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Abstract

In this work, the optimal synthesis and control structure design (CSD) problems for

flexible heat exchanger networks (HENs) are integrated into a new sequential method-

ology. The proposed approach relies, on the one hand, on a convexification and outer-

approximation strategy to solve the synthesis stage and, on the other hand, on the sum

of squared deviations (SSD) method for the optimal CSD. These methods guarantee

the optimality of the synthesis process as well as the proper operation of the HEN in
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several operating points. The first stage of the proposed approach, which focuses on

the flexible HEN synthesis problem, considers both temperature and flow rate modifi-

cations in the inlet streams. A multi-period synthesis formulation is proposed where

critical points are iteratively incorporated to fulfill the flexibility requirements. Be-

cause the problem size and the non-convexities increase when additional critical points

are considered, both the convexification of nonlinear terms and an outer approximation

strategy are used to guarantee the optimality of the solutions at this stage. The second

stage handles the decisions associated to the design of the control structure. This stage

is critical because the network is required to work in a wide range of operating points. If

the classical CSD method based on the well-know relative gain array (RGA) is applied,

and only the nominal operating point is considered, such requirement is not fullfiled.

In fact, this work demonstrates that such classical CSD approach is not enough to

operate the HEN in the range of variation considered by the multi-period synthesis

phase. As an alternative method, the application of the SSD approach to multiple

operating points is proposed. Thus, several optimal control structures are developed

to ensure the operability of the HEN. Three academic case studies are presented to

illustrate the application of the proposed methodology.

1 Introduction

Being an important component of any process, energy recovery through heat exchanger

networks (HENs) is one of the most studied problems in Chemical Engineering. Moreover,

HEN configuration and the interaction of these networks with the rest of the process can

impose strong control limitations due to competitive effects, inverse response, and time

delays. A correct design of such energy integration directly impacts not only the feasibility

but also the final profit of the overall plant1.

The conventional methods for synthesizing HENs assume fixed operating parameters at

nominal conditions and are based on either sequential or simultaneous approaches. Sequen-
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tial synthesis methods aim to reduce the computational burden at this stage by dividing

the overall problem into a series of subproblems. Relevant publications in this category

are Papoulias and Grossmann 2 , Linnhoff and Hindmarsh 3 , and Floudas et al. 4 . In con-

trast, simultaneous methods do not decompose the problem but address the capital and

operational costs in a trade-off fashion. One of the most referenced simultaneous models

has been proposed by Yee and Grossmann 5 , where a stage-superstructure representation

(the Synheat model) is formulated using a mixed-integer nonlinear programming (MINLP)

approach. Several contributions extending this framework appear in the literature. Ponce-

Ortega et al. 6 and Grossmann et al. 7 include isothermal streams with phase change into

the synthesis model. Onishi et al. 8 , Serna-Gonzalez et al. 9 , Mizutani et al. 10 , and Frausto-

Hernandez et al. 11 also extended the Synheat model incorporating detailed equipment design

and fluid dynamic considerations such as pressure drop. A review of proposed methodologies

to synthesize HENs can be found in the work of Furman and Sahinidis 12 .

The simultaneous synthesis formulations are, in general, very hard to solve due to the

presence of non-convex expressions and binary decision variables. In some cases current

state-of-the-art solvers not only fail to obtain the global optimal solutions but also fail to

obtain a feasible solution. Therefore, alternative global optimization methods have been

proposed to solve this kind of problems. For instance, several works presented algorithmic

alternatives that ensure global convergence of the Synheat model. Björk and Westerlund 13

and Braccia et al. 14 proposed global optimization approaches which apply convexification

of signomial terms to guarantee global convergence and optimality. An outer optimization

algorithm for a MINLP model involving concave and bilinear terms has been developed by

Bergamini et al. 15 . In turn, Zamora and Grossmann 16 proposed a thermodynamic-based

convex underestimation of the HEN synthesis problem, which is implemented through a

branch-and-bound algorithm. Also, Adjiman et al. 17 solve the problem using the αBB-

algorithm and assuming a linear cost-function for the involved area. All these works use the

Synheat model as their basis.
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The consideration of potential disturbance changes, which are always present in any type

of industrial process, is another important aspect to be taken into account. Disturbances

play a significant role because they affect both the economic performance and the operational

specifications of the whole process. Hence, the design of HENs requires to account for flexi-

bility considerations. In this context, Aaltola 18 , Chen and Hung 19 , Verheyen and Zhang 20 ,

and Escobar et al. 21 present multi-period formulations based on the Synheat model to han-

dle the synthesis of flexible HENs (Synflex). While the Synheat model is used to design

the network at the nominal operating point, the Synflex model takes into account different

periods/scenarios which allow to consider several disturbances in the network. Thus, the

main goal of the flexible synthesis problem is to find an optimal network configuration that

operates within a specified range of expected disturbances, e.g., changes in temperatures and

flow rates of the inlet streams.

Because several periods are considered, the flexible approach increases the size and com-

plexity of the formulation with respect to the basic Synheat model. However, from the

literature review it can be concluded that global optimization strategies have not been ap-

plied to the Synflex formulation, which is an important gap to be covered.

At the process control level, several approaches were proposed in the literature during

the last decades. The control structure design (CSD) problem depends on the selected HEN

structure22 and, therefore, the analysis of controllability should be considered as an inte-

gral part of network design. Calandranis and Stephanopoulos 23 introduced an approach

that ensures structural controllability of a HEN. In their work, both the design and op-

eration problems are addressed. While the first problem decides the configuration of the

control loop, the second problem sequences the control actions of the loop to accommodate

set-point changes and reject load disturbances. In turn, Aguilera and Marchetti 24 devel-

oped a procedure for the on-line optimization and control system design of a HEN using

an MINLP approach. Besides, the dynamic resilience and a heuristic method to decide the

bypass placement of HENs have been studied in Mathisen et al. 25 and Mathisen et al. 26 ,
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respectively. Later, a systematic framework for the synthesis and retrofit of flexible and

structurally controllable HENs has been presented by Papalexandri and Pistikopoulos 27,28 .

More recently, Yang et al. 29 introduced a unified model to quantify disturbance propaga-

tions in a HEN. Based on the latter, a design procedure to handle optimal bypass selection

is presented in Yang et al. 30 . Moreover, a sequential procedure for flexible HEN synthesis

and control structure design has been proposed by Escobar et al. 21 . They use the classical

relative gain array (RGA) methodology at nominal operating point to define the best de-

centralized control structure. This task is performed off-line by evaluating several control

structures obtained from different input combinations. Finally, Braccia et al. 31 introduced a

flexible HEN synthesis method integrated with the design technique of a fully-decentralized

reconfigurable control structure (CS) given by Luppi et al. 32 . The advantage of this method

is that it provides alternative control structures able to act at different operating points.

The design is made using steady-state process information only.

It is important to recall that heat exchange networks are always embedded in some par-

ticular industrial process. In this sense, if we analyze the inlet disturbances of a HEN, these

disturbances are generally caused by operational changes in some process units. Similarly,

the output variables of the network are, in general, inlet streams of downstream process

units which must be kept on a given reference value. For this reason, since the HEN should

be considered in the context of the overall process, it is important to perform the synthesis

taking into account flexibility considerations and a control structure design that is capable

of rejecting the expected disturbances.

1.1 Contribution of this work

In this work a new sequential optimization methodology to synthesize flexible HENs with

optimal control structure is presented. The new methodology allows, on the one hand, solving

the multi-period flexible synthesis stage while guaranteeing the quality of the solution and,

on the other hand, designing an optimal control structure which handles multiple operating
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points by applying the sum of squared deviations (SSD) procedure.

The main contributions of the proposed method are the following:

• An optimization strategy based on both convexification and outer-approximation is

proposed to solve the synthesis stage, therefore guaranteeing the quality of the solu-

tion. In contrast, the works presented by Aaltola 18 , Chen and Hung 19 , Verheyen and

Zhang 20 , and Escobar et al. 21 do not guarantee that the solution found is optimal.

• This work illustrates how local optimization methods can obtain a local solution for

the Synflex problem when the size of the problem or the number of periods being

considered increases. This behavior has been previously reported only by Björk and

Westerlund 13 for the Synheat problem.

• The proposed methodology allows designing the HEN control structure to be operable

within a given range of expected disturbances. In contrast, most of previous contribu-

tions design the control structure at the nominal operating point, e.g. Escobar et al. 21

and Yang et al. 30 .

• The complete solution methodology, including both synthesis and control structure

design problems, is implemented with the same modelling tool (i.e., the GAMS en-

vironment). This systematic treatment of the problem contrastes with the heuristic

off-line screening and stochastic global search methods proposed by Escobar et al. 21

and Braccia et al. 31 , respectively.

• The proposed formulation sets the foundations for future simultaneous methodologies

integrating process control and process synthesis and design.

This paper is organized as follows: this introduction section has been presented to con-

textualize the problem on hand and give an overview of the classical and flexible approaches

to HEN synthesis, the associated optimization strategies, and the control structure design

problem. The inherent drawbacks of the alternative methodologies have also been presented.

6

Page 6 of 52

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Section 2 outlines the sequential methodology proposed in this work. The main concepts

regarding flexible HEN synthesis are presented in Section 2.1. In particular, a more de-

tailed discussion of the multi-period synthesis model and the flexibility index is presented

in Sections 2.1.1 and 2.1.2, respectively. The proposed optimization strategy, required to

obtain the model solutions, is introduced in Section 2.2. Sections 2.2.1 and 2.2.2 discuss

the approach in detail. The main concepts and specific implementation issues related to the

SSD subproblem for control structure design (CSD) are discussed in Section 2.3. A detailed

algorithmic description of the proposed method is given in Section 2.4. The application of

the proposed approach to several examples from the literature is presented in Sections 3.1,

3.2, and 3.3. Finally, Section 4 summarizes the conclusions, discussion, and future work.

2 Proposed Sequential Methodology

Figure 1: Proposed flexible HEN synthesis and optimal control structure design scheme

The proposed methodology sequentially addressing the flexible HEN synthesis and control
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structure design problems is summarized in Figure 1. Both a multi-period formulation

and a flexibility index model, which are iteratively evaluated, are used to solve the flexible

HEN synthesis problem. Multiple operating conditions are considered besides the nominal

operating point. In order to simplify the computational burden, the flexibility requirement

is not directly taken into account in the multi-period synthesis formulation. The aim of the

flexible synthesis stage is to obtain a network design able to operable within an expected

range of disturbances (such as changes of the flow rates and temperatures) for the inlet

process streams.

A sequence of multi-period HEN synthesis and flexibility problems is solved. As the

number of periods increases, the number of continuous and binary variables of the multi-

period formulation substantially grows and a poor solution can be obtained. To guarantee

convergence and improve the performance of the algorithm, an iterative strategy combining

convexification and convex mixed-integer optimization is used13. Each multi-period formu-

lation (referred as A1-M) is modified using convexification of signomial terms to obtain an

approximate model (named A2-M). In the latter, an initial set of grid points is proposed

for the approximation of each non-convex term. An iterative procedure is applied where, at

each step, the current approximate model A2-M is solved and its solution is used as fixed

values to evaluate the non-convex terms and objective function of the original formulation

A1-M. The objective values obtained for the approximate and original models are lower

and upper bounds, respectively, of the multi-period formulation being tackled. Through

successive iterations, which introduce additional grid points to the convexified model, a bet-

ter approximation of the original formulation together with a more accurate solution are

obtained. In order to solve the models A2-M the outer approximation technique presented

in Viswanathan and Grossmann 33 is used. The convexification applied to the approximate

model guarantees the latter technique to obtain the global optimum.

Once an optimal and flexible HEN is obtained, an appropriate control structure able to

handle its operation is designed. To guarantee a proper operation of the HEN within the
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expected disturbance variation range, the SSD subproblem (referred as model SSD-M) is

solved for each period. Hence, at each operating point a decentralized control structure is

obtained. A detailed description of the formulations A1-M, A2-M, and SSD-M, together

with the required sets and variables, is given in the next sections.

2.1 Flexible Heat Exchanger Network Synthesis

The flexible HEN synthesis problem is formulated using a multiscenario/multiperiod opti-

mization model in which a finite number of periods is considered to handle the uncertainty.

The problem is solved using an iterative procedure consisting of two-stages18–21. In the first

stage, a multi-period HEN problem is solved to obtain both the design and the operation

variables. In the second stage, the flexibility problem is solved in order to find the flexibility

index of the current network and a new critical point. At the first iteration (represented

with P = 1), only one operating point (the nominal point) is considered, being the multi-

period formulation equivalent to a single-period formulation, i.e. the Synheat model of Yee

and Grossmann 5 . At each iteration P ≥ 2, the critical point obtained from the previous

flexibility problem is incorporated as a new period (scenario) in the multi-period formulation

to increase the flexibility of the network. The procedure is stopped when the designed HEN

is able to operate satisfactorily over the entire desired disturbance range.

2.1.1 Multi-period Heat Exchanger Networks Synthesis

The multi-period network synthesis problem is formulated as a superstructure-based mul-

tiperiod MINLP model with k ∈ K = {1, . . . ,NT} stages where the matching for heat

exchange between i ∈ I = {1, . . . ,NH} hot and j ∈ J = {1, . . . ,NC} cold streams is selected.

The network needs to support inlet flow disturbances such as those of temperature and flow

rate. The general structure of the model, referred as A1-M, is shown in eq. (1). This problem

involves the binary variables yH representing the existence and operation, respectively, of

heat exchangers and utility exchangers, and the continuous variables xH denoting stream

9
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temperatures, exchanged heat, approach temperatures, and exchange areas. In this model,

the superscript/subscript p ∈ N represents each operating point (or period). At each iter-

ation (P ) of the synthesis strategy a new critical point is added and, therefore, the total

number of periods is increased by one. For this reason, p = 1 means the nominal point and

p > 1 means any other operating condition (i.e., the nominal operating point and additional

critical points are considering at each iteration P > 1). For a detailed description of the

model, see the Supporting Information File.

Problem A1-M:

A1P = min
xH,yH

cfy + cdd +
P∑
p=1

C(zp) (1a)

s.t. Ay + By′p + h(xp, zp,d,θp) = 0, (1b)

Cy + Dy′p + f(xp, zp,d,θp) ≤ 0, (1c)

g(xp, zp,d,θp) ≤ 0, (1d)

xLOp ≤ xp ≤ xUPp , xp ∈ Rn (1e)

zLOp ≤ zp ≤ zUPp , zp ∈ Rq (1f)

dLO ≤ d ≤ dUP , d ∈ Rq (1g)

y ∈ {0, 1}q, y′p ∈ {0, 1}q (1h)

∀p = 1, . . . , P (1i)

xH = 〈xp, zp, d〉, yH = 〈y, y′p〉

In eq. (1), A1P represents the optimal value of the economic objective function for the

final HEN at iteration P , where P operating points (θ1,θ2, . . . ,θP ) are considered. The

vectors of independent (manipulated) variables (e.g., heat flow for heat exchangers and utility

exchangers) and dependent (state) variables are denoted zp ∈ Rq and xp ∈ Rn, respectively,

where q = [NH×NC×NT +NH +NC] and n = [q+NH×NT +NC×NT]. The design variables

(area of heat exchangers and utility exchangers) are represented by d. In turn, the uncertain

10
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parameters at period p, which can change during the operation (i.e., inlet temperatures

and flowrates), are given by θp. The binary variables y and y′p represent the existence and

operation at p, respectively, of heat exchangers and utility exchangers. The non-linear terms

of the set of equality and inequality constrains are defined using the vector functions h and

f , respectively. Moreover, the set of correlations associated to the estimation of the design

variables is determined by the function g. On the one hand, notice that the state variables

(xp), manipulated variables (zp), and operation binary variables (y′p), all depend on the

number of periods being considered in the model. This dependency is represented by the

subscript p. On the other hand, the design variables, d, and the existence of heat exchangers

and utility exchangers, y, do not depend on the number of periods. The objective function

is the total annual cost (TAC), where the first term represents a fixed cost associated to the

selected heat exchangers, the second term is a linear cost for the exchange areas (d), and

the third term includes a linear cost function associated with the consumption of hot and

cold utilities, zp, for all operating points p.

An important assumption to be noticed in model A1-M is that the outlet streams of

each heat exchanger are isothermally mixed at every stage. Therefore, the heat balances

associated to the mixers are not considered. With this assumption, the only non-linear

constraints are those associated with the design function g (i.e., the area of heat and utility

exchangers), which are defined in eqs. (2) to (4).

qpi,j,k
(ai,j,k)1/β

− 2

3
Ui,j

√
∆th

p
i,j,k∆tc

p
i,j,k −

1

6
Ui,j

√
∆th

p
i,j,k −

1

6
Ui,j

√
∆tc

p
i,j,k ≤ 0 (2)

qcu
p
i

(acui)1/β
− 2

3
Ucui

√
∆tcu

p
i∆t∗cui −

1

6
Ucui

√
∆tcu

p
i −

1

6
Ucui

√
∆t∗cui ≤ 0 (3)

qhu
p
j

(ahuj)1/β
− 2

3
Uhuj

√
∆thu

p
j∆t∗huj −

1

6
Uhuj

√
∆thu

p
j −

1

6
Uhuj

√
∆t∗huj ≤ 0, (4)

Here, the variables a, acu, and ahu are the areas of heat exchangers, cold utility exchangers,

and hot utility exchangers, raised to the power of β, the variables q, qcu, and qhu are the

heats associated to these units, and the variables ∆t are used to calculate the temperature
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difference between cold and hot stream. Moreover, in order to guarantee that the expressions

q/a
1
β are the only non-convex terms in these constraints, the approximation proposed by

Paterson 34 is used. Hence, A1-M is a nonconvex MINLP model with convex objective

function and nonconvex feasible region. For this type of problems it is well known that local

optimality solvers can either obtain suboptimal solutions or, even worse, not find any feasible

solution. Thus, a more robust optimization strategy is required to ensure that the global

optimal solution of A1-M is found.

2.1.2 Flexibility Index

The flexibility problem proposed by Swaney and Grossmann 35 aims to determine the largest

scaled hyper-rectangle that can be contained within the feasible region of a given design. In

the context of the proposed methodology, a specific HEN design (denoted as ΦP ) is obtained

at each iteration P . This design is determined by the fixed values of the existence binary

variables and the design variables included in the solution of the multi-period formulation at

iteration P (ΦP = 〈y(fx), d(fx)〉P ). Using this design, subsets of relevant equality constraints

I ′ (H(xp, zp,Φ
P ,θp) = 0) and relevant inequality constraints J ′ (F(xp, zp,Φ

P ,θp) ≤ 0) are

selected from eqs. (1b) and (1c), respectively. These equalities and inequalities, given by the

systems of equations (5) and (6), represent the operation of the design ΦP . Here, notice
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that the fixed decision variables of ΦP are denoted by the superscript ‘(fx)’.

H(xp, zp,Φ
P ,θp) =



∑
∀j∈J

qpi,j,k − Fh
p
i (th

p
i,k − th

p
i,k+1)∑

∀i∈I
qpi,j,k − Fc

p
j(tc

p
j,k − tc

p
j,k+1)

qcu
p
i − Fh

p
i (th

p
i,NT+1 − Thouti)

qhu
p
j − Fc

p
j(Tcoutj − tcpi,1)

Thin
p
i − th

p
i,1

Tcin
p
j − tc

p
j,NT+1

qpi,j,k (if y
(fx)
i,j,k = 0)

qcu
p
i (if ycu

(fx)
i = 0)

qhu
p
j (if yhu

(fx)
j = 0)

∀i ∈ I, j ∈ J, k ∈ K



= 0 (5)

F(xp, zp,Φ
P ,θp) =



th
p
i,k+1 − th

p
i,k

tc
p
j,k+1 − tc

p
j,k

Thouti − thpi,NT+1

tc
p
j,1 − Tcoutj

∆Tmin + tc
p
j,k − th

p
i,k (if y

(fx)
i,j,k = 1)

∆Tmin + tc
p
j,k+1 − th

p
i,k+1 (if y

(fx)
i,j,k = 1)

∆Tmin + Tcuout − thpi,NT+1 (if ycu
(fx)
i = 1)

∆Tmin + tc
p
j,1 − Thuout (if yhu

(fx)
j = 1)

∀i ∈ I, j ∈ J, k ∈ K



≤ 0 (6)

Grossmann and Floudas 36 reformulate the flexibility problem as a single-level MINLP opti-

mization problem (FI-M), where the inner minimization problem is replaced by the Karush-

Kuhn-Tucker optimality conditions (KKT). With this approach both flow and temperature

variations of the inlet streams can be simultaneously considered. A given design is called

13

Page 13 of 52

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



flexible if its flexibility index (FI) is equal to or greater than one, i.e. the design is able to

operate within the range of expected variation. The formulation FI-M is presented in eq. (7),

Problem FI-M:

FIP = min
xF,yF

δ (7a)

s.t. Fj′(xP+1, zP+1,Φ
P ,θ∗P+1) + sj′ = 0, ∀j′ ∈ J ′ (7b)

Hi′(xP+1, zP+1,Φ
P ,θ∗P+1) = 0, ∀i′ ∈ I ′ (7c)∑

j′∈J ′

λj′ = 1 (7d)

∑
j′∈J ′

λj′
∂Fj′

∂zP+1

+
∑
i′∈I′

µi′
∂Hi′

∂zP+1

= 0 (7e)

∑
j′∈J ′

λj′
∂Fj′

∂xP+1

+
∑
i′∈I′

µi′
∂Hi′

∂xP+1

= 0 (7f)

λj′ − yFj′ ≤ 0, ∀j′ ∈ J ′ (7g)

sj′ −MF(1− yFj′) ≤ 0, ∀j′ ∈ J ′ (7h)∑
j′∈J ′

yFj′ ≤ nz + 1 (7i)

θ1 − δ∆θ− ≤ θ∗P+1 ≤ θ1 + δ∆θ+ (7j)

δ ≥ 0, yFj′ = {0, 1}, λj′ ≥ 0, sj′ ≥ 0,∀j′ ∈ J ′ (7k)

xF = 〈xP+1, zP+1, µi′ , λj′ , θ
∗
P+1, sj′ , δ〉, yF = 〈yFj′〉

where FIP is the flexibility index at iteration P , sj′ and λj′ are the slack variables and

the Lagrange multipliers, respectively, of the inequalities j′, µi′ are the Lagrange multipliers

associated to the equality constraints i′, the binary variables yFj′ are used to represent if

the inequality constraints j′ are active (when yFj′ = 1), MF is an upper bound for the slack

variables sj′ , and nz is the number of control variables selected. Notice that the sets xF and

yF aggregate all the continuous and binaries variables, respectively, used for the optimization.

The meaning of θ∗p is equivalent to θp. However, θ∗p is a continuous variable in the problem

14
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FI-M, whereas θp is used as a parameter in the problem of synthesis. In particular, the

variables θ∗p are obtained by solving the problem FI-M and used to calculate the parameters

θp. Also, it is worth mentioning that all potential control manipulations (zP+1) are considered

at the flexibility analysis stage to achieve feasible operation.

Substituting eqs. (5) and (6) in the formulation presented in eq. (7) it is possible to

solve the model FI-M. At eq. (7j), the problem is evaluated with respect to the nominal

operating point (θ1) since the aim of FI-M is to obtain the maximum possible deviation from

this point allowed by the design. In this sense, δ represents the fraction of the maximum

expected disturbances (∆θ+, ∆θ−) supported by the design.

Finally, based on the solution of FI-M a new critical point θP+1 is identified at each

iteration P . To calculate this new critical point a small increase is added to θ∗P+1 in the

direction Γ that this point deviates from the nominal point (i.e., θP+1 = θ∗P+1 + Γε). It is

important to note that a single critical point is obtained at each iteration P by solving the

model FI-M.

2.2 Optimization Strategy

The optimization strategy proposed by Björk and Westerlund 13 is applied, where the non-

convex terms of A1-M are replaced by convex approximations that guarantee the optimality

of the solution. This strategy relies on convexifying the signomial terms presented in eqs. (2)

to (4) to obtain a convex formulation. Thus, the new problem is a relaxation of the feasible

region (i.e., an approximation) of the original problem. The strategy is based on solving a

sequence of original and approximate subproblems in order to find the optimal solution. The

optimal objective values of these subproblems become upper and lower bounds of the model

A1-M, which are referred as A1P,Lub and A1P,Llb , respectively. While the index P still denotes

the iterations of the flexible synthesis procedure, the index L is introduced to indicate the

iterations required to solve each model A1-M. At each iteration L an approximate model is

solved and, based on its solution, a new grid point is added. Thus, the formulation becomes

15
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more accurate and a tighter lower bound is obtained. This strategy allows the difference

between the lower bound (A1P,Llb ) and best upper bound (denoted as A1P,∗ub ) at iteration L to

be used as the convergence criterion.

In order to solve each approximate model, the outer approximation technique proposed

by Viswanathan and Grossmann 33 is used. This strategy is based on solving a series of

mixed-integer linear programming (MILP) and non-linear programming (NLP) subproblems

to obtain the lower and upper bounds of the relaxed problem (referred as A2P,Llb and A2P,Lub ,

respectively). In the following sections the required convexification technique and outer

approximation procedure are briefly revisited.

2.2.1 Covexification of signomial terms

The main idea here is to convexify the signomial terms q/(a
1
β ) present in the model by

considering the transformation q = exp(Q). Hence, the non-convex terms are replaced based

on the following expression:

q

a1/β
=

exp(Q)

a1/β
(8)

which is convex on R+. The inverse transformation function:

Q = ln(q) (9)

is nonconvex and, therefore, a piece-wise linear representation of eq. (9) is used to con-

vexify the model. This piece-wise linear representation will underestimate ln(q) and provide

an approximate value for Q. Thus, the solution of the convexified problem will be an ap-

proximation of the solution to the original problem. This approximation will be exact if

the value of Q is equivalent to a gridpoint limit (i.e., the bound of some interval for the

piece-wise approximation). The general structure of the approximate convex model is shown

in eq. (10).
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Problem A2-M:

A2P,L = min
xC,yC

cfy + cdd +
P∑
p=1

C(zp) (10a)

s.t. Ay + By′p + h(xp, zp,d,θp) = 0, (10b)

Cy + Dy′p + f(xp, zp,d,θp) ≤ 0, (10c)

gc(xp,dzp,d,θp) ≤ 0, (10d)

DL(zp,dzp,wp) = 0, (10e)

xLOp ≤ xp ≤ xUPp , xp ∈ Rn (10f)

zLOp ≤ zp ≤ zUPp , zp ∈ Rq, (10g)

dzLOp ≤ dzp ≤ dzUPp , dzp ∈ Rq×L, (10h)

dLO ≤ d ≤ dUP , d ∈ Rq (10i)

y ∈ {0, 1}q, y′p ∈ {0, 1}q, wp ∈ {0, 1}q×L (10j)

∀p = 1, . . . , P (10k)

xC = 〈xp, dxp, zp, dzp, d〉, yC = 〈y, y′p, wp〉

In eq. (10), A2P,L is the value of the economic objective function for iterations P and L,

considering P operating points in the flexible synthesis problem and L gridpoints for the

piece-wise approximation. This value represents the lower bound of the original model and,

therefore, is used to set A1P,Llb . The function DL(zp,dzp,wp) represents the formulation of the

piecewise relaxation, where the matrix dzp ∈ Rq×L includes the new continuous variables (Q)

and wp ∈ {0, 1}q×L are the binary variables associated to grid interval selection. These new

variables are defined for each possible exchanged heat and each grid interval l = 1, . . . , L. In

eq. (10d), notice that the nonconvex constraints are convexified by replacing the functions g

with their convex counterparts gc. The variable sets xC and yC aggregate all the optimization

continuous and binaries variables, respectively. At each iteration L, the size of the grid

is increased by considering an additional gridpoint based on the previous solution of the

17
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approximate model. Thus, the new problem becomes more accurate and the lower bound

(A1P,Llb ) increases. The gap between this lower bound and the best upper bound (A1P,∗ub ) is

considered as the stopping criterion. It is important to recall that the size of problem A2-M

increases when more periods (P ) or more gridpoints (L) are considered. The complete set

of constraints for model A2-M is presented in the Supporting Information File. To solve

each model A2-M an outer-approximation procedure is used, and a brief description of this

strategy is presented in the following section.

2.2.2 Outer-approximation procedure

The MINLP optimization strategy based on the Augmented-Penalty-function / Outer- Ap-

proximation / Equality-Relaxation (AP/OA/ER) algorithm proposed by Viswanathan and

Grossmann 33 is used to solve each subproblem A2-M. The iteration number of the outer-

approximation procedure is denoted as R. The algorithm starts (R = 0) by solving the

relaxation of the MINLP model given by eq. (10) and, if a non-integer solution is found, a

sequence of MILP master problems and NLP subproblems are solved. The optimal objective

values of the MILP and NLP problems are the lower (A2P,L,Rlb ) and upper (A2P,L,Rub ) bounds,

respectively, of the formulation A2-M for each iteration R. Considering a given multi-period

iteration (P ) and an approximation (L), the NLP subproblem shown in eq. (11) is derived

from formulation A2-M by fixing the set of binary variables (yC
R = 〈yR, y′p

R, wR
p 〉)P,L

obtained at iteration R.
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Problem A2-NLP:

A2P,L,Rub = min
xC

cfy
R + cdd +

NP∑
p=1

C(zp) (11a)

s.t. AyR + By′p
R

+ h(xp, zp,d,θp) = 0, (11b)

CyR + Dy′p
R

+ f(xp, zp,d,θp) ≤ 0, (11c)

gc(xp,dzp,d,θp) ≤ 0, (11d)

DL(zp,dzp,w
R
p ) = 0, (11e)

xLOp ≤ xp ≤ xUPp , xp ∈ Rn (11f)

zLOp ≤ zp ≤ zUPp , zp ∈ Rq, (11g)

dzLOp ≤ dzp ≤ dzUPp , dzp ∈ Rq×L, (11h)

dLO ≤ d ≤ dUP , d ∈ Rq (11i)

∀p = 1, . . . , P (11j)

xC = 〈xp, dxp, zp, dzp, d〉,

In turn, these binary decisions (yC
R) are obtained by solving the MILP master problem,

which is generated from the last NLP solutions. If xC
0 is the solution of the relaxed MINLP

and xC
r, with r = 1, . . . , R − 1, are the previously-determined NLP solutions obtained by

fixing the binary decisions yC
r, then the MILP for determining the integer vector yC

R is

represented as shown in eq. (12).
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Problem A2-MIP:

A2P,L,Rlb = min
xC,yC

cfy + α +
R−1∑
r=0

wkr sr (12a)

s.t. Ay + By′p + h(xp, zp,d,θp) = 0, (12b)

Cy + Dy′p + f(xp, zp,d,θp) ≤ 0, (12c)

gc(xrp,dzrp,d,θp) +∇gc(xrp,dzrp,d,θp)
T

 (xp − xrp)

(dzp − dzrp)

 ≤ sr, (12d)

DL(zp,dzp,wp) = 0, (12e)

cdd +
P∑
p=1

C(zp)− α ≤ 0, (12f)

(2 yr − 1m)y − |yr|1 +
P∑
p=1

[
(2 y′

r
p − 1m)y′p − |y′

r
p|1
]
+

P∑
p=1

φ
(

[2 wr
p − 1q×L]⊗wp −wr

p

)
+ 1 ≤ 0 (r 6= 0), (12g)

xLOp ≤ xp ≤ xUPp , xp ∈ Rn (12h)

zLOp ≤ zp ≤ zUPp , zp ∈ Rq, (12i)

dzLOp ≤ dzp ≤ dzUPp , dzp ∈ Rq×L, (12j)

dLO ≤ d ≤ dUP , d ∈ Rq (12k)

sr ≥ 0, sr ∈ Rm (12l)

y ∈ {0, 1}q, y′p ∈ {0, 1}q, wp ∈ {0, 1}q×L (12m)

∀p = 1, . . . , P, ∀r = 0, . . . , R− 1 (12n)

xC = 〈xp, dxp, zp, dzp, d〉, yC = 〈y, y′p, wp〉

In eq. (12), the parameters wkr = [wkr,κ] are the weights of the slack variables sr. These

parameters must satisfy the condition wkr,κ > |µr,κ|, where µr,κ are the KKT multipliers

associated with the κ-th inequality constraints gκ and obtained from the NLP problem solved
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at iteration r. Through consecutive iterations R, new linearizations (eq. 12d) and integer

cuts (eq. 12g) are added to each A2-MIP formulation and, therefore, the lower bound of

A2P,L increases. These integer cuts are introduced to eliminate the previously-determined

integer vectors (yC
1)L,P , (yC

2)L,P , . . . , (yC
R−1)L,P . In eq. (12g), 1m is the vector of ones

of size m, 1q×L is the matrix of ones of size q × L, ⊗ is the Hadamard product (entrywise

product), | · |1 is the 1-norm of vectors, and the function φ(·) is the element-by-element

summation for matrices (for binary vectors, notice that | · |1 is also the respective element-by-

element summation). An important observation is that the convexification technique applied

to obtain A2-M guarantees that the solutions of the formulations A2-MIP are valid lower

bounds for the objective function of the relaxed problem. Since integer cuts are incorporated

at each iteration, the algorithm stops when the lower bound is greater than the best upper

bound (denoted as A2P,L,∗ub ). When such crossover occurs, the best upper bound obtained

by the OA strategy is the final solution of the current A2-M formulation. Moreover, this

best upper bound is actually the lower bound of the original model (A1-M) because the

model A2-NLP is equal to the problem A2-M with fixed binary decisions and, therefore,

A1P,Llb =A2P,L,∗ub . Recall that a sequence of MILP and NLP formulations is solved for each

period (P ) and relaxation (L) to obtain this solution.

2.3 Control Structure Design

Once an optimal and flexible HEN is obtained, the control structure design (CSD) problem

is addressed. Here, the methodologies of Braccia et al. 37 and Zumoffen 38 are considered

as a starting point. These methodologies are based on the combination of two steady-state

indexes: the sum of squared deviations (SSD), which handles controlled variables (CVs) and

manipulated variables (MVs) selection, and the net load evaluation (NLE), which defines

the structure of the controller. The approach of Zumoffen 38 is formulated as a bilevel mixed-

integer nonlinear programming (BMINLP) problem, where discrete decisions are included in

both the upper and lower-level optimization problems. This problem has been reformulated
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using mixed-integer quadratic programming (MIQP) by Braccia et al. 37 . The new model

featured both optimality and improved computational performance due to the use of state-

of-the-art solvers.

In the proposed work, the control structure of the HEN is designed by only minimizing

the SSD index and selecting the MVs, since all the process output variables (output tempera-

tures) need to be controlled. In this context, the approach by Braccia et al. 37 is simplified by

only considering the SSD index evaluation, required to perform the control structure selec-

tion, based on the deviations of the MVs. A transfer function matrix (TFM) representation

(Laplace domain) of the stable or already stabilized HEN, y(s) = G(s)u(s) + D(s)d∗(s), is

considered, where y(s) are the potential output measurements (outlet temperatures), u(s)

are the available manipulated variables (bypass flow fractions and flowrates of utility ex-

changers), and d∗(s) are the disturbance variables (inlet temperatures and flowrates) with

size (1×M ′), (N ′ × 1) and (D′ × 1), respectively. This system can be partitioned as:

ys(s) =

[
Gs(s) G∗s (s)

]us(s)

ur(s)

+ Ds(s)d
∗(s) (13)

where ys(s) are the selected controlled variables (CVs), us(s) are the selected manip-

ulated variables (MVs) to control the subprocess Gs(s), and ur(s) = 0 are not used. To

perform this partition, the single level mixed-integer quadratic problem considered in this

work is shown in eq. (14).
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Problem SSD-M:

SSDp = min
u,y,z

M ′∑
σ=1

N ′∑
`=1

(ucp`,σ)2 +
D′∑
ω=1

N ′∑
`=1

(ud
p

`,ω)
2

(14a)

s.t.
N ′∑
`=1

gpν,` u
cp
`,σ − φν,σ = 0, (14b)

N ′∑
`=1

gpν,` u
dp

`,ω + dν,ω = 0 (14c)

−MSz
Ip

` ≤ ucp`,σ ≤ MSz
Ip

` , (14d)

−MSz
Ip

` ≤ ud
p

`,ω ≤ MSz
Ip

` , (14e)

N ′∑
`=1

zI
p

` = NH + NC (14f)

−MS(1− zndpσ,`) ≤ yrpσ,` − g
p
σ,` u

cp
`,σ ≤ MS(1− zndpσ,`), (14g)

M ′∑
ν=1

znd
p

ν,` = zI
p

` ,
N ′∑
`=1

znd
p

ν,` = 1, (14h)

δ1z
ndp

σ,` ≤ yrpσ,` ≤ δ2z
ndp

σ,`, (14i)

∀σ = 1, . . . ,M ′, ∀ν = 1, . . . ,M ′, (14j)

∀ω = 1, . . . , D′, ∀` = 1, . . . , N ′ (14k)

The optimal solution SSDp is the sum of squared deviations index for the optimal HEN

working at the operating point p (where the index p represents either the nominal point or

the critical points obtained at the synthesis stage). Moreover, Gp = [gpν,`] and Dp = [dpν,ω] are

constant matrices of size (M ′×N ′) and (M ′×D′), which represent the normalized HEN model

for each operating point p, where N ′, M ′, and D′ are the number of total inputs (the bypass

of heat exchangers and the flowrate ofutility exchangers), outputs (outlet temperatures),

and perturbations (inlet temperatures and flowrates), respectively. The parameter φν,σ is

the (ν, σ)-th entry of the (M ′×M ′) identity matrix. Since a normalized system is used, this

parameter represents the change of the output variables set-point.
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For simplicity, in the next paragraphs the superscript representing the operating point (p)

is dropped (e.g., ucp`,σ = uc`,σ), since the discussion that follows is valid for every operating

point. If set point changes and disturbances are considered separately, the big-M formulation

given in eqs. (14b) to (14f) is equivalent to the following systems of equations for each set

point change σ and for each disturbance change ω:

Set point changes:

Guc
σ − vσ = 0 ∀σ ∈ CVs

non selected MVs in uc
σ fixed to zero

Disturbance changes:

Gud
ω + Dvω = 0 ∀ω = 1, . . . , D′

non selected MVs in ud
ω fixed to zero

(15)

In eq. (15), vσ and vω are unitary vectors of size (M ′ × 1) and (D′ × 1), respectively.

The equations (14b) to (14f) are defined to obtain the deviations of the input variables

uc
σ = [uc`,σ] and ud

ω = [ud`,ω]. These vectors are associated, respectively, to the individual set

point change of each controlled output σ, and to the individual change of each disturbance ω.

The entries of uc
σ and ud

ω which are not selected as MVs are driven to zero. Indeed, eqs. (14d)

and (14e) constraint the MVs using the binary variables zI = [zI`]. The entries of the vector

zI with unitary value indicate the MVs selected for the control structure. This approach

allows selecting specific parts of G to obtain the subprocess Gs using big-M constraints

while avoiding the non-linearities introduced in the original formulation38.

As a result, the SSD index in eq. (14a) quantifies the deviations of the manipulated

variables (u) required when set point changes and disturbances take place separately. The

SSD minimization properties were extensively analyzed in Zumoffen 38 and Zumoffen and

Basualdo 39 , where it was shown that this minimization tends to maximize the minimum

singular value of the subprocess Gs, i.e., the selected subprocess is easy to control. The

eqs. (14f) guarantee that the number of CVs (all hot and cold output variables) and MVs

are the same (square control structure)
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The input-output pairing problem, eqs. (14g) to (14i), is addressed here based on the

relative gain array (RGA) approach. Since a direct computation of the RGA will introduce

strong non-linearities, the reformulation presented in Braccia et al. 37 is used in this work.

Hence, the RGA matrix can be computed as Λ = G⊗uc where G is a fixed real matrix and

⊗ the Hadamard product (element-by-element product). A new array of binary variables

znd = [zndσ,`], which represents the selected decentralized control structure, is introduced. The

unitary entries in znd correspond to proper and feasible gains in Λ. The RGA evaluation is

performed in eq. (14g) using big-M constraints associated to the corresponding decentralized

control structure defined by znd. The new continuous variable matrix yr = [yrσ,`] holds the

non-zero entries of the RGA matrix. Moreover, these entries are constrained by eqs. (14i)

guaranteeing a feasible and useful input-output pairing according to the scalar parameters

δ1 and δ2 fixed by the user. Finally, eqs. (14h) ensure that the control structure defined by

znd has a single unitary entry at each row and column, pairing the CVs with the selection

of MVs handled by zI. Recall that the problem SSD-M defined in eq. (14) is solved for both

the nominal and each critical plant model (Gp and Dp) after the synthesis stage.

2.4 Algorithm

A detailed step-by-step description of the proposed procedure (1) is given in the following

paragraphs:

• Step A: Multi-period Synthesis Model

Step A-1: Set P = 1 to consider nominal operating conditions for inlet flow rates

and temperatures.

Step A-2: The multi-period simultaneous synthesis formulation is solved using an

optimization strategy to guarantee solution optimality. A sequence of approximate

models (A2-M) are solved and original formulations (A1-M) are evaluated to obtain a

lower bound (A1P,Llb ) and upper bound (A1P,Lub ) of the original problem.

25

Page 25 of 52

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



• Step B: Optimization based on convexification strategy

Step B-1: Set L = 1, define grids for the heat exchange variables (qpi,j,k, qcu
p
i ,

qhupj), and set A1P,∗ub =∞ .

Step B-2: Outer-Approximation method

The outer approximation method is used to solve A2-M. The solution of this model is

a lower bound (A1P,Llb ) of the global optimal solution.

Step B-2.1: Solve the relaxed MINLP problem (relaxed A2-M) to determine a

KKT point (xC
0, yC

0). If yC
0 is integral then the optimal solution is found, go to step

B-3. Otherwise, set R = 1, A2P,L,∗ub =∞, and continue at step B-2.2.

Step B-2.2: Solve the MIP master problem (A2-MIP) to find the integer vector

yC
R with objective function zRlb. The solution is a lower bound of the relaxed problem,

set A2P,L,Rlb = zRlb.

Step B-2.3: Solve the NLP subproblem (A2-NLP) with the binary vector yC
R

fixed to determine the KKT point (xC
R) with objective function zRub. If the NLP is

infeasible set FLAG = 0. If the NLP is feasible then the solution is an upper bound of

the relaxed problem, set A2P,L,Rub = zRub, FLAG = 1.

Step B-2.4: (a) if FLAG = 1, determine if A2P,L,Rlb ≥ A2P,L,∗ub (i.e., the current

lower bound is higher than the best upper bound). If satisfied, the optimal solution of

formulation A2-M is the best upper bound (A2P,L,∗ub ), stop and go to step B-3. Other-

wise, set the best upper bound A2P,L,∗ub = min[A2P,L,Rub , A2P,L,∗ub ], add the corresponding

linearization (eq. 12d) to improve the approximation of the nonlinear functions, add the

integer cut (eq. 12g) to eliminate the binary solution (yC
R) just found, set R = R+ 1,

and return to Step B-2.2. (b) If FLAG = 0, set R = R + 1 and return to Step B-2.2

after adding the corresponding integer cut (eq. 12g).

Note: The best upper bound A2P,L,∗ub is a lower bound of the original problem, since

the formulation A2-M is an approximation of A1-M. Therefore A1P,Llb = A2P,L,∗ub .
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Step B-3: Fix the heat exchange variables and evaluate the formulation A1-M.

The solution of this model is an upper bound (A1P,Lub ) of the global optimal solution.

Step B-4: If A1P,Llb is close enough to A1P,∗ub ( |1 − A1P,Llb /A1P,∗ub | ≤ ε), then set

A1P = A1P,∗ub , terminate and go to step C. The optimal heat exchanger network is

found with a total annual cost (TAC) equal to A1P . Otherwise, set the best upper

bound A1P,∗ub = min[A1P,∗ub , A1P,Lub ], set L = L + 1, and return to step B-2 after adding

the grid points according to the solution obtained by the last problem A1-M.

• Step C: Flexibility index evaluation

Step C-1: Solve the flexibility index problem (FI-M). The Flexibility Index (FI)

and a new critical operating point are obtained using the active set strategy (ASS).

Step C-2: If FI is greater than 1, an optimal flexible heat exchanger network

is obtained, stop and go to step D. Otherwise, set P = P + 1, add the last critical

operating point to the multi-period formulation (new realizations of inlet temperatures

and inlet flow rates) and return to step A-2.

• Step D: Control structure design

Step D-1: Obtain the steady-state gain matrices (Gp and Dp) of the final optimal

and flexible network with respect to inputs and perturbations in the nominal operating

point (NP) and the critical points (CP).

Step D-2: Solve the control structure design problem. The control structure design

is obtained by solving the model SSD-M for each operating point. This guarantees

that the network operates satisfactorily at least in the operation points considered in

synthesis stage.
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3 Numerical Examples

Three case studies taken from the literature are presented in this section to illustrate the

application of the different stages of the proposed strategy. Section 3.1 is focused on the

optimization method and the outer-approximation strategy applied to the Synflex problem.

Here, the relationships among the subproblems are shown. In Section 3.2, the solutions

obtained at the synthesis stage for both the proposed global strategy and local optimization

methods are compared. In turn, the solution of the control structure design problem ob-

tained with the SSD strategy is presented in Section 3.3. The models FI-M, A1-M, A2-NLP,

and A2-MIP have been formulated using GAMS v24.5. The proposed algorithmic method

has been implemented in Matlab, and the Matlab-GAMS interface has been used to sequen-

tially evaluate the required models (i.e., the multi-period design subproblems, the flexibility

index model, and the control structure design formulation). The solvers CPLEX 12.6 and

CONOPT 3 have been used to solve the subproblems A2-MIP and A2-NLP, respectively. In

turn, BARON 15.9 has been employed both to evaluate the models A1-M and to solve the

problems FI-M (MINLP). All models have been solved on an Intel Core i7 3.4 GHz machine

with 8 GB of RAM. Three examples from the literature have been considered. The main

data describing the HEN synthesis problems are presented in Tables 1 and 2. Examples 1

and 3 have been studied by Björk and Westerlund 13 , and example 2 has been presented by

Chen and Hung 40 . The case studies are analyzed taking into account increasing size and

complexity, being the largest and more complex problem presented last. For every example,

while case A considers changes of the inlet temperatures only, case B features not only inlet

temperature but also inlet flow rate modifications. Examples 1-A, 1-B and 2-B are discussed

in more detail.
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(a) Proposed optimization procedure (b) OA strategy - Iteration 1 - A11,1lb

(c) OA strategy - Iteration 5 - A11,5lb (d) OA strategy - Iteration 12 - A11,12lb

Figure 2: Proposed method using Outer-Approximation strategy – Example 1 – case A –
period 1

3.1 Convergence Analysis of the Proposed Method

The purpose of this section is to show the convergence properties of the convexification

strategy and the inner-outer optimization used to solve the proposed mixed-integer non-

linear multi-period design problem. The example 1, case A, involves one hot stream, two

cold streams, and only disturbances in the inlet temperatures. For the nominal operating

point (period 1) the objective value reported by Björk and Westerlund 13 is 52429 $y−1.

Figure 2 illustrates the convergence of the proposed methodology for period P = 1.

The lower bound of model A1-M is obtained by convexifying the original problem to gen-
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erate a relaxed formulation (A2-M). As presented in subsection 2.2.1, the relaxation applied

is based on a piecewise linear approximation. On the one hand, by improving the approx-

imation at each iteration (L), the new problem becomes a more accurate underestimation

of the original problem. Thus, an increasing lower bound is obtained. The upper and lower

bounds of the original problem (A11,L
ub and A11,L

lb ) are shown in Figure 2(a). At iteration 12,

the final gap between the bounds is less than 1 × 10−4 and the best upper bound obtained

(A11,∗
ub ) is 52428.65 $y−1.

On the other hand, in order to solve the subproblems A2-M at each iteration L, an outer-

approximation strategy is used. This strategy is shown in Figures 2(b) to 2(d) for iterations

L = 1, 5 and 12. For each subproblem A2-M, a sequence of successive lower and upper

bounds (A2P,L,Rlb and A2P,L,Rub , respectively) are calculated by solving the models A2-MIP

and A2-NLP at each iteration R. Figure 2(b) shows this sequence for P = 1 and L = 1,

where the crossover between A21,1,R
lb and A21,1,R

ub can be observed at R = 3. As defined in the

proposed method, the best upper bound (A21,1,∗
ub = 28507.25 $y−1) is also the lower bound of

the subproblem A1-M at iteration L = 1 (A11,1
lb = A21,1,∗

ub ). This can be seen by comparing

the best upper bound in Fig. 2(b) with the lower bound at iteration L = 1 in Fig. 2(a).

A similar observation is possible by considering the iterations 5 and 12 in Figures 2(c) and

2(d), respectively. In the general case, A2P,L,∗ub = A1P,Llb at each step L.

Figure 3: Optimal HEN structure for example 1 – case A – period 1

The final optimal configuration of the HEN at period P = 1 is shown in Figure 3. For

this result, the flexibility index model (FI-M) is solved to obtain both the flexibility index
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and a new critical point. If all the heat exchangers are used to control the network, the

flexibility index is 0.267. Thus, a new critical point is added to the nominal condition, and

the multi-period optimization problem is solved again by considering these two periods. In

Table 4, the bounds A12,L
lb and A12,L

ub are reported for period P = 2. At iteration L = 14

the gap between A12,L
ub and A12,L

lb is less than 1 × 10−4 and the best upper bound (A12,∗
ub )

is 59766.57 $y−1. The new optimal configuration features a flexibility index of 2. Hence,

the final optimal and flexible network has been found. Figure 4 presents the optimal and

flexible HENs obtained at example 1 for both case A and case B. Recall that case B features

not only inlet temperature but also inlet flow rate modifications. For this example the final

objective value is 59630.55 $y−1, also with a flexibility index of 2. By comparing cases A

and B it can be noted that final results obtained are different. This is because each case

incorporates different critical points in the second period. The specific critical points added

in each case are reported in Table 3.

(a) Case A (b) Case B

Figure 4: Optimal HEN structures for example 1 – period 2

3.2 Comparison with Local Optimization Methods

The purpose of this section is to compare the quality of the Synflex problem solutions

obtained with the proposed approach against those obtained with other local optimization

methods. In this context, standard MINLP solvers that do not guarantee global optimality
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are used to solve the non-convex model A1-M (i.e., without the convexification strategy).

In particular, the solvers DICOPT, SBB and BONMIN are tested and compared with the

proposed methodology.

Table 5 includes the objective function values for the global and best locally optimal solu-

tions obtained for all the examples presented in Table 1 and Table 2. It can be observed that

the local solutions reported by the solvers being tested have large variations compared with

the solutions given by the proposed optimization strategy, particularly for Examples 2 and 3.

Moreover, depending on the initial point, local optimization solvers (such as BONMIN or

SBB) can even fail to find a feasible solution. This behavior is shown in Table 5 with a double

asterisk (**) and is more frequent when multiple periods or large-scale problems are consid-

ered. In contrast, because of the convexification strategy applied, the outer-approximation

obtains the best solutions for all the test cases being analyzed. The computing times for all

the examples are reported in Table 6. For the proposed approach, more accurate solutions

closer to the global optimum can be obtained at the expense of more CPU time. Recall that

the stopping criterion of the proposed algorithm is the condition |1−A1P,Llb /A1P,∗ub | ≤ ε. For

all the examples, the value ε = 1 × 10−4 has been selected. A smaller ε will allow more

accurate solutions to be found. While the proposed strategy guarantees the optimality of

the best solutions obtained, it should be noted that a large increase on the required CPU

time can make it not suitable for medium/large scale problems.

In Figure 5, the best solutions found by the local optimization methods are compared with

those of the proposed approach. The value 100% represents the global optimal objective for

example 2 (cases A and B). It is clear from this figure that, if the convexity of the problem

is not guaranteed, local optimization methods may get poor solutions which may differ

considerably from the optimal value. In Figure 5, the solutions with the greatest deviations

from their respective global solution are obtained by DICOPT.

For example 2, case B, the network configurations obtained with the proposed method-

ology at each iteration P are shown in Fig. 6. In the first iteration of the synthesis strategy,
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(a) Example 2, case A
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(b) Example 2, case B

Figure 5: Comparison of optimal solutions (100%) with local solver solutions for model
Synflex

Fig. 6(a), the best solution features an objective value of 30304.21 $y−1 and a flexibility index

of 0.131. In the second iteration (P = 2), the nominal condition and the first critical point

are considered to obtain a new flexible HEN, which is shown in Fig. 6(b). A heat exchanger

is incorporated in this new configuration. Therefore, the objective value and the flexibility

index increase to 31444.18 $y−1 and 0.636, respectively. However, the network still cannot

handle the expected variations of the inlet disturbances. The optimal and flexible HEN is

found in the third iteration of the synthesis strategy, Fig. 6(c), where the optimal objective

value is 36540.41 $y−1 and the flexibility index is 1.713. It is important to note that a rea-

sonable increase of the investment and operating cost, which corresponds to a higher TAC,

is required to increase the flexibility index at each iteration.

3.3 Control Structure Design Results

The application of the control structure design (CSD) methodology is analyzed in this sec-

tion. The problem 1, case B, where expected variations of the inlet temperatures and flow

rates are simultaneously considered, is used to illustrate the proposed CSD approach. In

section 3.1, the final flexible HEN obtained for this example has been shown in Fig. 4(b).
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(a) Period no. 1 (b) Period no. 2

(c) Period no. 3

Figure 6: Optimal HEN structures for example 2 – case B

This HEN can operate under a range of inlet variations determined by its flexibility index.

However, since the network structure is different for each design point, from the control

perspective the steady-state gain of the system varies for each point. Indeed, depending on

the disturbance amplitude and direction some equipment of the HEN are either turned on or

turned off to handle these variations. In this context, the CSD method should be applied at

least at each of these points. This fact is a contribution of this work with regards to Escobar

et al. 21 where, paradoxically, the CSD is performed only at the nominal operating point.

The first step of the CSD methodology is to compute the steady-state gains for the

flexible optimal HEN both at the nominal point and by considering the additional critical

points. For problem 1, case B, the matrices Gp and Dp of the final flexible HEN at nominal
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condition (p = 1) are:

G1 =


4.620 0 4.882 −0.481 3.629 0 3.876 −0.823 −1.428 0 0

−2.610 0 0 0 −2.051 0 0 0 0 0 0

1.885 0 −0.832 −0.687 1.481 0 −0.661 −1.176 0 0 0



D1 =


0.458 1.179 0.762 51.578 −11.581 −25.899

0.667 0.333 0 5.395 −8.347 0

0.859 0.481 0.231 16.979 −2.835 −15.675


and the steady-state gains of the HEN working at the second operation point (p = 2) are:

G2 =


4.946 0 4.636 −0.465 3.643 0 3.878 −0.786 −0.552 0 0

−2.639 0 0 0 −1.944 0 0 0 0 0.885 0

1.836 0 −1.059 −0.606 1.352 0 −0.886 −1.023 0 0 0



D2 =


0.419 1.209 0.771 51.196 −11.471 −25.761

0.645 0.355 0 5.365 −9.012 0

0.857 0.449 0.213 16.174 −2.554 −15.353


Moreover, the inputs, outputs, and disturbances are: u = [uh111, uh112, uh121, uh122,

uc111, uc112, uc121, uc122, qcu
1 , qhu

1 , qhu
2 ]T, y = [Thout

1 , Tcout1 , Tcout2 ]T, and d∗ = [Thin
1 , Tcin1 ,

Tcin2 , fhin
1 , fcin1 , fcin2 ]T, respectively. Based on these data, the SSD problem is solved to obtain

the control structure for each operating point.

Figure 7 shows two different control structures for the HEN when working on two operat-

ing points (nominal point + critical point). The first control structure (CS1) is based on the

paring qcu
1 – Thout

1 , uh111 – Tcout1 , and uc122 – Tcout2 , and is feasible for a given region of the
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(a) Control structure no. 1 (CS1).
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(b) Control structure no. 2 (CS2).

Figure 7: Optimal control structures for the flexible HEN of example 1 – case B

perturbations. This control feasible region is inside of the feasible region determined by the

first critical point, |d∗| ≤ 0.216. The steady-state gain matrix changes when the operation

of the HEN moves from the nominal point towards the first critical point and, therefore, a

second control structure (CS2) must be designed. On this critical direction, the hot utility

exchange 1 must be turned on. Therefore, CS1 is reconfigured to CS2, which defines the

following input-output pairing: uh111 – Thout
1 , qhu

1 – Tcout1 , and uc122 – Tcout2 . This reconfig-

uration is required for certain directions when the perturbations leave the feasible region of

CS1. In particular, CS2 is valid in the surroundings of the first critical point. Within this

range, CS1 cannot operate the HEN because it cannot satisfy the energy requirement. While

the hot utility exchanger should be turned on, CS1 does not have action on this variable.

The fact that the hot utility exchanger is not running at the nominal operation point can

be observed in the matrix G1, which includes a zero column for this manipulated variable.

It important to note that the flexibility index quantifies the maximum possible deviation

allowed by the design without the control limitations. For this reason, a more detailed study

is required to calculate the final feasible area of each control structure, i.e. to obtain the

maximum possible deviation of the HEN working at closed loop. This detailed study is out

of the scope of this work, and will be considered in future contributions. An additional result

showing the dynamic behavior of temperature in the case when control reconfiguration is
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needed has been included in the Supporting Information file.

In Tables 7, 8 and 9 the optimal control structures and the objective function values are

shown for all the examples presented. In all cases the switching between alternative control

structures can be implemented using override control based on PID controllers. Override

control is a well-know methodology in industrial process control practice. Alternatively,

advanced process control strategies such as MPC can be applied to handle all the control

structures in a single layout.

4 Conclusions and Future Works

A new sequential methodology to obtain both the optimal design and the optimal control

structure for flexible heat exchanger networks (HEN) is presented. The proposed approach

determines both the HEN and the control structures able to operate it, within a given range

of uncertain conditions (disturbances). The flexible HEN synthesis problem is handled by

an iterative procedure where a sequence of multi-period formulations are solved. These

multi-period models include non-convexities which are reformulated using a convexification

technique before applying an outer-optimization strategy to obtain the optimal solutions.

The proposed method guarantees that the optimal heat exchanger networks are obtained

even when the flexibility is increased. In order to emphasize the importance of finding the

optimal solution, the proposed global optimization strategy has been compared with alterna-

tive local optimization methods. The results clearly exemplify that local methods can obtain

poor solutions with large deviations with respect to optimal value. Moreover, in some cases

the local methods cannot find a feasible solution. In contrast, the convexification technique

applied before solving the multi-period problems guarantees that the outer-approximation

strategy obtains the optimal solutions. Besides, it is worth mentioning that the flexibility

index increases when additional periods (i.e., critical operating points) are considered, pro-

ducing a higher total annualized cost (TAC), which in turn is composed by reasonably higher
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investment and operating costs.

An additional contribution of this work is the approach used at the control structure

design (CSD) phase, which is based on the sum of squared deviations (SSD) index. The

proposed CSD approach represents an advance when compared with previous contributions

where the classical relative gain array (RGA) concept is applied only at the nominal op-

erating point. In this context, an SSD-based control design formulation is proposed that

systematizes (and combines in a single MIQP model) decisions such as the selection of con-

trolled/manipulated variables and the input-output pairing. This formulation is solved for

each period to obtain a valid control structure for each operating point. A case study is

presented showing that the control structure designed for the nominal point cannot operate

when the disturbances exceed the corresponding flexibility index. When this happens, the

disturbance variations enforce some manipulated variables to be either active or turned off.

A similar situation arises when the disturbances are higher than the flexibility index of any

critical point. By using a reconfigurable control structure, the proposed approach allows the

final flexible HEN to operate within a wider range of uncertainty conditions. However, a

more detailed methodology is still required to determine and guarantee an appropriate final

feasibility area for the controlled HEN.

In future work modifications of the synthesis problem, such as considering non-isothermal

mixing and isothermal process streams, will be analyzed. Moreover, the optimization pro-

cedure will be improved by incorporating cuts, between consecutive iterations, to eliminate

solutions of the approximate problem that exceed the objective value of the original problem

on previous iterations. The aim of these cuts will be to improve the computational perfor-

mance of the optimization strategy. Some preliminary results are shown in the Supporting

Information file. Furthermore, the integration between synthesis and control will be further

developed by considering alternative controller structures, such as decentralized, sparse, and

full. Finally, the proposed methodology will be extended to retrofit the obtained HEN and

the nominal bypass fraction based on analyzing the disturbance propagation in the network.
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Nomenclature

Acronyms

AP/OA/ER: Augmented - Penalty - function

/ Outer - Approximation / Equality - Relax-

ation

BMINLP: Bilevel mixed-integer nonlinear

programming

CSD: Control structure design

CVs: Controlled variables

CP: Critical points

FI: Flexibility index

HEN: Heat exchanger network

KKT: Karush-Kuhn-Tucker optimality con-

ditions

RGA: Relative gain array

MINLP: Mixed-integer nonlinear program-

ming

MILP: Mixed-integer linear programming

MIQP: Mixed-integer quadratic program-

ming

MVs: Manipulated variables

NLP: Non-linear programming

NLE: Net load evaluation

NP: Nominal point

SSD: Sum of squared deviations

TAC: Total annal cost

TFM: Transfer function matrix

Sets and indices

i ∈ I = {1, . . . ,NH} : hot streams

I ′: relevant equality constraints selected from

eqs. (1b)

j ∈ J = {1, . . . ,NC} : cold streams

J ′: relevant inequality constraints selected

from eqs. (1c)

k ∈ K = {1, . . . ,NT} : stages

l = 1, . . . , L : gridpoints of the piece-wise ap-

proximation

L: iteration of the convexification strategy

R: iteration of the outer-approximation

strategy
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p = 1, . . . , P : periods

σ = 1, . . . ,M’: set point changes of controlled

output variables

P : iteration of the multi-period synthesis

strategy

ω = 1, . . . ,D’: perturbations

` = 1, . . . ,N’: manipulated variables

ν = 1, . . . ,M’: controlled output variables

Continuous variables

A1P : optimal economic objective function

value at iteration P

A1P,Lub : upper bound of the model A1-M at

iterations P and L.

A1P,Llb : lower bound of the model A1-M at it-

erations P and L.

A1P,∗ub : best upper bound of the model A1-M

at iteration P .

A2P,L: economic objective function value of

model A2-M at iterations P and L

A2P,L,Rub : upper bound of the model A2-M at

iterations P , L, and R

A2P,L,Rlb : lower bound of the model A2-M at

iterations P , L, and R

A2P,L,∗ub : best upper bound of the model A2-M

at iterations P and L

a, acu, and ahu : areas of heat exchangers, cold

utility exchangers, and hot utility exchangers,

respectively, raised to the power of β

d: design variables

dzp: variables used to convexify the signo-

mial terms present in model A1-M

FIP : flexibility index at iteration P

q, qcu, and qhu: heats associated to heat ex-

changers, cold utility exchangers, and hot

utility exchangers, respectively

SSDp: sum of squared deviations index for

the optimal HEN working at the operating

point p

sj′ : slack variables of the inequality j′

u: input vector

us: MVs vector

ur: non-selected MVs vector

ucp
σ = [ucp`,σ]: input response vector for the

σ-th set-point change at period p

udp
ω = [ud

p
`,ω]: input response vector for the

ω-th disturbance effect at period p

xH: continuous variables of the model A1-M

xF: continuous variables of the model FI-M

xC: continuous variables of the model A2-M

xp: dependent (state) variables

y: output vector

ys: CVs vector

yrp = [yrpσ,`]: RGA matrix at period p
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zp: independent (manipulated) variables

∆t: temperature difference between cold and

hot stream

δ: fraction of the maximum expected distur-

bances

λj′ : lagrange multipliers associated to the in-

equality constraint j′.

µi′ : lagrange multipliers associated to the

equality constraint i′

µr,κ: KKT multipliers associated with the

κ-th inequality constraints gκ and obtained

from the NLP problem solved at iteration r

sr: slack variables

θ∗P+1: critical point of model FI-M.

Γ: direction that θ∗P+1 deviates from the nom-

inal point

Binary Variables

wp: interval selection of piecewise linear-

approximation

yH: binary variables of the model A1-M

yF: binary variables of the model FI-M

yC: binary variables of the model A2-M

y: existence of heat exchangers and utility

exchangers

y′p: operation of heat exchangers and utility

exchangers

yFj′ : activation of the inequality constraint j′

zIp = [zI
p
` ]: MVs selection for operating point

p

zndp = [znd
p
ν,`]: binary matrix for decentral-

ized control structure selection of operating

point p.

Parameters

Ds: disturbance TFM for CVs

d∗: disturbance vector

Dp = [dpν,ω]: HEN disturbance TFM at oper-

ating point p

D: disturbance TFM

G: process TFM

Gs: process TFM for CVs

Gp = [gpν,`]: HEN TFM for CVs at operating

point p

θp: operating point at period p

ΦP : HEN design obtained at iteration P

MF: upper bound for the slack variables sj′

MS: big-M

nz: number of control variables selected

vσ and vω: unit vectors of directions σ and

ω, respectively

wkr: weights of the slack variables sr

δ1/δ2: lower/upper bound for RGA pairing

entries
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∆θ+/∆θ−: maximum positive/negative ex-

pected disturbances

φν,σ: (ν, σ)-th entry of the identity matrix

Supporting Information

This material is available free of charge via the Internet at http://pubs.acs.org/.

A detailed description of the A1-M, A2-M, and A2-MIP models are discussed in the

supporting information file.
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MINLP synthesis of heat exchanger networks considering pressure drop effects. Com-

puters & Chemical Engineering 2003, 27, 1143–1152.

(12) Furman, K. C.; Sahinidis, N. A critical review and annotated bibliography for heat

exchanger network synthesis in the 20th century. Industrial and Engineering Chemistry

Research 2002, 41, 2335–2370.

(13) Björk, K. M.; Westerlund, T. Global optimization of heat exchanger network synthesis

problems with and without the isothermal mixing assumption. Computers & Chemical

Engineering 2002, 26, 1581–1593.

(14) Braccia, L.; Degliuomini, L. N.; Luppi, P.; Basualdo, M. S. Global Optimization for

Flexible Heat Exchanger Network Synthesis of Chemical Plant . 24th European Sym-

posium on Computer Aided Process Engineering – ESCAPE 24. 2014, 33, 199–204.

43

Page 43 of 52

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(15) Bergamini, M. L.; Grossmann, I. E.; Scenna, N.; Aguirre, P. An improved piecewise

outer approximation algorithm for the global optimization of MINLP models involving

concave and bilinear terms. Computers & Chemical Engineering 2008, 32, 477–493.

(16) Zamora, J. M.; Grossmann, I. E. A branch and contract algorithm for problems with

concave univariate, bilinear and linear fractional terms. Journal of Global Optimization

1999, 14, 2173.

(17) Adjiman, C. S.; Androulakis, I. P.; Floudas, C. A. Global optimization of mixed-integer

nonlinear problems. AIChE Journal 2000, 46, 1769–1797.

(18) Aaltola, J. Simultaneous Synthesis of Flexible Heat Exchanger Networks. Thesis, De-

partment of Mechanical Engineering, Helsinki University of Technology, Finland. 2002,

(19) Chen, L. C.; Hung, P. S. Simultaneous synthesis of flexible heat-exchange networks

with uncertain source-stream temperatures and flow rates. Industrial & Engineering

Chemistry Research 2004, 43, 5916–5928.

(20) Verheyen, W.; Zhang, N. Design of flexible heat exchanger network for multi-period

operation. Chemical Engineering Science 2006, 61, 7730–7753.

(21) Escobar, M.; Trierweiler, J. O.; Grossmann, I. E. Simultaneous synthesis of heat ex-

changer networks with operability considerations: Flexibility and controllability. Com-

puters & Chemical Engineering 2013, 55, 158–180.

(22) Morari, M. Effect of Design on the Controllability of Chemical Plants. Proc. IFAC

Workshop on Interactions Between Process Design and Process Control, London 1992,

44, 3.

(23) Calandranis, J.; Stephanopoulos, G. A Structural Approach to the Design of Control

Systems in Heat Exchanger Networks. Computers & Chemical Engineering 1988, 12,

651.

44

Page 44 of 52

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(24) Aguilera, N.; Marchetti, J. L. Optimizing and Controlling the Operation of Heat-

Exchanger Networks. AIChE Journal 1988, 44, 1090.

(25) Mathisen, K. W.; Skogestad, S.; Wolff, E. A. Controllability of Heat Exchanger Net-

works. AIChE Meeting, Los Angeles, CA 1991,

(26) Mathisen, K. W.; Skogestad, S.; Gundersen, T. Optimal Bypass Placement in Heat

Exchanger Networks. AIChE Meeting, New Orleans, LA 1992,

(27) Papalexandri, K. P.; Pistikopoulos, E. N. A Multiperiod MINLP model for the Synthesis

of Flexible Heat and Mass Exchange Network. Computers & Chemical Engineering

1994, 18, 1125.

(28) Papalexandri, K. P.; Pistikopoulos, E. N. Synthesis and Retrofit Design of Operable

Heat Exchanger Network: 1. Flexiblility and Structural Controllability Aspects. Indus-

trial and Engineering Chemistry Research 1994, 33, 1718.

(29) Yang, Y. H.; Lou, H. H.; Huang, Y. L. Steady-State Disturbance Propagation Modeling

of Heat Integrated Distillation Process. Transactions of the Institution of Chemical

Engineers 2000, Part A, 78, 245.

(30) Yang, Q. Z.; Yang, Y. H.; Huang, Y. L. Cost-Effective Bypass Design of Highly Con-

trollable Heat-Exchanger Networks. AIChE Journal 2001, 47, 2253–2276.
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Table 1: Problem data for the examples

Stream Tin ±∆θ
[K]

Tout

[K]
Heat transfer

coefficient
[kW K−1m−2]

Fin ±∆θ
[kW K−1]

Example 1

Case A
Hot 1 423± 10 318 2 20
Cold 1 333± 10 393 2 13
Cold 2 293± 10 393 2 12

Hu 473 473 1
Cu 278 288 1

Case B
Hot 1 423± 10 318 2 20± 0.4
Cold 1 333± 10 393 2 13± 0.4
Cold 2 293± 10 393 2 12± 0.4

Hu 473 473 1
Cu 278 288 1

Cost of heat exchanger [$y−1] = 4000 + 560× area0.8,
Cost of utility exchanger [$y−1] = 4000 + 700× area0.8, Cost of Cooling utility [$kW−1y−1] = 20,
Cost of Heating utility [$kW−1y−1] = 80.
Case A, optimal sol. period 1: 52428.65 $y−1, FI: 0.267; period 2: 59766.56 $y−1, FI: 2.
Case B, optimal sol. period 1: 52428.65 $y−1, FI: 0.216; period 2: 59630.55 $y−1, FI: 2.

Example 2

Case A
Hot 1 583± 10 323 0.16 1.4
Hot 2 723± 10 553 0.16 2.0
Cold 1 313± 10 393 0.16 3.0
Cold 2 388± 10 553 0.16 2.0

Hu 573 573 0.16
Cu 303 323 0.16

Case B
Hot 1 583± 10 323 0.16 1.4± 0.4
Hot 2 723 553 0.16 2.0
Cold 1 313 393 0.16 3.0
Cold 2 388± 5 553 0.16 2.0± 0.4

Hu 573 573 0.16
Cu 303 323 0.16

Cost of heat exchanger [$y−1] = 1100 + 866.60× area0.6,
Cost of utility exchanger [$y−1] = 1100 + 866.60× area0.6, Cost of Cooling utility [$kW−1y−1] = 52.09,
Cost of Heating utility [$kW−1y−1] = 148.28.
Case A, optimal sol. period 1: 30304.21 $y−1, FI: 0.250; period 2: 31589.42 $y−1, FI: 1.429.
Case B, optimal sol. period 1: 30304.21 $y−1, FI: 0.131; period 2: 31444.18 $y−1, FI: 0.636;
period 3: 36540.41 $y−1, FI: 1.713.
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Table 2: Problem data for the examples (cont.)

Stream Tin ±∆θ
[K]

Tout

[K]
Heat transfer

coefficient
[kW K−1m−2]

Fin ±∆θ
[kW K−1]

Example 3

Case A
Hot 1 180± 10 75 2 30
Hot 2 240± 10 60 2 40
Cold 1 40± 2 230 1.5 20
Cold 2 120± 2 260 1.5 15
Cold 3 40± 2 130 2 25
Cold 4 80± 2 190 2 20

Hu 325 325 1
Cu 25 40 2

Case B
Hot 1 180± 10 75 2 30± 1.5
Hot 2 240± 10 60 2 40± 1.5
Cold 1 40± 5 230 1.5 20± 2
Cold 2 120± 2.5 260 1.5 15± 0.4
Cold 3 40± 2.5 130 2 25± 0.4
Cold 4 80± 10 190 2 20± 2

Hu 325 325 1
Cu 25 40 2

Cost of heat exchanger [$y−1] = 8000 + 50× area0.75,
Cost of utility exchanger [$y−1] = 8000 + 50× area0.75, Cost of Cooling utility [$kW−1y−1] = 20,
Cost of Heating utility [$kW−1y−1] = 120.
Case A, optimal sol. period 1: 169064.44 $y−1, FI: 0; period 2: 177328.89 $y−1, FI: 2.566.
Case B, optimal sol. period 1: 169064.44 $y−1, FI: 0; period 2: 177793.82 $y−1, FI: 1.543.

Table 3: Example 1 – Critical point considered in the second period

Case Thin2
1 Fhin2

1 Tcin2
1 Fcin2

1 Tcin2
2 Fcin2

2

[K] [kW K−1] [K] [kW K−1] [K] [kW K−1]
A 420.03 20.00 330.03 13.00 290.03 12.00
B 420.75 19.91 330.75 13.09 290.75 12.09
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Table 4: Proposed Optimization Method – Problem 1 – case A – period 2

Iteration [L] A12,L
lb A12,L

ub Gap [%]
1 31461.57 63876.68∗ 1.03× 102

2 49276.74 60055.83∗ 2.19× 101

3 51545.38 62516.69 1.65× 101

4 56746.96 59780.04∗ 0.53× 101

5 58366.89 59958.93 0.24× 101

6 59624.37 59800.39 2.61× 10−1

7 59720.37 59772.05∗ 8.65× 10−2

8 59752.49 59767.42∗ 2.49× 10−2

9 59764.49 59766.94∗ 4.08× 10−3

10 59765.91 59767.03 1.72× 10−3

11 59766.25 59766.67∗ 6.97× 10−4

12 59766.49 59766.58∗ 1.65× 10−4

13 59766.52 59766.71 1.13× 10−4

14 59766.54 59766.57∗ 5.03× 10−5

* Best upper bound A1P,∗
ub , Gap = 100

[
1−A1P,L

lb /A1P,∗
ub

]

Table 5: Objective function [$y−1] for Synflex – Local solvers vs Proposed method

Example 1 Example 2 Example 3

P A B A B A B

DICOPT
1 52428.65 52428.65 76830.63 76830.63 169137.45 169137.45
2 59766.56 59630.55 32046.59 40905.79 177424.36 177869.12
3 79498.09

BONMIN
1 52428.65 52428.65 30437.95 30437.95 185118.02 185118.02
2 59766.56 59630.55 31589.42 31659.48 ** **
3 36673.32

SBB
1 52428.65 52428.65 59635.17 59635.17 579366.18 579366.18
2 59766.89 59630.88 31604.96 31674.63 ** **
3 37671.05

Proposed Method
1 52428.65 52428.65 30304.21 30304.21 169064.43 169064.43
2 59766.57 59630.55 31589.42 31444.18 177328.89 177793.82
3 36540.40

** No feasible solution found
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Table 6: Optimization times [s] for Synflex – Local Solvers vs Proposed method

Example 1 Example 2 Example 3

P A B A B A B

DICOPT
1 0.11 0.11 0.38 0.38 4.87 4.87
2 0.28 0.23 0.27 0.26 66.25 153.69
3 0.26

BONMIN
1 3.34 3.34 16.38 16.38 2796.05 2796.05
2 10.22 9.58 305.14 66.63 ** **
3 757.35

SBB
1 0.19 0.19 0.29 0.29 80.36 80.36
2 1.17 1.14 4.60 2.18 ** **
3 4.67

Proposed Method
1 5.63 5.63 54.96 54.96 359.28 359.28
2 212.38 107.25 751.73 557.82 20322.92 18122.22
3 1005.00

Table 7: Alternative decentralized control structures for Example 1

Example 1

Case A Case B

CS1 CS2 CS1 CS2

Pairings
Thout

1 – fcu1 Thout
1 – uh111 Thout

1 – fcu1 Thout
1 – uh111

Tcout1 – uh111 Tcout1 – fhu1 Tcout1 – uh111 Tcout1 – fhu1

Tcout2 – uc122 Tcout2 – uc122 Tcout2 – uc122 Tcout2 – uc122
SSD 1962.42 2117.34 1938.19 2205.41

Table 8: Alternative decentralized control structures for Example 2

Example 2

Case A Case B

CS1 CS2 CS1 CS2 CS3

Pairings

Thout
1 – fcu1 Thout

1 – fcu1 Thout
1 – fcu1 Thout

1 – fcu1 Thout
1 – fcu1

Thout
2 – fcu2 Thout

2 – uc221 Thout
2 – fcu2 Thout

2 – fcu2 Thout
2 – uh221

Tcout1 – uh112 Tcout1 – uh112 Tcout1 – uh112 Tcout1 – uh112 Tcout1 – uh112

Tcout2 – uh221 Tcout2 – uc121 Tcout2 – uh221 Tcout2 – uc221 Tcout2 – uc121
SSD 62.70 127710.85 52.90 60.32 593.60
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Table 9: Alternative decentralized control structures for Example 3

Example 3

Case A Case B

CS1 CS2 CS1 CS2

Pairings

Thout
1 – uc134 Thout

1 – uc134 Thout
1 – uc134 Thout

1 – uc134
Thout

2 – fcu2 Thout
2 – fcu2 Thout

2 – uh242 Thout
2 – uh242

Tcout1 – uc212 Tcout1 – uc212 Tcout1 – uh212 Tcout1 – uh212

Tcout2 – fhu2 Tcout2 – fhu2 Tcout2 – fhu2 Tcout2 – fhu2

Tcout3 – uc122 Tcout3 – uc122 Tcout3 – uc122 Tcout3 – uc122
Tcout4 – uh211 Tcout4 – uh211 Tcout4 – uh211 Tcout4 – uh211

SSD 13355.08 13359.48 2057.62 2070.03
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