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Marı́a Paulina Montaña1, Néstor Blasich2, Ernesto Haggi*2 and Norman A. Garcı́a*3

1Área de Quı́mica Fı́sica, Universidad Nacional de San Luis, San Luis, Argentina
2Unidad Académica Rı́o Gallegos, Universidad Nacional de la Patagonia Austral, Rı́o Gallegos, Argentina
3Departamento de Quı́mica, Universidad Nacional de Rı́o Cuarto, Campus Universitario,
Rı́o Cuarto, Argentina

Received 4 December 2008, accepted 26 February 2009, DOI: 10.1111 ⁄ j.1751-1097.2009.00567.x

ABSTRACT

Considering the significance of visible light-promoted reactions in

complex biological media, the photo-oxidation of the amino acids

(AAs) tyrosine (tyr) and tryptophan (trp) was studied in the

presence of the naturally occurring oxidative scavenger uracil

(ur). The involved photoprocesses, studied at pH 7 and 9, are

driven through the reactive oxygen species (ROS) singlet

molecular oxygen (O2(
1Dg)), superoxide radical anion (O2

•))

and hydrogen peroxide (H2O2). The effect on the effectiveness of

the overall photo-oxidation process due to the presence of an

added electron-donating substrate such as ur is not straightfor-

wardly predictable. The addition of the pyrimidine compound, a

much lesser photo-oxidizable substrate than the AAs themselves,

produced different results: (1) antioxidative for tyr at pH 9,

decreasing the overall rate of oxygen uptake; (2) synergistic for

tyr at pH 7, increasing the oxidation rate more than the

corresponding addition value of the respective individual rates and

(3) no effect for trp at both pH values. The final result depends on

the respective abilities of the substrates as quenchers of both the

long-lived riboflavin triplet excited state and the generated ROS

and the pH of the medium. An interpretation for the different

cases is attempted through a kinetic and mechanistic analysis.

INTRODUCTION

Reactions between biologically significant compounds are

being increasingly investigated in relation to relevant
chemical ⁄ biochemical events in several fields, such as biology,
pharmacology and medicine (1–3). This is the case of thermal

and photochemical interactions between amino acids (AA) and
nucleic bases, which strongly attracted scientific attention (4–
6). The addition of AAs to uracil (ur), upon photoirradiation
with ultraviolet light is known and has been investigated for

several decades (4). The relevance of these reactions was
related to the mechanism by which DNA and proteins are
cross-linked in vivo, stimulated by ultraviolet light. Similarly,

the formation of cross-links between ur-substituted nucleic
acids and tryptophan-containing (trp) proteins was detected
and studied by the characteristic fluorescence of the ur-trp

fluorophore (5). In addition, energetic aspects of charge- and

proton-transfer reactions between nucleobases and AAs, that
can produce DNA and RNA damage, have been recently

studied by means of computational calculations for several
nucleoside models including ur (6).

Turning to potential light-induced processes involving ur

derivatives and AAs, and in the frame of naturally driven
photoreactions, a first observation arises: both families of
compounds are transparent to daylight. Nevertheless it is well

known that ur and AAs can be affected by visible light
irradiation if some compound, namely a photosensitizer, able
to absorb visible light and to generate reactive species, is
present in the same environment (7). A daylight-absorbing

pigment of particular interest is the naturally occurring
vitamin B2, riboflavin (Rf). The vitamin is endogenously
present in living organisms, and has been postulated as a

possible sensitizer for the in vivo photo-oxidative degradation
of proteins, puric bases and fatty acids, among other biolog-
ically relevant substrates (8–13).

Riboflavin was found to generate reactive oxygen species
(ROS) upon photoexposure. Studies with puric bases showed
that Rf-photosensitized processes could be responsible for
photodamaging of DNA (14). Recently we reported kinetic

studies on the Rf-sensitized photo-oxidation of ur, uric acid,
xanthine and hypoxanthine in aqueous solution, mediated by
ROS (9,15). The aerobic light-induced interaction of Rf with

proteins is well known to occur through ROS-mediated
oxidation of one or several of the five photo-oxidizable AAs:
tyr, trp, methionine, histidine and cysteine (16–19). A typical

example is the photo-oxidation of milk proteins, sensitized by
the vitamin (20–22). Also, it is well established that photo-
promoted reactions can occur in the human body, especially in

regions directly exposed or transparent to environmental light,
in the presence of Rf (23,24).

Recently, the photolysis of several flavins was studied in air-
saturated aqueous solution in the presence of appropriate

electron donors, including aromatic AAs (25). The overall
reaction observed was conversion of oxygen via the hydroper-
oxyl ⁄ superoxide radical.

As Rf, ur-containing biomolecules and proteins can occupy
common locations in complex biological systems, elucidating
the kinetics of tyr and trp photo-oxidation, in the presence

of the vitamin and ur, will allow: (1) a greater understanding of
the chemical and physical behavior of ROS involved; (2) the
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interpretation of the actual photochemical reactions of ur and
AAs; and (3) a greater insight into the influence of different
substrates on tyr and trp oxidation.

This was the goal of the present study, driven through the

evaluation of the rates of oxygen uptake by the AAs and
uracil, in the simultaneous presence of visible light and vitamin
B2 as dye-sensitizer. The relative values of oxygen uptake rates

were taken as a measure of overall photo-oxidability by the
substrates. The AAs trp and tyr were chosen as typical protein
oxidizable targets, under visible light photoirradiation in the

presence of ROS generators.

MATERIALS AND METHODS

Materials. Uracil, LL-tryptophan, LL-tyrosine, Rf, superoxide dismutase
(SOD) from bovine erythrocytes and catalase from bovine liver, were
purchased from Sigma Chem. Co. (St. Louis, MO). Rose bengal (RB)
and sodium azide (NaN3) were from Aldrich (Milwaukee, WI). All
these chemicals were used as received. Water was triply distilled. All
the measurements were carried out at room temperature and with
freshly prepared solutions. Buffered aqueous solutions were prepared,
with 0.025 MM KH2PO4 ⁄ 0.025 MM Na2HPO4 (pH 7), and 0.01 MM

Na2B4O7.10H2O (pH 9) (26).
Methods. Absorption spectra were registered with a Hewlett

Packard 8452A or an Agilent 8453 diode-array spectrophotometer.
Continuous photolysis was performed in a home-made photolyzer
with a 300 W quartz-halogen lamp and a cutoff filter at 360 nm, using
RB (A(530) = 0.5) or Rf (0.04–0.05 mMM) as sensitizer. The relative
rate of Rf- and RB-sensitized photo-oxidation of each system (AAs, ur
and their mixtures) was determined by evaluation of the initial slope of
oxygen consumption as a function of the irradiation time, with an
Orion 97-08 or an Orion 810A+ specific oxygen electrode. Normalized
oxygen uptake rates for each sensitizer and for each pH value were the
quotient between the rate value for a given AA or mixture AA + ur
and the respective rate value for ur.

RESULTS

The visible light irradiation of air-equilibrated pH 7 and pH 9

aqueous solutions of individual 0.15 mMM trp, 0.22 mMM tyr and
0.16 mMM ur, all in the presence of 0.04 mMM Rf as a dye
sensitizer, modified the absorption spectra of the substrates.
See Fig. 1 as an example for the case of trp at pH 7. It shows

typical absorbance decrease in the absorption band centered at
270 nm, already described in the literature (19), due to the
dye-sensitized photo-oxidation of the amino acid. The same

was observed for the case of tyr with spectral changes at
275 nm at pH 7 and at 240 and 290 nm at pH 9.

In separate experiments, oxygen consumption was

observed upon Rf (0.05 mMM)-sensitized photoirradiation of
similar solutions containing individually trp, tyr and ur, all
at a concentration of 0.5 mMM, and mixtures trp–ur and tyr–
ur, both 0.5 mMM, again at pH 7 and 9. The relative rates of

oxygen uptake are presented in Table 1. Typical runs are
shown in Fig. 2. Both spectral modifications and oxygen
uptake are due to a Rf-sensitized photo-oxidation mediated

by ROS (7,9,15). The respective rates of oxygen uptake can
be considered as a relative measure of the overall photo-
oxidability of the substrates. Prolonged photolysis of Rf

alone produced a slight oxygen consumption that can be
considered negligible in relative terms within the typical
irradiation times employed in the presence of ur and ⁄ or the

AAs (Fig. 2).
Rate values of oxygen uptake for each system in Table 1

represent the mean value of a set of six runs under identical

conditions. All rate values of the set did not differ by more
than 3% of the mean value. Standard deviation values for the

individual runs gave values lower than 1%. Nevertheless, we
included ±3% as the error bar for the rates of Table 1, a more
realistic estimation that assists in the interpretation of the

actual magnitude of the observed effects.
It is well known that under aerobic photoirradiation, and in

the presence of adequate electron donors, such as aromatic

AAs (25) or ur (9), Rf generates the ROS O2(
1Dg), O2

•) and
H2O2. As RB exclusively generates O2(

1Dg) under visible light
photoirradiation (7,27), photolysis experiments similar to
those performed with Rf were made for comparative purposes,

replacing the vitamin by the xanthenic dye sensitizer
(A(549) = 0.52 for RB), and keeping constant the remaining
experimental conditions. For tyr, trp and ur both typical

photo-oxidative-spectral modifications and oxygen consump-
tion (Table 1) were observed at pH 9 whereas this behavior
was only detected for trp at pH 7 (Fig. 2, inset). In other

words, O2(
1Dg) was practically unreactive toward tyr and ur at

pH 7, confirming that the nonionized form of these com-
pounds is only a physical quencher of the oxidative species
(16). The pKa values of 9.5 (26,28,29) and 10.1 (26) for the

ionization of the OH group in ur and tyr respectively indicate
that a considerable proportion of their ionized species is
present at pH 9. Regarding trp, it is known that the kinetics of

O2(
1Dg)-photo-oxidation of this AA is not significantly affected

by pH changes (16).
The photoirradiation of RB alone did not produce oxygen

consumption. Besides, the absorption spectrum of the sensitizer
remained within the irradiation time employed in typical runs.

Spectral changes for trp at pH 7 are shown in Fig. 1, inset.

It can be seen that these changes are practically the same as

Figure 1. Changes in the UV absorption spectra of a pH 7 aqueous
solution of Rf (A(446) = 0.40) plus 0.17 mMM trp, taken vs Rf
(A(446) = 0.40). Inset: changes in the UV–Vis absorption spectra of
a pH 7 aqueous solution of RB (A(549) = 0.55) plus 0.17 trp, taken vs
RB (A(549) = 0.55). Irradiation (kirr > 360 nm) under air-saturated
conditions. Numbers on the spectra represent photoirradiation time in
seconds.

1098 Marı́a Paulina Montaña et al.



those observed in the Rf-sensitized process at the same pH
value (Fig. 1, main). This fact indicates the presence of
structurally similar photoproducts in both cases, being

formylkynurenine (30,31) and pyrroloindole-like compounds
(32) the reported oxidation products.

The available literature data on kt and kr rate constants and

the corresponding kr ⁄ kt values are included in Table 1. The
rate constants kr and kq account for the respective reactive and
physical quenching processes of O2(

1Dg) by the substrates,

being kt = kr + kq. The quotient kr ⁄ kt can be envisaged as
the fraction of the overall interaction O2(

1Dg) substrate that
leads to effective chemical transformation (18).

The presumable unreactivity of the nonoxidizable AA gly
(16) was confirmed by means of an oxygen uptake experiment,

under identical conditions employed for tyr and trp, in the
individual presence of RB or Rf as dye sensitizers. No oxygen

consumption was observed at any pH value, as stated in
Table 1. This result can be considered as a blank for the
common AA moiety of the aromatic AAs.

The data in Table 1 suggest that the relative rates of
oxygen uptake by RB-sensitization for the mixtures
AA + ur represent the simple addition of the respective
rates of the individual AAs and ur. In this case the

interaction was driven by an exclusive O2(
1Dg) mechanism.

In contrast, the presence of ur in the Rf-sensitized runs of
the AAs affected the rates of oxygen consumption by the

AAs in a different fashion: a delay in the rate of oxygen
uptake can be observed for tyr in the presence of ur at pH
9, whereas an increase can be observed for this AA at pH 7.

In the case of tpr at both pH values the rate of oxygen

Figure 2. Oxygen uptake by a pH 9 aqueous solution of Rf
(A(446) = 0.40) in the presence of (.) 0.5 mMM ur; ( ) 0.5 mMM tyr +
0.5 mMM ur; ( ) 0.5 mMM tyr; (s) 0.5 mMM trp and ( ) 0.5 mMM trp +
0.5 mMM ur. Inset: Oxygen uptake by a pH 7 aqueous solution of RB
(A(549) = 0.55) in the presence of (D) 0.5 mMM ur; (O) 0.5 mMM tyr; and
( ) 0.5 mMM trp. Irradiation (kirr >360 nm).

Figure 3. Oxygen uptake by a pH 9 aqueous solution of Rf
(A(446) = 0.52) in the presence of (d) 0.5 mMM ur plus 2 mMM NaN3;
(s) 0.5 mMM ur plus 1 mg 100 mL)1 SOD; ( ) 0.5 mMM ur plus
1 mg 100 mL)1 catalase and ( ) 0.5 mMM ur. Irradiation (kirr
>360 nm).

Table 1. Rates of oxygen uptake (Rel. rate (D[O2] ⁄ Dt) in visible light photoirradiated pH 7 and pH 9 Rf (A(446) = 0.4) or pH 9 RB
(A(549) = 0.52) aqueous solutions plus different combinations of the substrates ur and ⁄or tyr and trp, all at a concentration of 0.5 mMM; literature
data: rate constants for the quenching of 3Rf* (kq3) by ur and AAs; reactive (kr) and overall rate constants (kt) for the quenching of O2(

1Dg) by ur
and AAs and kr ⁄ kt ratios.

Substrates

Rel. rate
(D[O2] ⁄ Dt)

in RB—pH 9

Rel. rate
(D[O2] ⁄ Dt)

in Rf—pH 7

Rel. rate
(D[O2] ⁄ Dt)

in Rf—pH 9

kq3 · 109

(MM)1 s)1)
in H2O

kr · 107

(MM)1 s)1)
kt · 107

(MM)1 s)1) kr ⁄ kt

ur 1.00 ± 0.03 1.00 ± 0.03 1.00 ± 0.03 0.025* 0.003* (pH 7)
0.03* (pH 9)

0.05* (pH 7)
0.2* (pH 9)

0.06 (pH 7)
0.15 (pH 9)

trp 34 ± 1 36.1 ± 1.1 2.0 ± 0.06 1.80† 4.70‡ (pH 7) 7.2‡ (pH 7) 0.65 (pH 7)
tyr 14.1 ± 0.4 13.0 ± 0.4 1.7 ± 0.05 1.30† <10)4 (pH 7)§

3.8 (pH 10)‡
1.5 (pH 7)||
�20–

�0
�0.2

gly NC** �0.05 �0.05 <10)4 <10)4

trp + ur 34.7 ± 1 36.6 ± 1.1 2.3 ± 0.07
tyr + ur 14.2 ± 0.4 16.1 ± 0.5 1.5 ± 0.05
gly + ur 1.02 ± 0.03 1.00 ± 0.03 1.00 ± 0.03

*Haggi et al. (9). † Görner (25), kq3 is pH-independent in the range 3–12. ‡Bertolotti et al. (19). §Garcı́a (18). ||Wilkinson et al. (7). –Wilkinson
et al. (7) in alkaline medium. **No oxygen consumption was observed.
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consumption in the presence of ur can be taken as the direct
addition of the respective individual rates. These facts

strongly suggest that the mechanism involved in the
photo-oxidation of the mixtures AA–ur could not be simple.
In order to gain insight into the elucidation of the possible

mechanism governing these systems, auxiliary experiments
were employed. Individual runs of Rf-sensitized oxygen
uptake by the AAs and ur performed in the presence of
2 mMM NaN3, 1 mg 100 mL)1 SOD and 1 mg 100 mL)1

catalase recognized specific scavengers of ROS (Fig. 3).
These quenchers have been already employed in similar
concentrations to confirm ⁄ discard the participation of

O2(
1Dg), O2

•) and H2O2, respectively, in a given oxidative
event (7,33–36). The salt physically deactivates O2(

1Dg)
(reaction I), whereas the enzyme SOD dismutates the species

O2
•), through reaction (II) and catalase decomposes H2O2

(reaction III) (7,36,37).

NaN3 þO2
1Dg

� �
! NaN3 þO2

3R�g

� �
(I)

2O��2 þ 2Hþ þ SOD! O2
3R�g

� �
þH2O2 (II)

2H2O2 þ catalase! 2H2OþO2
3R�g

� �
(III)

Results in Table 2, expressed as the ratio between the
respective rates of oxygen uptake in the presence (R) and in
the absence (RO) of the additives, individualize the ROS that

are involved in the overall oxygen uptake process observed
in the Rf-sensitized photoirradiation of ur, tyr and trp. A
value R ⁄R0 = 1 indicates that a given additive does not

affect the oxygen uptake rate. A delay in the rate of oxygen
uptake in the presence of the additive (R ⁄R0 < 1) indicates
that a given ROS is involved in the photo-oxidation of the
substrate.

DISCUSSION

The accepted general mechanism for a RB- or Rf-sensitized
photo-oxidation of a given substrate can be depicted by
Scheme 1 (9,15):

The initially generated excited singlet state of the sensitizer
(1S*, process 1) can decay to ground state S (step 2), can be

quenched by Q (step 3) or can produce excited triplet S (3S*)
(reaction 4). 3S* can yield products through quenching by Q
(process 5) or by decomposition (process 6). Also it can decay

to ground state S (reaction 7), can be quenched by ground state
oxygen, O2(

3Sg
)), generating O2(

1Dg) by energy transfer (reac-
tion 8), or can accept an electron fromQ yielding semireduced S
(S•)) (process 13). On the other hand, O2(

1Dg) can react with Q

(reaction 9) or with S (reaction 11), can be physically quenched
by Q (process 10) or can be deactivated by the medium (step
12). Reaction (9) is the main pathway of disappearance of Q in

O2(
1Dg)-mediated processes. When the dye RB is employed as a

sensitizer (S = RB in Scheme 1), the photogeneration of
O2(

1Dg) through processes (4) and (8) is usually very efficient,

with quantum yields of 0.8–0.9 (27). On the other hand, when
Rf is employed instead, both O2(

1Dg) (process 8) and O2
•)

(reaction IV), are photogenerated, with reported quantum

yields in water of 0.49 (38) and 0.009 (39) respectively.

RfþO2
3R�g

� �
! Rf�þ þO��2 (IV)

Hence, the generation of the species Rf·+ and O2
•) is

negligible in kinetic terms. Rf is also a moderate quencher of
O2(

1Dg), with an overall rate constant, ktRf =

kqRf + krRf = 6 · 107 MM
)1 s)1 (13). Nevertheless, in the pres-

ence of an adequate substrate Q, 3Rf* can give rise to O2
•)

(process 14), via Rf•) (process 13). At pH 7, in the presence of

proton-donating species, the generation of Rf neutral radical
(RfH•, step 17) should occur, with a pKa value of 8.4
(25,40,41).

It is known that the reaction of ground state oxygen with
RfH• is much slower than the corresponding one with Rf•)

(process 14). Besides, the bimolecular decay of RfH• through a
disproportionation reaction can yield Rf and fully reduced Rf

(RfH2) (process 18). The reduced flavin can be reoxidized in
the presence of O2(

3S)
g) producing Rf and H2O2 (step 19) (40).

Table 2. Ratio of the rate of oxygen uptake by visible light photoir-
radiated aqueous solutions of Rf (A(446) = 0.52) plus individual ur,
tyr or trp all at a concentration of 0.5 mMM, at pH values 7 and 9, in the
presence (R) of 2 mMM sodium azide (NaN3), or 1 mg 100 mL)1

superoxide dismutase (SOD) or 1 mg 100 mL)1 catalase and in the
absence (R0) of the additives. Estimated error in the individual
rates ± 3%.

Compound ROS quencher

R ⁄R0

pH 7 pH 9

ur NaN3 1 0.12
SOD 1 0.17
Catalase 1.4 0.33

tyr NaN3 1 0.11
SOD 1 1
Catalase 0.42 1

trp NaN3 0.18 0.14
SOD 1 0.19
Catalase 0.46 1 Scheme 1. Possible pathways in a dye-sensitized photo-oxidation.

S = sensitizer; Q = quencher; 1S* and 3S* = electronically excited
singlet and triplet states of Rf; O2 (3Sg

)) = ground state triplet
oxygen; O2(

1Dg) = singlet molecular oxygen; O2
•) = superoxide rad-

ical anion; H2O2 = hydrogen peroxide. P(n): eventual photoproduct
for step (n).
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As an overall result, reactions (14) and (18) constitute
pathways for O2

•) and H2O2 production and Rf regeneration,
as the oxygenated species are good candidates for reacting with
compounds Q.

Given the pKa value for process (17), the study carried out
also at pH 9 illustrates the hypothetical case of a prevailing
concentration of the species O2

•) that could be achieved if the

reaction would occur in a less-proton-donating environment
than pH 7 water.

According to the respective lifetimes of Rf electronically

excited states (42), and to the values for the rate constants kq3
shown in Table 1, 3Rf* can be intercepted by substrates in the
sub-mMM concentration range. This is the case of ur, trp and tyr,

all three at a concentration of 0.5 mMM under work conditions
and O2(

3S)
g) with a concentration of ca 0.4 mMM in aerated

aqueous solutions (43). In principle, the dominant mechanism,
either energy transfer (reaction 8) or electron transfer (step 13),

will depend on the respective reaction rates of the substrates
with 3Rf*. It is known that reaction (8) occurs with a rate
constant kET in water of 7 · 108 MM

)1 s)1, equivalent to 1 ⁄ 9 of

the diffusional value (44). On this basis, and according to
literature values for reaction (13) (Table 1), the kinetic balance
indicates that processes (8) and (13) are competitive for tyr and

trp whereas process (8) highly prevails in the case of ur. Hence,
O2(

1Dg) is always produced. Besides, in the presence of tyr or
trp, relatively efficient interceptors of 3Rf* (Table 1), and
according to the pKa value for process (17) (25,40), the

concentration of the species RfH•, at pH 7, is ca 25-fold higher
than that of Rf•. At pH 9 this proportion is inverted, being the
concentration of Rf• ca four times greater than that of RfH•.

As a consequence in neutral solution H2O2 is highly prevalent,
formed through process (19) and at pH 9 the predominating
ROS is O2

•), generated through process (14). This observation

agrees with experimental results recently published, where the
respective transient absorption spectra of the neat species RfH•

at pH 5, and Rf• at pH 11, are shown (25).

On these grounds, results of oxygen uptake in Tables 1 and
2 and the kinetic data on O2(

1Dg)-oxidation and quenching of
3Rf*, collected in Table 1 can be conjunctively analyzed.

For the Rf-sensitized experiments at pH 7, the overall

photo-oxidation rate of tyr + ur is higher than that expected
for the simple addition of both individual rates, reflecting a
sort of synergistic effect. According to the results shown in

Table 2, at this pH both tyr and ur react exclusively through
H2O2 mechanism (step 20). The O2

•) component, due to the
pKa value for step (17), constitutes only a minor contribution

to the overall oxygen consumption. The rate constant for the
quenching of 3Rf*, the process responsible for H2O2 genera-
tion, is much higher for tyr than for ur. This fact could indicate
that the efficiency of H2O2 generation and hence the stationary

concentration of the oxidative species available for ur oxida-
tion in the mixture ur + tyr will be also higher than that
available for ur alone. As a result, an increase in the overall

rate of oxygen consumption by the mixture should be
expected.

For the case of trp at pH 7, oxygen uptake occurs through

processes (9) and (20). The contribution of the O2(
1Dg)-

mediated step to the overall oxygen consumption is apparently
high, as indicated by the reported oxidative efficiency, with a

kr ⁄ kt ratio of 0.65 (19) (Table 1). The rate for the mixture
trp + ur is practically the same as the corresponding one for

the AA alone. In this case oxygen uptake by trp is ca 40-fold
faster than that exerted by ur, and the rate for the mixture only
reflects the massive O2(

1Dg)-mediated contribution of the AA.
The relative rate values of oxygen uptake for tyr, trp, ur and

their mixtures at pH 9 are very close. Nevertheless, the
respective behaviors of the photo-oxidation rates for the
mixtures AA + ur do not parallel. Again for trp, as occurred

at pH 7, the photo-oxidation of the mixture ur + AA seems to
be the addition of the individual rates, possibly dominated by a
O2(

1Dg) process.

Regarding the case of tyr at pH 9, it can be seen that the rate
of oxygen consumption by tyr + ur is much lower than the
addition of the respective individual rates. It is known that tyr,

in the alkaline pH range, is easily oxidized by O2(
1Dg)

producing unstable endoperoxides via [1,4]-cycloaddition (7).
The endoperoxides could generate radical intermediates,
strong reactants that could favorably interact via ur, without

additional oxygen consumption, in a competitive pathway with
the O2

•) route (process 16), possibly the prevailing source of
oxygen consumption by ur at this pH. This argument for the

additional radical mechanism has been already employed to
explain a similar situation in the photo-oxidation of ascorbic
acid in the presence of AAs (45).

CONCLUSIONS

The effect of the electron-donating substrate ur on the

effectiveness of the overall Rf-sensitized-photo-oxidation pro-
cess of the AAs trp and tyr is not straightforwardly predict-
able. In the presence of ur, much lesser photo-oxidizable than

the AAs, the observed effect was either antioxidative, syner-
gistic or even null. It depends on several connected factors,
such as the respective abilities of the substrates as quenchers of

both the long-lived Rf triplet excited state and the generated
ROS. The pH of the medium constitutes an important factor,
as it regulates the nature and reactivity of the ROS. An
interpretation of the different cases may be attempted through

a kinetic and mechanistic analysis.
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and R. Sastre (1990) Singlet oxygen photogeneration by ionized
and un-ionized derivatives of rose bengal and eosin Y in diluted
solutions. J. Photochem. Photobiol. A, Chem. 53, 199–210.

28. Brown, D. J., R. F. Evans, W. B. Cowden and M. D. Fenn (1994)
The pyrimidines. In The Chemistry of Heterocyclic Compounds,
Vol. 52 (Edited by E. C. Taylor), pp. 112–114. John Wiley and
Sons, New York.

29. Brown, D. J. (1984) Pyrimidines and their benzo derivatives.
In Comprehensive Heterocyclic Chemistry, Vol. 1 (Edited by
A. R. Katritzky, C. W. Rees, A. J. Boulton. and A. McKillop),
pp. 57–142. Pergamon Press, Oxford.

30. Yoshida, Z. and M. Kato (1974) On the photo-oxidation products
of tryptophan. J. Am. Chem. Soc. 76, 311–312.

31. Silva, E., R. Ugarte, A. Andrade and A. M. Edwards (1994)
Riboflavin-sensitized photo-oxidation of tryptophan. J. Photo-
chem. Photobiol. B, Biol. 23, 43–48.

32. Nakagawa, M., H. Watanabe, S. Yodato, H. Okajima, T. Hino,
J. L. Flippen and B. Witkop (1977) Biogenic aminoe-ionophore
interactions: structure and dynamics of lasalocid (X537A) com-
plexes with phenetylamines and catecholamines in nonpolar
solution. Proc. Natl Acad. Sci. USA 74, 4730–4733.

33. Escalada, J. P., A. Pajares, J. Gianotti, W. A. Massad,
S. Bertolotti, F. Amat-Guerri and N. A. Garcı́a (2006) Dye-
sensitized photodegradation of the fungicide carbendazim and
related benzimidazoles. Chemosphere 65, 237–244.

34. Silva, E., L. Herrera, A. M. Edwards, J. De La Fuente and E. Lissi
(2005) Enhancement of riboflavin-mediated photo-oxidation of
glucose 6-phosphate dehydrogenase by uronic acid. Photochem.
Photobiol. 81, 206–211.

35. Cohen, G. and R. E. Heikkila (1974) The generation of hydrogen
peroxide, superoxide radical and hydroxyl radical by 6-hydroxy-
dopamine, dialuric acid and related cytotoxic agents. J. Biol.
Chem. 249, 2447–2453.

36. Silva, E., A. M. Edwards and D. Pacheco (1999) Visible light-
induced photo-oxidation of glucose sensitized by riboflavin.
J. Nutr. Biochem. 10, 181–185.

37. Friedovich, I. (1978) Superoxide radicals, superoxide dismutases
and the aerobic lifestyle. Photochem. Photobiol. 28, 733–741.

38. Wilkinson, F., W. P. Helman and A. B. Ross (1993) Quantum
yields for the photosensitized formation of the lowest electroni-
cally excited singlet state of molecular oxygen in solution. J. Phys.
Chem. Ref. Data 22, 133–262.

39. Krishna, C. M., S. Uppuluri, P. Riesz, J. S. Zigler and
D. Balasubramanian (1991) A study on the photolysis efficiencies
of some lens constituents. Photochem. Photobiol. 54, 51–58.

40. Lu, C.-Y., W. Z. Lin, W. F. Wang, Z. H. Han, S. D. Yao and N. Y.
Lin (2000) Riboflavin (VB2) photosensitized oxidation of 2¢-de-
oxyguanosine-5¢-monophosphate (dGMP) in aqueous solution: a
transient intermediates study.Phys. Chem. Chem. Phys. 2, 329–334.

41. Lu, C., G. Bucher and W. Sander (2004) Photoinduced interac-
tions between oxidized and reduced lipoic acid and riboflavin
(vitamin B2). Chem. Phys. Chem. 5, 47–56.

42. Heelis, P. F. (1982) The photophysical and photochemical prop-
erties of flavins (isoalloxazines). Chem. Soc. Rev. 11, 15–39.

43. Murov, S. L., I. Carmichael and G. L. Hug (1993) Handbook of
Photochemistry, 2nd edn. M. Dekker, New York.

44. Koizumi, M., S. Kato, N. Mataga, T. Matsuura and I. Isui (1978)
Photosensitized Reactions. Kagakudogin Publishing Co., Kyoto.

45. Jung, M. Y., S. K. Kim and S. Y. Kim (1995) Riboflavin-sensi-
tized photo-oxidation of ascorbic acid: Kinetics and amino acid
effects. Food. Chem. 53, 397–403.

1102 Marı́a Paulina Montaña et al.


