
HYPERCYCLIC HOMOGENEOUS POLYNOMIALS ON H(C).

RODRIGO CARDECCIA, SANTIAGO MURO

Abstract. It is known that homogeneous polynomials on Banach spaces cannot be hypercyclic, but

there are examples of hypercyclic homogeneous polynomials on some non-normable Fréchet spaces. We

show the existence of hypercyclic polynomials on H(C), by exhibiting a concrete polynomial which is also

the first example of a frequently hypercyclic homogeneous polynomial on any F -space. We prove that the

homogeneous polynomial on H(C) defined as the product of a translation operator and the evaluation

at 0 is mixing, frequently hypercyclic and chaotic. We prove, in contrast, that some natural related

polynomials fail to be hypercyclic.

1. Introduction

Let X be an F -space. A function T : X → X is said to be hypercyclic if there exists x ∈ X such

that its orbit, OrbT (x) := {Tn(x) : n ∈ N}, is dense in X. In this case, x is called a hypercyclic vector.

The space H(C) of entire functions, with the compact open topology, was of crucial importance since

the beginnings of the theory of hypercyclic linear operators. Indeed, the first example of a hypercyclic

operator was found by Birkhoff in [11]. There, he showed that there exists an entire function g ∈ H(C)

whose translations by natural numbers approximate uniformly on compact sets any other entire function,

i.e. the translation operator τ1f(z) = f(z+1) acting on the space of entire functions H(C) is hypercyclic.

Later, MacLane [19] exhibited the second example of a hypercyclic operator, also on H(C), proving that

the differentiation operator Df(z) = f ′(z) is also hypercyclic.

At the beginning of the 1990 decade, the theory of hypercyclic operators began to have a great

development. An article that inspired much of the subsequent work was the seminal paper of Godefroy

and Shapiro [14], where the authors proved (among other things) an important generalization of the

results of Birkhoff and MacLane. More recently, the concept of frequently hypercyclic operator was

introduced in [4], and shortly after, the operators considered by Birkhoff, MacLane, Godefroy and

Shapiro were shown to be also frequently hypercyclic [5, 12]. For a systematic treatment of hypercyclic

operators and related topics see the recent books [16, 6] and the references therein.

As a natural extension of the linear theory, one may study orbits of (non-linear) polynomial operators

on F -spaces. The first results were obtained by Bernardes in [8], in the context of homogeneous poly-

nomials acting on Banach spaces. Maybe surprisingly, he showed that no homogeneous polynomial, of
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degree ≥ 2, acting on a Banach space can be hypercyclic. In contrast, if the F -space is not normable,

it may support hypercyclic homogeneous polynomials. The first to realize this fact was Peris [23, 24].

As it is natural, the space where he sought a homogeneous hypercyclic polynomial was H(C). Unfortu-

nately, the example he gave was not well defined. However, he was able to construct another example,

this time on the space CN, the Fréchet space of all complex sequences. He showed that the polynomial

(an) 7→ (a2n+1) is not only hypercyclic but also chaotic on CN.

After the example of Peris, some other hypercyclic homogeneous polynomials were presented, on some

Köthe echelon spaces (including the space H(D), see [21]) and on some spaces of differentiable functions

on the real line [3]. But there are, up to our knowledge, no examples of hypercyclic homogeneous

polynomials on H(C). There are also no examples of frequently hypercyclic homogeneous polynomials

on any F -space. Given the key role of H(C) in the theory of linear dynamics, we believe it is desirable

to exhibit examples of hypercyclic homogeneous polynomials on H(C).

There are also some other articles investigating the dynamics of non-homogeneous polynomials ([7, 9,

17, 18, 20, 21, 25]) and of multilinear mappings ([10, 15]) on infinite dimensional spaces. For example, in

the recent paper [9], the existence of hypercyclic (non-homogeneous) polynomials of arbitrary positive

degree is shown on any infinite dimensional Fréchet space.

In this note we show that the 2-homogeneous polynomial P (f) = f(0) ·τ1f defined on H(C) is mixing,

chaotic and frequently hypercyclic. In contrast, we prove that the polynomial P (f) = f(0) · f ′ is not

hypercyclic on H(C).

2. A hypercyclic polynomial on H(C)

In this section we prove Theorem 2.1, our main result, which states that there is a very natural

hypercyclic homogeneous polynomial on H(C). Let us first recall some definitions. If T is a mapping

acting on a topological space X, T is said to be transitive if for each nonempty open sets U, V ⊂ X there

exists n ∈ N such that Tn(U)∩ V 6= ∅. If there exists n0 such that Tn(U)∩ V 6= ∅ for every n ≥ n0, the

mapping is said to be mixing. Clearly a mixing map is transitive and by Birkhoff’s Transitivity Theorem,

if the map is continuous and the underlying space is a complete separable metric space without isolated

points, then the map is transitive if and only if it is hypercyclic.

A set A ⊆ N is said to have positive lower density if

lim inf
n

#{x ∈ A : 0 ≤ x ≤ n}
n

> 0,

where # denotes the cardinality of the set. We say that a map T is frequently hypercyclic if there exists

some x ∈ X such that for every nonempty open set U , the set {n ∈ N : Tn(x) ∈ U} has positive lower

density. Finally T is said to be chaotic if it is hypercyclic and has a dense set of periodic vectors.
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Let X be an F -space. A mapping P : X → X is said to be a d-homogeneous polynomial, P ∈ P(dX),

if P is the restriction to the diagonal of some d-multilinear map L ∈ L(dX;X), that is,

P (x) = L(

d︷ ︸︸ ︷
x, ..., x).

We will be dealing with homogeneous polynomials acting on the space H(C) of entire functions, which

endowed with the compact open topology is a Fréchet space. The seminorms

‖f‖K := sup
z∈K
|f(z)|,

where K is a compact set, define the topology in H(C). Thus, the sets

Uε,f,R = {h ∈ H(C) : ‖h− f‖B(0,R) < ε},

with ε, R > 0 form a basis of open neighborhoods of f ∈ H(C).

Theorem 2.1. The polynomial P ∈ P(2H(C)) defined by

P (f)(z) = f(0) · f(z + 1)

is mixing, chaotic and frequently hypercyclic.

Observe that Pn(f)(z) = cn(f)f(z + n) where

(1) cn(f) = f(0)2
n−1 · f(1)2

n−2 · . . . · f(n− 1).

Proof that P is mixing. Let U and V be open sets. We can suppose that U = Uε,f,R and V = Uε,g,R.

Also we may suppose that R /∈ N and that f and g do not have zeros in Z.

By Runge’s Theorem we can find, for n large enough, a polynomial p such that p ∈ U and p(·+n) ∈ V .

We assert that a more careful application of Runge’s Theorem allows us to obtain a polynomial p that

also satisfies cn(p) ∼ 1.

Let n0 ∈ N such that n0 > 2R+ 2, and fix n ≥ n0. This implies that B(0, R) ∩B(n,R) = ∅ and that

we can define open balls B1, B2 ⊆ C such that {B(0, R), B1, B2, B(n,R)} are pairwise disjoint and such

that bRc + 1 ∈ B1, and bRc + 2, . . . , n − bRc − 1 ∈ B2, where bRc denotes the integer part of R. See

Fig. 1.

Define g̃(z) = g(z − n) and α any 2n−bRc−2th-root of the number

f(0)2
n−1 · . . . · f(bRc)2n−bRc−1 · 12n−bRc−3 · . . . · 12bRc · g̃(n− bRc)2bRc−1 · . . . · g̃(n− 1).
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Figure 1. The open sets B(0, R), B1, B2 and B(n,R).

Also consider the perturbed open sets in H(C),

Uk =
{
h ∈ H(C) : ‖f − h‖B(0,R) <

ε

k

}
,

Ṽk =
{
h ∈ H(C) : ‖g̃ − h‖B(n,R) <

ε

k

}
,

W 1
k =

{
h ∈ H(C) : sup

z∈B1

∣∣∣∣h(z)− 1

α

∣∣∣∣ < 1

k

}
and

W 2
k =

{
h ∈ H(C) : sup

z∈B2

|h(z)− 1| < 1

k

}
.

By Runge’s Theorem we can find, for each k, a polynomial pk in Uk ∩W 1
k ∩W 2

k ∩ Ṽk.

Observe that for j ∈ N, we have

pk(j)→



f(j) if j ≤ bRc;
1
α if j = bRc+ 1;

1 if bRc+ 1 < j ≤ n− bRc − 1;

g̃(j) if n− bRc − 1 < j ≤ n− 1,

as k →∞. Also, by definition of α, cn(pk)→ 1 as k →∞. Thus, for large k we have

‖cn(pk)pk − g̃‖B(n,R) ≤
ε

2
+ |cn(pk)− 1|‖pk‖B(n,R) ≤

ε

2
+ |cn(pk)− 1|

( ε
2

+ ‖g̃‖B(n,R)

)
< ε.

Therefore, we can find a polynomial pk with

‖f − pk‖B(0,R) < ε and ‖g − Pn(pk)‖B(0,R) = ‖g̃ − cn(pk)pk‖B(n,R) < ε.

This proves that P is mixing.

Proof that P is chaotic. Observe that a periodic vector for P is a quasiperiodic function, that is,

there exist α ∈ C and n ∈ N such that f(z + n) = αf(z). If this happens, then the homogeneity of P
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forces

(2)

(
1

cn(f)α

) 1
2n−1

f

to be an n-periodic vector for P . Note also that if f is a periodic vector for P , then λf is not necessarily

a periodic vector for P .

It is known that the set of periodic functions is dense in H(C). To prove that P is chaotic we will

show that the set of periodic functions satisfying that
(

1
cn(f)

) 1
2n−1 ∼ 1 is also dense in H(C). So, it

will be useful to have a good characterization of the periodic functions. Define an infinite segment

L, beginning at zero, so that L ∩ T is not a root of the unity and θ = arg(L)
2π ∈ (14 ,

3
4), and define

Ω = C− L (so that a branch of the logarithm may be defined on Ω). Then, since e
2πi
n
z maps any band

(n(θ + k), n(1 + θ + k))× iR to Ω, we have the following.

Lemma 2.2. If an entire function f is n-periodic then there exist g holomorphic on Ω such that

f(z) = g(e
2πi
n
z)

for all z belonging to any band of the form (n(θ+k), n(1 + θ+k))× iR. Reciprocally, if f(z) = g
(
e

2πi
n
z
)

for all z ∈ C, then f is n-periodic.

We now begin with our proof of the chaoticity of P .

Let U = {h ∈ H(C) : ‖h − g‖B(0,R) < ε} be a nonempty open set of H(C) with R 6∈ N. Our goal is

to find, for some n ∈ N, an n-periodic function f ∈ U so that also cn(f)
−1

2n−1 f ∈ U . By (2), this implies

that cn(f)
−1

2n−1 f is a periodic vector for P and therefore, the set of periodic vectors is dense in H(C).

Take n0 ∈ N so that n0 > 4R. Since the periodic functions with period greater than n0 are dense in

H(C) [2, Sublemma 7] , there exists, for some n > n0, an n-periodic function f with ‖f − g‖B(0,R) <
ε
2 .

We may also suppose that f(j) 6= 0 for every j ∈ Z.

Now take k ∈ Z such that B(0, R) is contained in the band (θ + k, n + θ + k) × iR. Thus, by the

previous Lemma, f(z) = h(e
2πiz
n ) for every z ∈ B(0, R) for an appropriate holomorphic function h on Ω.

Instead of applying Runge’s Theorem to the function f we will apply it to h. The function e
2πiz
n maps

N0 to Gn, the n-th roots of the unity, which we will denote ω0, . . . , ωn−1. Thus, h(ωj) 6= 0 for every

ωj ∈ Gn and

Pn(h ◦ e
2πiz
n ) = c̃n(h) · h ◦ e

2πiz
n ,

where c̃n(h) := h(ω0)
2n−1

. . . h(ωn−1) = cn(h ◦ e
2πiz
n ). Consider B1 = {e

2πiz
n : z ∈ B(0, R)} and observe

that ω0, ω1, . . . , ωbRc, and ωn−bRc, . . . ωn−1 are all in B while ωbRc+1, . . . , ωn−bRc−1 are in (B1
c
). Also,

since n > 4R and θ ∈ (14 ,
3
4), B1 ⊆ Ω and h is holomorphic on B1. Runge’s Theorem allows us to find h̃

such that h̃ is close to h on B1 and at the same time c̃n(h̃) is close to 1. Indeed, choose B2 and B3 open

sets so that ωbRc+1 ∈ B2, ωbRc+2, . . . , ωn−bRc−1 are in B3 and B1, B2, B3 are pairwise disjoint. See Fig.

2.
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Figure 2. Shape and location of the sets B1, B2, B3, Lθ and Gn.

Now define U l1, U
l
2, U

l
3 open sets in H(C) as

U l1 =
{
g ∈ H(C) : ‖g − h‖B1 <

ε

l

}
,

U l2 =

{
g ∈ H(C) : sup

z∈B2

∣∣∣∣g(z)− 1

α

∣∣∣∣ < ε

l

}
,

U l3 =

{
g ∈ H(C) : sup

z∈B3

|g(z)− 1| < ε

l

}
;

where α is any 2n−bRc−2 th-root of the number

h(ω0)
2n−1 · . . . · h(ωbRc)

2n−bRc−1 · 12n−bRc−3 · . . . · 12bRc · h(ωn−bRc)
2bRc−1 · . . . · h(ωn).

By Runge’s Theorem we can find, for every l, a polynomial hl ∈ U l1 ∩U l2 ∩U l3. By the choice of hl and

α, c̃n(hl)→ 1 and ‖hl − h‖B1 → 0 as l tends to infinity. Thus,

‖cn(hl ◦ e
2πiz
n )

−1
2n−1hl ◦ e

2πiz
n − f‖B(0,R) = ‖c̃n(hl)

−1
2n−1hl ◦ e

2πiz
n − h ◦ e

2πiz
n ‖B(0,R) → 0.

Therefore, for large enough l, cn(hl ◦ e
2πiz
n )

−1
2n−1hl ◦ e

2πiz
n ∈ U . Finally by Lemma 2.2, hl ◦ e

2πiz
n is

n-periodic and by (2) cn(hl ◦ e
2πiz
n )

−1
2n−1hl ◦ e

2πiz
n is a periodic vector for P .

Proof that P is frequently hypercyclic. To prove the existence of frequently hypercyclic vectors we

will use the following result [13, Lemma 2.5].

Lemma 2.3. There exist pairwise disjoint subsets An,m of N, each having positive lower density such

that for any k ∈ An,m, k′ ∈ An′,m′ we have k > m, and |k − k′| > m+m′ if k 6= k′.

We will now prove that P supports a frequently hypercyclic vector. Our proof follows Example 9.6 in

[16] together with a careful use of Runge’s theorem.



HYPERCYCLIC HOMOGENEOUS POLYNOMIALS ON H(C). 7

Let An,m be the subsets given by the above lemma and consider (kj)j ⊆ N the increasing sequence

formed by
⋃
An,m. If kj ∈ An,m we define Bj = B(kj , rj), where rj = m

2 + 1
m is a non natural radius. It

follows from the above lemma that the Bj are pairwise disjoint. Let (pn)n be a dense sequence in H(C)

such that pn(l) 6= 0 for every l ∈ Z, n ∈ N.

Applying Runge’s Theorem recursively we will find (fj)j ⊆ H(C) such that fj approximates p̃j(z) :=

pn(z − kj) on Bj , where n is the only natural number such that kj ∈ An,m, such that ckj (f) is close

to 1, and such that fj(l) 6= 0 for every l ∈ Z. To achieve this, let (εj)j ∈ `1 be a sequence of positive

numbers such that εj <
1
m whenever kj ∈ An,m. We will define inductively a sequence of entire functions

(fj)j ⊂ H(C) and a sequence of positive numbers (δj)j satisfying

(a) ‖fj+1 − fj‖B(0,kj+
1
kj

) < δj ,

(b) ‖ckj+1
(fj+1)fj+1 − p̃j+1‖Bj+1 < δj ,

(c) δj+1 < min{εj+1, εj+2/2, γj+1},
(d) δj+1 < γl0 −

∑j
l=l0

δl, for l0 = 1, . . . , j and

(e) fj+1 has no zero in Z,

where γj is a positive number that depends on fj as follows. For any g ∈ H(C) and j ∈ N, let

Φj : Ckj → C defined as

Φj

(
x0, . . . , xkj−1

)
:= x2

kj−1

0 · . . . · xkj−1.

Thus, if we set

Kg,j = sup
|z|<kj+1

|g(z)|,

we have that Φj is uniformly continuous on the product of the closed discs Π
kj
l=1B(0,Kg,j + ‖ε‖1) ⊂ Ckj

and

ckj (g) = Φj(xg,j),

where xg,j is the vector (g(0), . . . , g(kj − 1)). Since Φj is uniformly continuous, given the number
εj

2(Kg,j+‖ε‖1) > 0 there exists γg,j > 0 such that for every x, y ∈ B(0,Kg,j + ‖ε‖1)×· · ·×B(0,Kg,j + ‖ε‖1)
we have that

(3) if ‖x− y‖∞ < γg,j then |Φj(x)− Φj(y)| < εj
2(Kg,j + ‖ε‖1)

.

Once fixed the function fj , γj will be defined as γj := γfj ,j .

We start setting f1(z) = p̃1(z) (thus we have defined γ1 := γf1,1). We define δ1 > 0 such that

δ1 < min{ε1, ε2/2, γ1}.

Suppose now that f1, . . . fj ∈ H(C) and δ1, . . . , δj ∈ R>0 have been constructed and satisfy (a)-(e).

We will now define fj+1 and δj+1.

Consider B1
j+1 and B2

j+1 disjoint open sets so that kj+1 ∈ B1
j+1, {kj+2, . . . , kj+1−brj+1c−1} ⊆ B2

j+1,

and such that {|z| < kj + 1
kj
}, B1

j+1, B
2
j+1, Bj+1 are all disjoint. See Fig. 3.
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kj + 1
kj

kj + 1 kj + 2 kj+1 − brj+1c
kj+1 − brj+1c − 1

kj+1

B(0, kj + 1
kj

)
Bj+1B2

j+1B1
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Figure 3. The open sets B(0, kj + 1
kj

), B1
j+1, B

2
j+1 and Bj+1.

Now by Runge’s Theorem we can find auxiliary entire functions gl satisfying

(i) ‖gl − fj‖B(0,kj+
1
kj

) <
εj
l ,

(ii) supz∈B1
j+1
|gl(z)− dj | <

εj
l ,

(iii) supz∈B2
j+1
|gl(z)− 1| < εj

l ,

(iv) ‖gl − p̃j+1‖Bj+1 <
εj
l and

(v) gl has no zero in Z;

where 1/dj is a (2kj+1−kj−2)-th root of the number

fj(0)2
kj+1−1

· . . . ·fj(kj)2
kj+1−kj−1

·12
kj+1−kj−3

· . . . ·12
brj+1c · p̃j+1(kj+1−brj+1c)2

brj+1c−1

· . . . · p̃j+1(kj+1−1),

so that ckj+1
(gl) approaches to 1 as l→∞. Take now l large enough so that

εj+1

l < δj and such that

‖ckj+1
(gl)gl − p̃j+1‖Bj+1 ≤ |ckj+1

(gl)− 1| · ‖gl‖Bj+1 + ‖gl − p̃j+1‖Bj+1

≤ |ckj+1
(gl)− 1| ·

(
‖p̃j+1‖Bj+1 +

εj
l

)
+
εj
l
< δj .

For such an l, we set fj+1 := gl, hence determining as above the number γj+1 > 0. Finally we set

δj+1 > 0 such that

δj+1 < min

{
εj+1,

εj+2

2
, γj+1, γj − δj , γj−1 − δj − δj−1, . . . , γ1 −

j∑
l=1

δl

}
.

This concludes the construction of (fj)j and (δj)j satisfying (a)-(e).

Now we define f as

f := f1 +

∞∑
j=1

(fj+1 − fj).

Note that (d) implies that ∑
n≥j

δn ≤ γj ,

and in particular, the sequence (δj)j ∈ `1. Thus, (a) and the fact that kj + 1
kj
→∞ imply that f is an

entire function and that f = limj→∞ fj . Moreover,

ckj (f) = Φ(xf,j),
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where xf,j =
(
fj(0) +

∑
n≥j(fn+1(0)− fn(0)), . . . , fj(kj − 1) +

∑
n≥j(fn+1(kj − 1)− fn(kj − 1))

)
.Also,

by (a) and (c), both xf,j and xfj ,j belong to B(0,Kfj ,j + ‖ε‖1)× · · · ×B(0,Kfj ,j + ‖ε‖1) and since

‖xf,j − xfj ,j‖∞ ≤ sup
|z|<kj−1

∣∣∣∣∣∣
∑
n≥j

fn+1(z)− fn(z)

∣∣∣∣∣∣ ≤
∑
n≥j

δn ≤ γj ,

by (3) we obtain

(4) |ckj (f)− ckj (fj)| = |Φj(xf,j)− Φj(xfj ,j)| ≤
εj

2(Kj + ‖ε‖1)
.

Let z ∈ Bj , then using (a),(b),(c),(4),

|ckj (f)f(z)− pn(z − kj)| ≤ |ckj (fj)f(z)− pn(z − kj)|+ |
(
ckj (f)− ckj (fj)

)
f(z)|

≤ δj−1 +
εj

2(Kj + ‖ε‖1)
|f(z)|

≤ εj
2

+
εj

2(Kj + ‖ε‖1)
(|fj(z)|+

∑
n≥j
|fn+1(z)− fn(z)|)

≤ εj
2

+
εj

2(Kj + ‖ε‖1)
(Kj +

∑
n≥j

εn) ≤ εj .

Therefore, for kj ∈ An,m,

sup
|z|<m

2
+ 1
m

|P kjf(z)− pn(z)| = sup
z∈Bj−kj

|P kjf(z)− pn(z)| = sup
z∈Bj

|ckj (f)f(z)− pn(z − kj)| ≤ εj <
1

m
.

Note that the sets

Un,m :=

{
h ∈ H(C) : sup

|z|<m
2
+ 1
m

|h(z)− pn(z)| < 1

m

}
,

with n,m ∈ N, form a basis of open sets of H(C). Finally since for k ∈ An,m, P k(f) ∈ Un,m and each

An,m has positive lower density, we conclude that f is a frequently hypercyclic vector for P .

3. Examples of non-hypercyclic polynomials on H(C)

The purpose of this section is to show that many natural homogeneous polynomials on H(C) fail to

be hypercyclic. In view of what we have proved in the previous section, and the fact that translation

and differentiation operators on H(C) share many dynamical properties, a natural candidate to be

hypercyclic is the homogeneous polynomial P (f) := f(0) · f ′. Another favorable motivation comes from

the study of bilinear hypercyclic operators on H(C). Bès and Conejero considered in [10, Section 4]

the bilinear operator M(f, g) = f(0)g′, and showed that it is hypercyclic (in the sense defined by the

authors). Since M(f, f) = P (f) it is reasonable to expect that P is also hypercyclic. Surprisingly, the

polynomial fails to be hypercyclic.

Proposition 3.1. The homogeneous polynomial P (f) := f(0)f ′(z) is not hypercyclic.
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Proof. The iterates of a function f are of the form Pn(f) = cn(f)f (n), with

cn(f) = f(0)2
n−1

f ′(0)2
n−2

. . . f (n−1)(0).

This fact can be easily proven by induction. Also the functions cn(f) can be constructed recursively asc1(f) = f(0);

cn(f) = cn−1(f)2f (n−1)(0).

Let us define X ⊆ H(C) as X := {f ∈ H(C) : lim sup |cn(f)(n!)2Rn| =∞, for some R > 1}. The proof

of the proposition will be divided in three steps:

(1) X is P -invariant.

(2) 0 is not in the closure of X.

(3) If f /∈ X then f is not a hypercyclic vector for P .

If we prove (1), (2) and (3) it clearly follows that P is not hypercyclic.

Proof of (1). Note that ck+1(f) = f(0)ck(P (f)). Take f ∈ X and letR > 1 such that lim sup |cn(f)(n!)2Rn| =
∞. Then Pf ∈ X, because

lim sup
∣∣cn(Pf)(n!)2(R+ 1)n

∣∣ = lim sup

∣∣∣∣cn+1(f)((n+ 1)!)2Rn+1 (R+ 1)n

f(0)(n+ 1)2Rn+1

∣∣∣∣ =∞.

Proof of (2). Suppose that (fk)k ⊆ X is a null sequence. Since cn is continuous, there exists (kn)n ⊆ N
with |cn(fkn)| < 1

22n
. Taking a subsequence, we may suppose that

|cn(fn)| < 1

22n
.

We claim that for each n, there exists j ≥ 0 such that |f (j+n)n (0)| > (j+n)j+n. Indeed, if |f (j+n)n (0)| ≤
(j + n)j+n for every j ≥ 0 then we show by induction that |cj+n(fn)| < 1

22
n+

j
2

for every j ≥ 0. We

already know it for j = 0. Suppose it is true for some j. Note that for every n, j, we have

2(n+j) log2(n+j)

2(
√
2−1)2n+

1+j
2

≤ 1.

Thus

|cn+j+1(fn)| = |c2n+j(fn)||f (j+n)n (0)| ≤ 1

22
n+1+

j
2

|f (j+n)n (0)|

≤ 1

22
n+1+

j
2

2(n+j) log2(n+j)

=
2(n+j) log2(n+j)

22
n+

j
2+1

2 2(
√
2−1)2n+

j
2+1

2

≤ 1

22
n+

j+1
2

.

This implies that fn is not in X, which is a contradiction.
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Therefore |f (j+n)n (0)| > (j + n)j+n for some j ≥ 0. Recall that the seminorms given by

‖f‖k = sup
j
|f (j)(0)|k

j

j!
,

define the topology of H(C) (see for example [22, Example 27.27] or [23]).

For each n, let jn ≥ 0 be such that |f (jn+n)n (0)| > (jn + n)jn+n. Thus,

‖fn‖k = sup
j
|f (j)n (0)|k

j

j!
> |f (jn+n)n (0)| k

jn+n

(n+ jn)!
> 1.

This contradicts the fact that fn → 0.

Proof of (3). Suppose that |cn(f)(n!)2| ≤ L <∞ for every n ≥ 0. Then, by the Cauchy inequalities,

we have for some M, r > 0,

|δ0(Pn+1f)| = |cn+1(f)f (n+1)(0)| ≤ L

(n!)2
M(n+ 1)!

rn+1
→ 0.

Therefore f is not a hypercyclic vector. �

Aron and Miralles [3] showed that the polynomial P ∈ P(2Ck(R)) defined as P (f)(z) = f(z + 1)2

is hypercyclic. However, if we consider the analogous map, but in H(C), the polynomial fails resound-

ingly to be hypercyclic. The rigidity of the holomorphic functions obstructs our search of hypercyclic

homogeneous polynomials. In particular, Hurwitz’s Theorem impose several restrictions to this kind of

problem. This was already noted in [1], as the authors were looking for algebras of hypercyclic vectors.

Proposition 3.2. Let a, b ∈ C and let P ∈ P(2H(C)) be the polynomial defined by

P (g)(z) = g(z + a)g(z + b).

If f is an accumulation point of an orbit of P then either f is identically zero or f(z) 6= 0 for every

z ∈ C. In particular, P is not hypercyclic.

Proof. Note that if g ∈ H(C), then

(5) P k(g)(z) =
k∏
j=0

g(z + ja+ (k − j)b)(
k
j).

Let f ∈ H(C) and suppose that f has a zero of order m ≥ 1 at z0. If P kl(g) converges uniformly to f on

B(z0, 2(|a|+ |b|)), by Hurwitz’s Theorem, for each sufficiently small δ > 0, there is some l0 such that for

l ≥ l0 the number of zeros of P kl(g) in B(z0, δ) is exactly m. Thus for each l ≥ l0 there is some jl ≤ kl

such that g(· + jla + (kl − jl)b) has a zero of positive order in B(z0, δ). But this implies, by (5), that

P kl(g) must have another zero of order ≥ kl in B(z0 + a − b, δ) (or in B(z0 − a + b, δ) if jl = kl), and

therefore f must be identically zero. �
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It was proved in [1] that, in contrast with the translation operator, the differentiation operator does

admit an algebra of hypercyclic vectors. However, Hurwitz’s Theorem also prevents powers of the

differentiation operator to be hypercyclic.

Proposition 3.3. Let P ∈ P(2H(C)) be one of the following polynomials

(i) P (g)(z) = g′(z)2,

(ii) P (g)(z) = g(z)g′(z).

Then, P is not hypercyclic.

Proof. We only prove (i), the proof of (ii) is analogous. Note that if g′(z0) = 0 then (P (g))′(z0) = 0.

Suppose that Pnk(g) → z2. Then Pnk(g)′ → 2z. By Hurwitz’s Theorem, there exists k0 such that for

every k ≥ k0, P
nk(g)′ has a zero of order 1 in B(0, 1). Thus Pn(g)′ has a zero of order at least 1 in

B(0, 1) for every n ≥ nk0 . Therefore g is not hypercyclic for P . �
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[20] F. Mart́ınez-Giménez and A. Peris. Existence of hypercyclic polynomials on complex fréchet spaces. Topology and its
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DEPARTAMENTO DE MATEMÁTICA - PAB I, FACULTAD DE CS. EXACTAS Y NATURALES, UNIVER-

SIDAD DE BUENOS AIRES, (1428) BUENOS AIRES, ARGENTINA AND CONICET

E-mail address: rcardeccia@dm.uba.ar

E-mail address: smuro@dm.uba.ar


