDP thus decreasing its biological activity in a dose independent fashion. Complex (3) being 

an ionic compound showed as expected low response independent on doses probably to 

different response towards membrane crossing. Complexes (4) and (5) have mononuclear 

structure with the bipyridine moiety quelating the metal center resulting in a slight biological 

effect. These results gives rise to new questions to be explored regarding the significance of the 

differences found in the cell response upon either compound and are beyond the scope of this 

work. 

 

 

Figure 4. Ternary Zn(II) complexes decrease endothelial vGPCR cells number. Cells were 

treated with of each complex at different doses: A) compound 1 (1.6-4.7 µM), B) 2 compound 

(1.6-4.7 µM), C) 3(1-3 µM), D) compound 4 (1.6-4.9 µM), E) compound 5 (1.4-4.2 µM) or 

vehicle (DMSO) in DMEM 2% FBS for 48 h. Cells were then harvested and counted in a 

Neubauer chamber. Proliferation was calculated as percentage of leaving cells in treated 

conditions versus vehicle (dash line) Percentage values (mean ± S.D.) were then represented in 

bar graphs. n=3.  

4. Conclusions 

Five new ternary Zn(II) complexes were synthesized and characterized. The metal atoms in all 

the complexes are coordinated by thiosaccharinate anions and by other nitrogenated ligands. For 

   

  

A B C 

C D 



  

three of them, [Zn(tsac)2(o-phen)], [Zn(tsac)2(TMDP)]n and [(4,4’-bipy)H2][Zn(tsac)4], the 

crystal structures showed the expected tetrahedral typical structure for Zn(II) thionates. The 

anios are coordinated by the exocyclic sulfur atom, not showing coordination through the N 

thioamidic atom. The proposed structure for the other two complexes consists in a polymeric 

chain formed by thiosaccharinate sulfur bridges. The coordination of the anion was also 

confirmed by means of FTIR and NMR studies. Promising results suggested an anti-cancer 

activity of these ternary Zn(II) complexes. 
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6. Supplementary material 

Crystallographic data for these structures have been deposited with the Cambridge 

Crystallographic Data Centre as supplementary data Nros CCDC 1812462, CCDC 1812463 and 
CCDC 1812464 for [Zn(tsac)2(o-phen)], [Zn(tsac)2(TMDP)]n, and [(4,4’-bipy)H2][Zn(tsac)4], 

respectively. Copies of the data can be obtained free of charge upon request from The Director, 

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK. (fax: +44 
1233 336033; e-mail: deposit@ccdc.cam.ac.uk; WEB: http://www.csdc.cam.ac.uk). Additional 

information regarding 
1
H and 

13
C and HSQC NMR spectra for complexes. xyz coordinates, 

calculated frequencies and total energy in atomic units for [Zn(tsac)2(o-phen)] are available as 

supplementary information. 
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Highlights 

 

 Five novel Zn thiosaccharinates with N ancilliary ligands are presented in this paper. 

 Three of them ([Zn(tsac)2(o-phen)], [Zn(tsac)2(TMDP)]n, [(4,4’-bipy)H2][Zn(tsac)4] ) were 

characterized by X Ray diffraction and their structures are described in the manuscript. 

 Coordination of [Zn(tsac)2(2,2’-bipy)] and of [Zn(tsac)2(2,2’-bquin)] were inferred from the 

spectroscopic analysis. 

 The five complexes exhibited anti-proliferative actions in endothelial tumor cells, thus suggesting 

promising an anti-cancer activity. 

 

 

 


