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We have read with great joy the letter to the editor, written by Yew et al., which analyzes and 

compares several recent articles [1–4] showing the intimate relationship between Mycobacterium 

tuberculosis’ (Mtb) redox status - mainly due to the presence of Reactive Nitrogen and Oxygen 

Species (RNOS) - and tubercular drug efficacy. Given the fact that tuberculosis (TB) is an infectious 

disease for which there is a limited arsenal of effective drugs, it is crucial to find new drugs or to 

somehow enhance pre-existing treatments. In this context, it is of great relevance to understand: 

how the redox status of mycobacteria can be modulated using small molecules, how this modulation 

impacts in both the bactericidal/static effect of available drugs used in TB treatment and how the 

presence of RNOS affects mycobacteria (eventually killing them) and relates to induction and escape 

of Mtb dormancy. The picture is however more complicated, since also the host’s redox status needs 

to be considered and has recently been shown to be a key determinant of TB treatment outcome 

[5,6]. Therefore, and as it will be presented briefly below, the question of whether RNOS presence is 

positive or negative in the context of TB treatment is still a matter of intense debate and research.  

 

On one hand, nitrosative stress generated by RNOS, activates the expression of the DOS (Dormancy 

System) regulon. This is a two component system whose sensors are the DosS and DosT heme-

containing histidine kinases that modulate DosR cognate receptor activity. However, which is the 

precise signal detected by the sensors is still an open question [7,8] and new stress responses and 

defense systems are continuously discovered [9]. The DOS regulon is responsible for the shift of Mtb, 

from aerobic to anaerobic state, survival of the cells during hypoxia-induced dormancy and 

reactivation of the replicative state upon re exposure to oxygen [10]. On the other hand, there is 

plenty of evidence that RNOS present antimicrobial activity within many species such as B. subtilis, E. 

coli [11], S. aereus [12] and even M. tuberculosis [13]. More specifically, recently our group showed 
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how HNO (as well as NO) exerts a mycobactericidal effect [1] even when it is applied in successive 

sub-inhibitory doses.  

 

Another important but still poorly understood issue related to RNOS and Mtb, are the molecular 

mechanisms underlying the observed effects. From a biochemical point of view, the molecular 

mechanisms of Mtb’s RNOS defense mediated by key proteins such as superoxide dismutase, 

catalase, alkylhydroperoxide reductases and the truncated hemoglobin N, among others, are well 

established [8]. However, the molecular targets that are responsible for the mycobactericidal/static 

effect of RNOS are still unknown. Most importantly, there is no consensus if RNOS kill bacteria due 

to nonspecific and widespread damage to DNA, lipids and/or proteins or due to the inhibition of 

specific biological targets. 

 

Finally, two important facts hamper the interpretation of the observed effects in terms of their 

underlying molecular mechanisms. The first, concerns bacterial population diversity. Apparently 

opposing observations could be explained by the presence of persisters. Unlike genotypically 

resistant mutants, these cells are phenotypically drug and possible stress tolerant. Persisters are in a 

dormant state, as indicated by their gene expression profile and low translation levels [14]. However 

upon regrowth, persisters reestablish a population that conserves the same antibiotic susceptibility 

as the original population [15]. As noted by Yew et al., RNOS are key candidates to modulate the 

presence and shift between growing and persistent bacteria, and this relationship is expected to be 

an intense area of future research.  

 

The second issue, usually overlooked, is related to the fact that RNOS are elusive interconvertible 

species and determining which is the main RNOS present in a given experimental condition is not 

that simple. In particular, recent findings show that while it is generally assumed that the presence 

of nitric oxide (NO) leads to oxidative damage, in a reductive environment (due to, for example, the 

presence of thiols or aromatic alcohols), NO is readily converted to nitroxyl (HNO) thus potentially 

leading to different biological effects [16,17]. In this context, in order to define whether the 

presence of specific RNOS is good or bad for TB treatment, further research into the specific 

molecular targets and effects of each RNOS in a controlled biological environment is needed.   
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