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Abstract
We investigated the effects of replacing non-fermented wheat grains with wheat grains
fermented by fungal mycelia in the diet of juvenile rainbow trout (Oncorhynchus mykiss).
We assessed growth performance, feeding parameters, and body composition in three exper-
imental groups (0.33 ± 0.01 g, in triplicates of 50 individuals each). The diets for all the groups
contained ca. 43% protein and 19% lipids. Experimental diets were made by replacing the
100 g kg−1 of wheat grains present in the basal diet (CTRL) with the same proportion of wheat
grains fermented by Pleurotus ostreatus (PWD) or Lentinus edodes (LWD) mycelium. Fish
were fed to apparent satiation twice a day for 56 days. Both, PWD and LWD, significantly
increased fish body weight from day 28 onwards. Final body weight was 2.37 ± 0.04 g
(CTRL), 4.29 ± 0.02 g (PWD), and 3.50 ± 0.05 g (LWD), and feeding efficiency (%) was
increased from 64.5 ± 0.7 (CTRL) to 92.5 ± 0.5 (PWD) and 84.8 ± 1.5 (LWD). The experi-
mental diets also improved nutrient retention efficiency (%): 30.0 ± 0.5 (PWD), 27.7 ± 1.1
(LWD), and 21.0 ± 0.1 (CTRL), for crude protein; 40.3 ± 0.6 (PWD), 31.0 ± 1.8 (LWD), and
16.1 ± 0.7 (CTRL), for ether extract; and 16.1 ± 0.1 (PWD), 14.0 ± 0.3 (LWD), and 11.6 ± 0.6
(CTRL), for phosphorus. Body lipid content was highest for PWD followed by LWD and
CTRL (81.4 ± 1.4, 63.2 ± 2.5, 42.3 ± 2.6 g kg−1, respectively), while viscerosomatic index was
lowest for PWD (p < 0.05). Liver glycogen in LWD and PWD fish (0.62 ± 0.10 and 0.21 ±
0.08% liver weight) was significantly higher than in CTRL fish (0.05 ± 0.01% liver weight).
Wheat-mycelium meals appear to be suitable dietary ingredients for improving juvenile
rainbow trout growth and nutritional performance. These benefits vary according to the
mushroom species used.
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Abbreviations
CP Crude protein
EE Ether extract
FBW Final body weight
FD Feed delivered
FE Feed efficiency
IBW Initial body weight
LAB Lactic acid bacteria
LW L. edodes wheat-mycelium meal
LWD L. edodes wheat-mycelium diet
P Phosphorus
PW P. ostreatus wheat-mycelium meal
PWD P. ostreatus wheat-mycelium diet
SSF Solid state fermentation
TGC Thermal growth coefficient
VSI Viscerosomatic index
WW Whole wheat grains

Introduction

The nutritional properties of edible mushrooms including oyster mushroom (Pleurotus
ostreatus) and shiitake (Lentinus edodes) have been confirmed through intensive research
(see reviews by Bisen et al. 2010; Deepalakshmi and Mirunalini 2014). In humans, the
consumption of mushrooms leads to significant nutritional improvements associated with their
high biological value proteins, polysaccharides, dietary fiber, vitamins, and minerals (Wani
et al. 2010; Schneider et al. 2011; Cohen et al. 2014). In addition, mushrooms contain diverse
biologically active compounds with medicinal properties (Aida et al. 2009; Hearst et al. 2009;
Wasser 2014).

Feeds supplemented with whole fruiting bodies, extracts, or purified β-glucans from P.
ostreatus (Kamilya et al. 2006; Dobsíková et al. 2013; Bilen et al. 2016), L. edodes (Nikl et al.
1991; Djordjevic et al. 2009; Baba et al. 2015), and Ganoderma lucidum (Yin et al. 2009;
Chang et al. 2013; Liu et al. 2015) have been shown to improve the health condition of
economically important fish species by reinforcing antioxidant defenses, immune response,
and/or disease resistance. However, there are scarce reports on the effects of mushrooms on
fish growth performance and feeding parameters. In a recent study, Pascual et al. (2017) have
found that a diet supplemented with fruiting bodies of Grifola gargal enhances growth, lipid
content, and nutrient retention in juvenile rainbow trout (Oncorhynchus mykiss). Incorporation
of Pleurotus spp. extract or fruiting bodies in the diet slightly improves growth parameters in
O. mykiss and other fishes (Ahmed et al. 2015; Bilen et al. 2016; Van Doan et al. 2016), while
there are no successful antecedents about L. edodes effects on fish growth (Djordjevic et al.
2009). A deeper knowledge of mushroom effects on cultured fish would contribute to the
development of quality dietary supplements to be incorporated into the formulation of a well-
balanced diet.

Biotransformation of vegetable substrates by microorganisms is often used to increase
nutritional and functional properties, such as flavor, aroma, texture, and nutrient bioavailability
in the original food (Steinkraus 1994; Nout and Kiers 2005). Since the mid-1970s, solid-state
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fermentation (SSF) has been used for the development of industrial bioprocesses (Rodríguez
Couto and Sanromán 2006; Singhania et al. 2009; Thomas et al. 2013), including the
biotransformation of crops and crop residues for detoxification and nutritional enrichment
(Cohen et al. 2002; da Luz et al. 2013; Nasehi et al. 2017). SSF is defined as any fermentation
process on a non-soluble material that acts both as a physical support and as a source of
nutrients, in absence of free flowing liquid (Pandey 1992). Although yeast and some bacteria
are suitable for SSF, filamentous fungi are normally used for this process since their mycelia
can grow over particle surfaces in a low moisture environment, secreting enzymes, and
specific bioactive compounds to ferment those solid substrates (dos Santos et al. 2004; Singh
nee’ Nigam 2009; Hole et al. 2012). Cereals, legumes, and oil seeds are particularly suitable as
substrates for fungal SSF (reviewed by Gowthaman et al. 2001 and Gan et al. 2017).
Particularly, wheat grains’ (Triticum spp.) antioxidant properties and total phenolic content
are improved by SSF with filamentous fungi, such as molds (Hyphomycetes) (Bhanja Dey
et al. 2009; Bhanja Dey and Kuhad 2014; Sandhu et al. 2016) and mushrooms (Basidiomy-
cetes and Ascomycetes) (Zhang et al. 2012; Postemsky and Curvetto 2014; Subramaniam et al.
2014). In addition, Skrede et al. (2002) have reported that the incorporation of whole wheat
flour fermented by lactic acid bacteria (LAB) to salmonid diets improves nutrient digestibility.
However, to our knowledge, there are no reports about the use of wheat grains fermented by
edible mushrooms in the formulation of animal feeds. In this study, we analyzed the effects of
the inclusion of wheat-mycelium mixture obtained by SSF with P. ostreatus or L. edodes in the
diet of juvenile rainbow trout. We replaced the wheat grains, which are included at 100 g kg−1

in the basal diet routinely used in the hatchery, with wheat grains fermented by either P.
ostreatus or L. edodes (experimental diets) and studied growth performance, nutrient retention,
and viscerosomatic index in juvenile rainbow trout.

Materials and methods

Preparation of wheat-mycelium meal

Whole wheat grain (WW) inoculated with the basidiomycetes Pleurotus ostreatus var. florida
(strain A01) or Lentinus edodes (strain B01) was purchased from CISPHoCoMe (Centro de
Investigación y Servicios para la Producción de Hongos Comestibles y Medicinales, Argen-
tina). Mycelium development and wheat biotransformation (SSF) were performed in closed
bags, during 40 days at 20–24 °C in a dark room. After this period, the P. ostreatus or L.
edodes wheat-mycelium mixtures (PW or LW, respectively) were dried at 60 °C, grounded to
powder, and stored at − 18 °C. The proximate compositions of both products were analyzed as
described below and are detailed in Table 1.

Experimental diet formulation

The basal diet was formulated in our laboratory, according to Hardy (2002), to meet the
nutrient requirements of rainbow trout. White fish meal (crude protein 596 g kg−1) and fish oil
were supplied by AGUSTINIER S.A. (Argentina). Blood meal and hydrolyzed feather meal
were purchased from POLLOLIN S.A. (Argentina). Experimental diets (PWD and LWD)
were prepared by replacing 100 g kg−1 of whole wheat in the basal diet (CTRL) for equal
amounts of PW or LW meal. Control and experimental feeds were prepared by mixing the
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ingredients and adding water to form a paste, which was then pelletized and dried in a hot air
column. The resulting pellets were crumbled, sieved to obtain 0.7–1.2-mm fragments, and
stored at 4 °C. All diets were designed to be isonitrogenous, isolipidic, and isoenergetic. The
feed ingredients and proximate composition are summarized in Table 2.

Table 1 Proximate analysis of whole wheat grains (WW) biotransformed by P. ostreatus (PW) or L. edodes
(LW) mycelia on dry weight basis

Proximate composition (g kg−1) WW PW LW

Crude protein (CP)1 140.5 119.4 117.2
Ether extract (EE) 18.2 19.5 19.0
Ash 17.3 25.0 23.6
Nitrogen-free extract (NFE)2 824.0 836.1 840.1
Total nitrogen (TN) 24.1 20.5 20.1

1 CP was estimated using the wheat grain conversion factor (5.83), according to Merrill and Watt (1973)
2 NFE = total −moisture −CP −EE − ash

Table 2 Formulate and proximate composition of the experimental diets

Diets CTRL PWM LWM

Ingredients (g kg−1)
Fishmeal, white 570 570 570
Fish oil 160 160 160
Whole wheat 149 49 49
P. ostreatus wheat mycelium 0 100 0
L. edodes wheat mycelium 0 0 100
Blood meal 50 50 50
Feather meal 50 50 50
Vitamin and mineral premix1 10 10 10
Choline chloride 5.0 5.0 5.0
L-Lysine 4.0 4.0 4.0
L-Methionine 1.0 1.0 1.0
Ascorbic acid 1.0 1.0 1.0
Carboxymethyl cellulose 20 20 20

Proximate composition (g kg−1)
Moisture 58.5 55.4 59.3
Crude protein (CP)2 423 431 436
Ether extract (EE) 180 198 184
Ash 164 161 162
Phosphorus (P) 26.0 25.5 26.2
Nitrogen-free extract (NFE)3 175 155 158
Gross energy (kJ g−1)4 20.1 20.6 20.3

1 Vitamin and mineral premix contains (as g kg−1 premix) vitamin A, 2400000 IU; vitamin D3, 480,000 IU;
vitamin E, 50000 IU; thiamine, 2; riboflavin, 4; pyridoxine, 3; pantothenic acid, 8; biotin, 0.2; niacin, 30; folic
acid, 1.2; cyanocobalamin, 0.006; ascorbic acid, 30; menadione, 1.6; sodium selenite, 0.06; potassium iodide,
0.35; cupric sulfate pentahydrate, 1; zinc sulfate heptahydrate, 14; manganese sulfate monohydrate, 10; ferrous
sulfate, 20; cobalt chloride, 0.4
2 Crude proteins (CP) were estimated using 6.25 as conversion factor
3 NFE = total −moisture −CP −EE − ash
4 Gross energy was calculated as 23.6, 39.5, and 17.2 kJ g−1 of CP, EE, and NFE, respectively (NRC 1993)
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Chemical analysis

Chemical analysis of WW, PW, and LW, basal and experimental diets, and fish whole body
were performed by standard procedures according to AOAC (1990). Total nitrogen (TN) was
determined using the semi-micro Kjeldahl method and crude protein (CP) was estimated using
6.25 × TN. For WW, PW, and LW analysis, a conversion factor of 5.83 was used according to
Merrill and Watt (1973). Ether extract (EE) was measured gravimetrically following sample
extraction of 1 g in petroleum ether, using a Soxhlet apparatus. Moisture and ash were
measured gravimetrically, the former after drying in an oven at 105 °C for 3 h and the latter
by combustion in a muffle at 550 °C for 6 h. Nitrogen-free extract (NFE) was calculated by
difference (total – CP − EE – ash −moisture content). To estimate the gross energy of each
diet, the corresponding CP, EE, and NFE were multiplied by 23.6, 39.5, and 17.2 kJ g−1,
respectively (NRC 1993). Total phosphorus was assayed by wet digestion of the samples with
HNO3 + HClO4, and detection was made with the ascorbic acid method (Takeuchi 1988).

Fish and experimental design

O. mykiss fry were obtained from the hatchery of Centro de Ecología Aplicada del Neuquén
(CEAN). The trials were carried out in 50-L PVC containers supplied with a constant
freshwater flow from the Chimehuín River and maintained in a 14:10 light:dark cycle. During
the experiment, water quality conditions were as follows: daily mean temperature 11.3 ±
1.7 °C (min. 8.1, max. 14.4 °C), pH 6.8 ± 0.2, conductivity 76 ± 19 μs cm−1, and dissolved
oxygen above 94%. A total of 450 fry were randomly distributed into 9 groups of 50
individuals (16.4 ± 0.2 g total biomass per container). The initial body weight (IBW) was
0.33 ± 0.01 g. At the beginning of the experiment, an extra sample of 50 fry (day 0—initial
sample) was euthanized by benzocaine overdose, stored at − 20 °C, chopped, and used for
whole-body proximate composition chemical analysis. Three diets were used for the experi-
ment (CTRL, PWD, and LWD), following a randomized design of triplicates. Fish were hand-
fed to apparent satiation twice a day (except on Sundays), at 10:00 and 17:00 h for 56 days
(austral spring season, October to December). Special care was taken to ensure that fish had
eaten all the feed. Throughout the experiment, besides food deprivation every Sunday, once
every 2 weeks, all the fish in each container were starved from Saturday 17 h to Monday 10 h,
anesthetized with 100 ppm benzocaine, counted, and weighted to calculate total biomass. Dead
fish were counted daily at feeding times in order to calculate percentage survival by container
as (100 × final fish number / initial fish number). The experimental protocols were approved
by the Bioethics Committee, School of Biochemical and Pharmaceutical Sciences, National
University of Rosario, Argentina (6060/116).

Growth estimation, feeding parameters, and nutrient retention

At the end of the experiment (16 h after the last meal), all fish in each container (n = 3) were
weighed and counted to calculate the following parameters: Final body weight (FBW) was
estimated by dividing total fish biomass by the number of fish; thermal-unit growth coefficient
(TGC) was calculated as 1000 × (FBW0.209 − IBW0.209) / (T ×D), where T is the mean daily
temperature in °C and D is the number of days between measurements (Dumas et al. 2007).
Feeding efficiency (FE) was calculated as 100 × (fish biomassday 56 +M − fish biomassday 0) /

Aquaculture International



FD, where FD is the feed delivered between measurements (g) andM is the body weight (g) of
the dead fish.

Nutrient retention efficiency for CP, EE, and phosphorus (in %) was calculated for each
container (n = 3) as 100 × [((fish biomassday 56 (g) × fish nutrient contentday 56 (g kg−1)) − (fish
biomassday 0 (g) − fish nutrient contentday 0 (g kg−1))) / (total feed delivered (g) × diet nutrient
content (g kg−1))] (Glencross et al. 2004).

Sample collection and liver glycogen

At the end of the experiment, a sample of 20 fish per container (n = 3) was euthanized by
benzocaine overdose, chopped, and used for whole-body proximate composition chemical
analysis. Another five fish per container (n = 3) were randomly selected and euthanized by
benzocaine overdose. Then, these were individually weighed (g) and their abdominal cavity
was opened. The whole digestive tracts and livers were dissected and weighed (g) to calculate
viscerosomatic index (VSI) as 100 × (viscera weight (including liver) + perivisceral adipose
tissue weight) / body weight.

Glycogen content in liver was determined according to Van Handel (1965). The livers of
two individuals per tank (n = 3) were excised, weighted, and immediately frozen at − 20 °C.
Tissues were then homogenized in PBS, and glycogen was extracted and precipitated with
ethanol 96% in an electrolyte solution. Spectrophotometric measurements were carried out at
620 nm, after hydrolysis in acid anthrone reactive (0.2% in H2SO4) for 10 min. Glycogen
content (mg) was calculated using a glucose standard curve, and results were expressed as
percentage of fresh liver weight.

Middle intestine histology

To assess possible alterations in the mid intestine tissue caused by the diets, a histological
examination was performed at the end of the feeding trial. Three fish from each container (n =
3) were randomly selected and euthanized by benzocaine overdose. Then, approximately 1 cm
of mid intestine was immediately removed from each fish, rinsed in ice-cold Cortland saline
(pH 7.4, plus 5 mM HCO3Na and 5.55 mM glucose), and fixed overnight in Bouin’s solution.
Samples were stored in 70% ethanol until dehydrated and embedded in paraffin according to
standard histological techniques. Cross sections of 3–5 μm thickness were obtained and
stained with Masson’s trichrome, periodic acid-Schiff (PAS), and Alcian blue (pH 2.5). Stained
sections (2–3 by fish) were observed and photographed with a light microscope (Nikon Eclipse
E600).

Integrity of microvilli and infiltrated cells into the mucosal layer were evaluated. Lamina
propria and submucosal connective tissue thickness were assessed based on the criteria
adopted by Barnes et al. (2014) for histological sections of distal intestine of rainbow trout.

The PAS and Alcian blue stained sections were used for counting goblet cell with neutral or
acid mucopolysaccharides in the tunica mucosa layer at × 200 magnification using the ImageJ
1.49v software. Quantification was carried out in areas where the cutting plane of villi allows
distinguishing the simple epithelium as a single layer of tall columnar cells (enterocytes) over a
clear lamina propria. The quantitative data were reported as mean number of goblet cells per
linear millimeter of mucosal surface. For each section, a distance between 2.2 and 5.7 mm was
used.
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Statistical analysis

Data are presented as mean ± standard error of the mean (SEM), n = 3. Normal distribution and
homogeneity of variance were checked by Kolmogorov-Smirnov’s and Bartlett’s tests, respec-
tively. Diet effects on growth at different times were analyzed by repeated measures two-way
ANOVA and Bonferroni’s post hoc comparisons. One-way ANOVA and Tukey’s post hoc
comparisons were applied to identify differences among diets for all the other variables.
Proportion and percentage data were normalized by the arcsine square root transformation.
We considered a value of p < 0.05 as statistically significant (Zar 1999).

Results

Growth performance

Two-way ANOVA showed a statistically significant interaction between diet and time
factors in the fish’s average body weight (p < 0.0001). As shown in Fig. 1, from day 28
onwards, fish fed with both experimental diets showed higher growth rates than CTRL
fish (p < 0.001 and p < 0.05, for PWD and LWD, respectively). Besides, average body
weight was higher in fish fed with PWD than in those fed with LWD (p < 0.001). At the
end of the trial (day 56), the observed differences in growth performance were reflected
in FBW (p < 0.001, Table 3). Accordingly, the TGCs calculated were 0.64 ± 0.01
(CTRL), 0.89 ± 0.01 (PWD), and 0.80 ± 0.01 (LWD) and were significantly different
among all diets (p < 0.001). No significant differences among diets were detected in fish
percentage survival (Table 3).

Estimations of VSI showed a significantly lower value in fish fed with PWD (14.3 ± 0.5%)
when compared to those fed with CTRL (16.9 ± 0.6%, p < 0.05, Table 3). Liver glycogen in
LWD fed fish was significantly higher than in CTRL (p < 0.001) and PWD fed fish (p < 0.05).
Glycogen content for PWD fish was also significantly higher than that for the CTRL (p < 0.01,
Table 3).

Fig. 1 Growth curve of Oncorhynchus mykiss fed with wheat mycelium supplemented (PWM - LWM) or basal
(CTRL) diets during 56 days. The average body weight was calculated dividing total biomass per fish number in
each container (n = 3). Values are expressed as mean ± SD. Different letters indicate significant differences
among diets on the same day (Bonferroni’s post-test, p < 0.05)
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Feeding performance, proximate analysis, and nutrient retention ratio

FD was highest in the group fed with PWD and lowest in the CTRL group with significant
differences among the three groups (p < 0.001). The FE value obtained for fish fed with CTRL
was significantly improved by both experimental diets (p < 0.001), and FE of PWDwas higher
than that of LWD (p < 0.01, Table 3).

The whole-body proximate composition of the studied groups is shown in Table 4. There
were no significant differences in CP, ash, and phosphorus contents among groups. However,
EE was significantly increased (p < 0.001) in fish fed with both PWD and LWD, when
compared with CTRL (Table 4). EE was also significantly higher in fish fed with PWD than
in those fed with LWD (p < 0.01). Moisture content of fish receiving PWD decreased
significantly (p < 0.01) when compared with those receiving CTRL and LWD (Table 4).

The nutrient retention ratios for CP, EE, and phosphorus were significantly improved
(p < 0.01) by both experimental diets with respect to CTRL. As shown in Table 4, CP retention
was improved by PWD and LWD (30.0 ± 0.5 and 27.7 ± 1.1%, respectively) with respect to
the CTRL (21.0 ± 0.1%). EE retention in fish fed with PWD (40.3 ± 0.6%) was significantly
higher (p < 0.01) than that for fish fed with LWM (31.0 ± 1.8%), and both were higher than
that obtained for the CTRL (16.1 ± 0.7%). In the same way, phosphorus retention was highest

Table 3 Growth parameters, feeding performance, and liver glycogen analysis of O. mykiss fed with supple-
mented (PWM and LWM) or basal (CTRL) diets during 56 days

CTRL PWM LWM ANOVA p

IBW g fish−1 0.33 ± 0.01 0.33 ± 0.01 0.33 ± 0.01 0.963
FBW g fish−1 2.37 ± 0.04a 4.29 ± 0.02b 3.50 ± 0.05c < 0.001
Survival % 98.7 ± 0.7 98.0 ± 1.2 96.7 ± 0.7 0.420
FD g 158 ± 3a 209 ± 1b 184 ± 3c < 0.001
FE % 64.5 ± 0.7a 92.5 ± 0.5b 84.8 ± 1.5c < 0.001
Glycogen1 % 0.05 ± 0.01a 0.21 ± 0.08b 0.62 ± 0.10c < 0.01

Data are presented as mean values ± SEM of three replicates. Different superscript letters in the same row
represent significant differences among groups by Tukey test (p < 0.05)

IBW initial body weight, FBW final body weight, FD feed delivered, FE feeding efficiency
1% of fresh liver weight

Table 4 Whole-body proximate composition analysis and nutrient retention rates of O. mykiss fed with
supplemented (PWD and LWD) or basal (CTRL) diets during 56 days

Initial CTRL PWD LWD ANOVA p

Moisture g kg−1 840.0 793.0 ± 8.0a 748.0 ± 1.0b 763.7 ± 2.7a < 0.01
CP g kg−1 110.0 133.9 ± 2.5 137.6 ± 2.9 139.3 ± 3.0 0.521
EE g kg−1 25.9 42.3 ± 2.6a 81.4 ± 1.4 b 63.2 ± 2.5c < 0.001
Ash g kg−1 14.1 24.1 ± 1.3 22.9 ± 0.1 22.7 ± 0.1 0.887
P g kg−1 2.37 4.15 ± 0.15 4.27 ± 0.03 4.17 ± 0.03 0.454
CP retention (%) 21.0 ± 0.1a 30.0 ± 0.5b 27.7 ± 1.1b < 0.005
EE retention (%) 16.1 ± 0.7a 40.3 ± 0.6b 31.0 ± 1.8c < 0.001
P retention (%) 11.6 ± 0.6a 16.1 ± 0.1b 14.0 ± 0.3c < 0.001

Data are presented as mean values ± SEM of three replicates. Different superscript letters in the same row
represent significant differences among groups by Tukey test (p < 0.05)

CP crude protein, EE ether extract, P phosphorus
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in PWD fed fish (16.1 ± 0.1%), followed by LWD (14.0 ± 0.3%), and both were significantly
higher (p < 0.01) than that in CTRL fish (11.6 ± 0.6%, Table 4).

Middle intestine histology

Histological examination of trout mid intestine did not reveal differences between experimen-
tal diets. In the tunica mucosa layer, normal enterocytes with basal nuclei were observed and
microvilli were visible as a PAS positive continuous border without disruptions. Infiltrated
cells were equally observed in all the studied sections (Fig. 2a).

The evaluation of goblet cell number showed no differences among diets, neither with PAS
nor with Alcian blue stains (p = 0.942 and 0.972, respectively). The values obtained (in cells/
linear mm) for PAS were 21.2 ± 4.5 (CTRL), 20.8 ± 3.7 (PWD), and 19.6 ± 1.7 (LWD) and for
Alcian blue were 21.4 ± 1.7 (CTRL), 20.9 ± 1.0 (PWD), and 20.8 ± 2.7 (LWD). There were no
evident differences in lamina propria and submucosal connective tissue thickness among diets.
Representative micrographs are shown in Fig. 2.

Fig. 2 Cross sections of Oncorhynchus mykiss mid intestine. No histological differences were observed between
diets. Representative micrographs of mucosal and submucosal layers stained with periodic acid-Schiff’s (PAS)
reaction (a), Alcian blue (pH 2.5) (b), or Masson’s trichrome (c). CM, circular muscle; GC, goblet cell; IC,
infiltrated blood cell; LP, lamina propria; ML, mucosal layer; MV, microvilli; SC, stratum compactum. Scale bar
50 μm
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Discussion

In this study, we modified the diet of juvenile rainbow trout by replacing 2/3 of the whole
wheat used in the basal diet (10% of the total) with wheat grains biotransformed by mycelia of
the edible mushrooms P. ostreatus and L. edodes. We show, for the first time, that the inclusion
of wheat biotransformed by P. ostreatus and L. edodes significantly improves growth perfor-
mance. There are only few previous studies dealing with the effects of these mushroom species
on fish growth, without promising results. P. ostreatus byproducts fermented by LAB included
as new dietary ingredient to replace fish meal produced negative effects on fish growth
performance (Katya et al. 2014). In contrast, Bilen et al. (2016) obtained slightly positive
effects on rainbow trout growth and feed conversion ratio using methanolic extracts of P.
ostreatus fruit body. For L. edodes, Djordevic et al. (Djordjevic et al. 2009) found no
significant effects on O. mykiss growth rate upon dietary administration of purified β-glucan
(Lentinan).

The FE value obtained for the CTRL diet was lower than expected (Woynarovich et al.
2011), while TGC was within the confidence interval calculated from the data published by
Dumas et al. (2007) for O. mykiss smaller than 20 g, although near the lower limit. This
relative underperformance in the control group could be related to the low CP content of our
control and experimental diets (c.a. 43% compared with the optimum range of 45–50% for O.
mykiss of the same stanza (Hardy 2002)). LWD and PWD diets increased both FD and FE with
respect to CTRL, which supports the important improvements registered in growth perfor-
mance (25–38% in TGC and 47–81% in FBW for LWD and PWD, respectively). Besides, fish
receiving wheat-mycelium diets showed higher macronutrient retention rates than CTRL fish,
which suggest an improvement in nutrient utilization. These fish were more effective to
convert feed’s protein into body weight, as suggested by the increased protein retention
efficiency (CP retention rate), and had higher lipid retention rates than CTRL. Accordingly,
Skrede et al. (2002) showed that LAB fermentation of whole wheat improves the digestibility
of lipids and energy in salmon diets. However, nutrient digestibility of the new ingredients
proposed in this study should be assessed in order to determine their nutritional value and
appropriate inclusion levels in formulated diets (Glencross et al. 2007).

In addition, both wheat-mycelium diets increased the lipid content of trout’s whole-body
composition (assessed as EE) without a significant effect on the protein content when
compared with fish receiving CTRL diet. Lipid content of fish fed with PWD and LWD
was 90 and 50% higher than that of CTRL fish. This could be explained by the observed
reduction in moisture in fish fed with both experimental diets. However, it is interesting to
notice that PWD significantly reduced VSI with respect to the CTRL diet, suggesting that the
increase in lipid content produced by this supplement occurred in the carcass and not in the
perivisceral adipose tissue. The reduction of visceral percentage in fish is encouraged since the
viscera are discarded during slaughter, and this process directly influences economic returns in
trout production (Kause et al. 2016).

The comparison between both experimental diets showed that the benefits associated to
dietary inclusion of wheat mycelia were dependent on the mushroom species used for
fermentation. Besides the inherent differences in the nutrient composition and antioxidant
properties of fruit bodies and mycelia of both species (Lobanok et al. 2003; Reis et al. 2012;
Cohen et al. 2014), we observed no differences in proximal composition between both wheat-
mycelium meals. Although we measured a c.a. 16% lower CP content in the wheat-mycelium
meals than in the whole wheat meal, which is probably an error due to poor homogenization,
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the final CP contents of the wheat-mycelium and control feeds were almost identical (Tables 1
and 2). However, a more detailed characterization of wheat-mycelium meals is needed since
differences in bioactive compounds, e.g., antioxidant activity, GABA, and vitamin levels, have
been reported for wheat fermented with different mushroom species (Postemsky and Curvetto
2014; Subramaniam et al. 2014; Gan et al. 2017). In our study, incorporation of PW-fermented
wheat produced a superior performance than LW-fermented wheat in all measured parameters,
with the exception of liver glycogen. We observed that both diets promoted the deposition of
liver glycogen reserves, with increases of 12-fold for LWD and 4-fold for PWDwith respect to
the CTRL. These results are difficult to compare with the literature, since the antecedents on
liver glycogen content in O. mykiss fry are scarce. For farmed juvenile trout (14 g body
weight), Boujard and Leatherland (1992) have reported a range between 3 and 7% fresh liver
weight, which is about 100- and 8–24-fold higher than our results for CTRL and experimental
diets, respectively. This difference could be explained by differences in fish size/
developmental stage (2–4 g body weight in this study) (Gilmour et al. 2012) or in diet
formulation (Hilton and Dixon 1982). Nevertheless, the differences among diets in our
experiment cannot be explained by size difference, since fish fed with LWD have lower final
weight than those fed with PWD and have 3-fold higher liver glycogen content. This effect is
more probably explained by the presence of different bioactive compounds in these two
mushroom species. On the other hand, the method for processing starch in fish feed elabora-
tion has been reported to affect glycogen deposition in liver by modifying their digestible
carbohydrate levels (Hilton and Slinger 1981; Kim and Kaushik 1992; Hemre et al. 2002). In
this regard, Skrede et al. (2002) have shown that LAB fermentation of wheat whole flour
improves the digestibility and utilization of starch in salmon (Salmo salar L.) although these
authors have not reported glycogen values. In this context, our results suggest that dietary
replacement of wheat grains with biotransformed wheat grains increases the digestible carbo-
hydrate levels of the diet and/or modulate metabolic processes which lead to enhanced growth
performance and liver glycogen reserves. Furthermore, these metabolic effects depend on the
mushroom species used for biotransformation.

In this study, no negative effects on survival were observed in O. mykiss fed with CTRL or
experimental diets. In addition, there were no histological alterations in mid intestine prepa-
rations from fish receiving experimental or CTRL diets. Accordingly, Uluköy et al. (2016) did
not find histological changes in the intestine of O. mykiss receiving diets with L. edodes water
extracts for 6 weeks.

In conclusion, the inclusion of wheat grains biotransformed by P. ostreatus and L. edodes in
fish feed promotes growth, feeding performance, and liver glycogen reserves of juvenile
rainbow trout. The in vivo benefits observed in this study support the idea that mycelium-
fermented wheat would be a suitable option to incorporate edible mushroom properties into
fish diet. In addition, the improvement of feeding performance and nutrient retention would
imply environmental benefits such as decreased nutrient loads in aquaculture effluents.
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