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Abstract The paper deals with the weakly penalized exponentially fitted Incomplete In-
terior Penalty (EF-IIPG0) scheme for advection-diffusion problems. In the first part of the
paper, the M-matrix property on conforming weakly-acute meshes is discussed. In the sec-
ond part, an a posteriori error estimate is derived. The estimator, especially designed for the
advection dominated case, controls the energy norm as well as a semi–norm associated with
the advective derivative, taking full advantage of the formulation on non-matching grids.
The paper is supplemented by numerical experiments, where the estimator is used as local
error indicator for marking the triangles to be refined in an adaptive strategy.
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1 Introduction

Advection-diffusion problems arise very frequently in applications and it is well known that
their numerical discretization requires special care when advection dominates over diffusion.
This is the case, for instance, in fluidynamic problems with high Reynolds number, or in
semiconductor device simulation under the action of a high electric field. Moreover, for
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an effective numerical resolution, the presence of internal and/or boundary layers requires
adaptive strategies able to locally refine the mesh in the vicinity of the layers.

We consider the stationary advection-diffusion model problem
−div (ε∇u−βu) = f in Ω ,

u = g on ΓD,

(ε∇u−βu) ·n = 0 on ΓN ,

(1)

where Ω is a convex polygonal domain in R2 with boundary ∂Ω = ΓD ∪ΓN , n is the unit
outward normal vector, and f , g are given functions, with f ∈ L2(Ω), and g ∈ H1/2(ΓD).
Moreover, ε = ε(x) and β = β (x) are given regular functions on Ω such that

∃ε0, εM such that εM ≥ ε(x)≥ ε0 > 0, (2)

∃b0 such that div β ≥ b0 > 0. (3)

Existence and uniqueness of the solution of (1) then follows by the usual maximum prin-
ciple. In [9] exponentially fitted Discontinuous Galerkin schemes (namely weak Interior
Penalty and weak Local-Discontinuous-Galerkin) for (1) has been designed and studied,
showing very good performances in the advection dominated case, as well as in the inter-
mediate cases. In [5] a block solver has been proposed for a weakly penalized exponentially
fitted Incomplete–Interior–Penalty (EF-IIPG0) scheme on conforming meshes.

One attractive property when discretizing advection dominated problems (as well as
diffusion problems) is the M-matrix property for the matrix associated to the scheme, since,
in particular, it yields positive solutions when positive data are considered and it prevents
spurious oscillations. Among the exponentially fitted DG methods mentioned above, the one
that provides, on conforming weakly acute meshes, an associated matrix with the M-matrix
property is the EF-IIPG0 scheme. We show this property in Section 3. Although the property
does not hold for non-matching grids, it motivated our choice of the discretization scheme
for the subsequent a posteriori analysis.

Indeed, the main result of the paper is the design and the analysis of an a posteriori
error estimator for the EF-IIPG0 discretization scheme, allowing for non-matching grids.
The obtained estimator is used as local error indicator for marking the triangles to be refined
(or derefined) in an adaptive strategy. We point out that the use of a Discontinuous Galerkin
scheme makes the refining step particularly simple, because non-matching grids are allowed.

The estimator is robust, in the sense that yields an upper bound, independent of the
mesh size and the (small) diffusion coefficient, of the error measured in terms of the natural
energy norm and a dual semi–norm associated with the convective term. The numerical
experiments then confirm that the ratio between the estimator and the energy norm is indeed
independent of h and ε . Robust error estimator for advection–diffusion problems have been
studied in [12,15] for SUPG schemes and in [13] for a DG scheme (namely, an Interior
Penalty method, with upwind discretization of the convective term). Our analysis approach
follows [13], where the error is split into a conforming part and a (discontinuous) remainder.
The considered dual semi–norm for the convective term is the one proposed by [15] and used
by [13] in the DG framework. Here, an important feature of the upper bound is the presence
of a data approximation term which controls the exponential fitting approximation of the
flux ε∇u− βu. The numerical tests show that this term is of the same order as the error
estimator and it cannot be neglected in the actual implementation of the adaptive strategy.
We point out that the presence of this data approximation term (of the same order as the
estimator) prevents from obtaining an efficiency result for the estimator.
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Robust a posteriori estimation for advection-diffusion equations for DG schemes has
been also considered in the hp-framework in [16], and for the non-stationary case in [2].
Other approaches to energy norm estimate for Discontinuous Galerkin schemes for diffusive
problems can be found in [10], e.g., and in the references therein.

The outline of the paper is as follows. Section 2 presents the discretization scheme on
non-matching grids. The hypotheses on the allowed meshes are described and the notation
used all over the paper are set. In Section 3 the M-matrix property of the EF-IIPG0 scheme
on weakly acute conforming meshes is proved. Section 4 contains the presentation of the
estimator and the main result on the estimator. In Section 5 the adaptive algorithm is briefly
discussed and the numerical experiments are presented.

2 Discretization

Let Ω be a polygonal domain in R2 with boundary ∂Ω = ΓD∪ΓN . We consider the space

H1
0,ΓD

=
{

v ∈ H1(Ω) : v = 0 on ΓD
}
.

Let us introduce the bilinear form A : H1(Ω)×H1(Ω)→ R as

A(w,v) =
∫

Ω

(ε∇w−βw) ·∇v dx. (4)

Then we can state the variational formulation of problem (1): Find u ∈ H1(Ω) such that
u = g on ΓD and

A(u,v) =
∫

Ω

f v dx ∀v ∈ H1
0,ΓD

(Ω). (5)

Let {Th}h be a family of shape regular decompositions (see for example [3]) of the
domain Ω into triangles K. A generic edge of one of the triangles will be denoted by the
letter l. The notation lK will be used for an edge of the triangle K. We are going to allow for
non-matching meshes (i.e., Th may contain hanging nodes), with the following restriction.
In order to simplify the presentation of the exponential fitting scheme, we assume the very
natural condition that, given two neighboring triangles K,K′ ∈Th, then K∩K′ is an (entire)
edge of either K or K′. For the analysis of our estimator we assume local quasi-uniformity
of the mesh, that is, if K∩K′ 6= /0 then |K| ∼ |K′|. Moreover, since we will use results from
[7,8] we assume that Th is obtained from a conforming mesh via a (fixed, independent of
h) finite number of refinement/coarsening steps. Finally, we assume that if a triangle edge l
meets ∂Ω , then either l ⊂ ΓD or l ⊂ ΓN or l∩∂Ω is a vertex.

2.1 Notation

Since we are going to deal with Discontinuous Galerkin schemes, we shall need to write
integrals on the skeleton of the mesh. Due to the possible occurrence of hanging nodes, it
may happen that given an edge lK of a triangle K there exists an element K′, neighbor of
K such that K ∩K′  lK . Therefore, we introduce the following notation for the set of the
intersections between triangles, that is

E0 = {e = K∩K′ : K,K′ ∈Th,K 6= K′}.
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We remark that if e = K∩K′ ∈ E0 then e is a complete edge of at least one of K and K′ but
not necessarily of both of them. We also set

Γ0 =
⋃

e∈E0

e.

On the boundary, the skeleton of the triangulation is made of edges of triangles and ED
(resp. EN) will denote the set of triangle edges on ΓD (resp. ΓN). We write ΓD =

⋃
e∈ED

e and
ΓN =

⋃
e∈EN

e. Finally we denote Γ = Γ0∪ΓD∪ΓN and E = E0∪ED∪EN .
The norm of L2(S) is denoted by ‖ ·‖0,S and the norm and seminorm of Hk(S) by ‖ ·‖k,S

and | · |k,S, respectively. The subindex S is omitted when S = Ω .
Let H1(Th) be the space of functions whose restriction to each element K belongs to

the Sobolev space H1(K). It is equipped with the h-dependent semi-norm

|v|21,h = ∑
K∈Th

|v|21,K .

The space of traces of functions in H1(Th) is contained in Tr(Γ ), which is defined
as Tr(Γ ) := ΠK∈Th L2(∂K). Thus, functions in Tr(Γ ) are double valued on Γ0 and single
valued on ∂Ω . For scalar functions q ∈ Tr(Γ ) and vector functions φ ∈ Tr(Γ )2, following
[1], we introduce the averages {q} and {φ}, and the jumps [[q ]] and [[φ ]] , on Γ (using the
subscript e to denote their restriction to e). Let e = K1∩K2, and let n1 and n2 be the outward
normals to K1 and K2, respectively. If qi = q|∂Ki then we set

{q}e =
1
2
(q1 +q2), [[q ]] e = q1n1 +q2n2.

We define φ1 and φ2 analogously and we set

{φ}e =
1
2
(φ1 +φ2), [[φ ]] e = φ1 ·n1 +φ2 ·n2.

Notice that these definitions do not depend on assigning an ordering to the elements K1 and
K2. Also note that the jump of a scalar function is a vector parallel to the normal, and the
jump of a vector function is a scalar quantity. On boundary edges we set

{q}e = q, [[q ]] e = qn, {φ}e = φ , [[φ ]] e = φ ·n on e⊂ ∂Ω ,

where n is the exterior normal of Ω .
Given an element K, the restriction of a function v to K is denoted by vK , even when

only the value on ∂K is considered. We shall also use the standard notation for the mean
value of a function f on a triangle K ∈Th and on lK edge of K, that is

∫
K
− f dx =

1
|K|

∫
K

f dx,
∫

lK
− f ds =

1
|lK |

∫
lK

f ds.
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2.2 Exponentially fitted DG formulation

We define here the primal formulation of exponentially fitted Discontinuous Galerkin schemes
in the spirit of [9] in the case of nonconforming meshes. The finite element space Vh is the
set of piece-wise linear functions, that is,

Vh = {v ∈ L2(Ω) : vK ∈P1(K),∀K ∈Th}. (6)

Let ε(x) and β (x) be piecewise constant functions. These functions can be viewed as
approximations of the actual coefficients in (1). However we prefer to keep the notation
ε(x) and β (x) for them. We define a piecewise linear ψ (in general not continuous at the
interelements) whose gradient coincides with the constant βK on the element K. We notice
that such a ψ always exists, even if β (x) is a piece-wise constant approximation of a not
globally irrotational field. Locally on the triangle K, we can rewrite the flux variable σ :=
ε∇u−βu in terms of the locally defined potential ψ as

σK = εe
ψ

ε
|K ∇(e−

ψ

ε
|K u). (7)

In the subsequent construction of the scheme, we will make precise how to approximate the
coefficient εe

ψ

ε
|K and the change of variable ρ = e−

ψ

ε
|K u appearing in (7).

First of all, we approximate the coefficient εe
ψ

ε
|K on K by means of its harmonic average

and thus we introduce the piecewise constant ah defined by

ah|K =
ε∫

K− e−ψ/ε dx
.

In order to define the approximated change of variable, we define first the local basis
functions ϕ i

K , i = 1,2,3 on one element K. For i = 1,2,3, ϕ i
K is the polynomial of degree 1

which takes the value 1 in the midpoint of the edge li
K and the value 0 in the midpoint of the

other two edges (here, li
K , i = 1,2,3 denote the three edges of K). For v ∈P1(K), we use

the notation
v(x) = v1

ϕ
1
K(x)+ v2

ϕ
2
K(x)+ v3

ϕ
3
K(x).

Moreover, for K ∈Th and lK edge of K we define

E(K, lK) =
∫

lK
− e−

ψ

ε
|K ds. (8)

Now we are ready to introduce the the operator T : Vh→Vh which is the approximation
of the change of variable. For all v ∈Vh

(T v)K := E(K, l1
K)v

1
ϕ

1
K +E(K, l2

K)v
2
ϕ

2
K +E(K, l3

K)v
3
ϕ

3
K . (9)

We point out that the definition of E(K, lK), and consequently of the operator T , is given
locally on the triangle K.

To set the discrete problem, we introduce the projection operator Πh : H1(Th)→L2(Γ )2.
It is double-valued on the intersection of the triangles, and it is defined for e = K∩K′ ∈ E0
as

Πhu = (Π e
0 (uK |e),Π e

0 (uK′ |e)) , (10)
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where Π e
0 is the L2-projection on the space of constant functions on e. It is similarly defined

on boundary edges, where it is single-valued. Analogously, we define the double-valued
function E(e) for e = K∩K′ ∈ E0 as

E(e) =
(
E(K, lK),E(K′, lK′)

)
,

where lK and lK′ are the edges of K and K′ such that lK ∩ lK′ = e. For a boundary edge, E(e)
is clearly single-valued.

2.3 Discrete problem

The discrete problem reads: find uh ∈Vh, such that, for all v ∈Vh

∫
Ω

ah∇hTuh ·∇hv dx−
∫

Γ0∪ΓD

[[v ]] · {ah∇hTuh} ds

+
∫

Γ0∪ΓD

µ [[Πhuh ]] · [[Πhv ]] ds =
∫

Ω

f v dx+
∫

ΓD

µgΠhv ds, (11)

where, for e = lK ∩ lK′ , and with the obvious changes for boundary edges, the penalization
parameter µ is defined by

µ|e =
γζe

he
, with ζe = {Eah}e, (12)

where γ ≥ γ0 for all e, with γ0 a constant independent of ε and of h.

Remark 1 The a priori analysis of the IIPG0 scheme for pure diffusion problems on non-
matching grids can be carried out following the guidelines of [4,9]. In particular, in this case
we can take the constant γ0 verifying

γ0 ≥
1
2
+

C2
sr

2
,

where the constant Csr, depending on the shape regularity of the mesh, is given by

Csr =
√

2max

{
|e|
|T | 12

: T ∈Th,e edge of T

}
.

Remark 2 Taking into account our definitions of the coefficient ah and of the operator T ,
the quantity (ah∇hTuh)|K can be seen as an approximation of the flux σK , defined in (7).

Remark 3 We point out that the presence of the projection Πh in the stabilization term (the
last term in the bilinear form in (11)) has the effect of reducing the connectivity of the matrix
associated with the discretization (see Remark 4 and [9] for further details). Moreover, the
use of the projection is crucial for obtaining the M-matrix property when conforming meshes
are taken, as discussed in the next section.
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(a) (b) (c)

Fig. 1 Different situations of the edge l1 of the element K.

3 M-matrix property of the EF-IIPG0 method

In this section we assume that Th is a conforming triangulation of Ω of weakly acute type,
that is, the angles of each triangle in Th do not exceed π

2 . We recall that the discretization
scheme is defined for piecewise constant (approximation of) coefficients ε(x) and β (x).

As basis functions of Vh we choose the piecewise linear functions ϕK,l which are defined
for an element K and an edge l of K as

ϕK,l(ml′,K′) = δll′δKK′ ∀K′ ∈Th, l′ edge of K′,

where ml,K denotes the midpoint of the edge l of K. We remark that the functions in Vh are
double-valued on Γ0. We call Ah the bilinear form on Vh×Vh defined by the left hand side
of (11). Then the stiffness matrix of the EF-IIPG0 method can be written as M = (MK,l;K′,l′)
with

MK,l;K′,l′ = Ah(ϕK,l ,ϕK′,l′), K,K′ ∈Th, l ∈L (K), l′ ∈L (K′),

where L (K) denotes the set of edges of the triangle K. Finally we use the notation nK,l for
the outer normal to the edge l of K.

We have the next result.

Theorem 1 Suppose that Th is a conforming triangulation of Ω of weakly acute type and
that, for a given K, for every edge l ∈L (K) it holds

µl ≥
|l|

2|K|
ah|KE(K, l),

where µl is the penalization parameter over the edge l (see (12)). Then the stiffness matrix
M is an M-matrix.

Proof Suppose that l1 is an edge of K and that K has not any side on the boundary of Ω . We
use the notation introduced in Figure 1(a), where l2 and l3 are the other edges of K, K1,K2
and K3 are neighbors of K sharing the edges l1, l2 and l3 respectively. We denote l′i the edge
li viewed as an edge of Ki. It follows that MK,l1;K′,l′ 6= 0 only if

(K′, l′) ∈
{
(K, l1),(K, l2),(K, l3),(K1, l′1),(K2, l′2),(K3, l′3)

}
. (13)
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Taking into account that

∇ϕK,l =

{
|l|
|K|nK,l on K,

0 elsewhere,

an explicit computation of the corresponding entries of M gives

MK,l1;K,l1 =
1
2

ah|KE(K, l1)
|l1|2

|K|
+µl1 |l1|,

MK,l1;K,l2 =
1
2

ah|KE(K, l1)
|l1||l2|
|K|

nK,l1 ·nK,l2 ,

MK,l1;K,l3 =
1
2

ah|KE(K, l1)
|l1||l3|
|K|

nK,l1 ·nK,l3 , (14)

MK,l1;K1,l′1
=

1
2

ah|KE(K, l1)
|l1|2

|K|
−µl1 |l1|,

MK,l1;K2,l′2
=

1
2

ah|KE(K, l1)
|l1||l2|
|K|

nK,l1 ·nK,l2 ,

MK,l1;K3,l′3
=

1
2

ah|KE(K, l1)
|l1||l3|
|K|

nK,l1 ·nK,l3 .

Since Th is weakly acute, we have that

MK,l1;K,l2 = MK,l1;K2,l′2
≤ 0, and MK,l1;K,l3 = MK,l1;K3,l′3

≤ 0.

Moreover, if

µl1 ≥
|l1|

2|K|
ah|KE(K, l1), (15)

then we also have MK,l1;K1,l′1
≤ 0.

Therefore, for all off-diagonal entries, we have checked

MK,l1;K′,l′ ≤ 0 if (K, l1) 6= (K′, l′). (16)

We also have

∑
(K′,l′):K′∈Th,l′∈L (K′)

MK,l1;K′,l′ = ah|KE(K, l1)
|l1|
|K|
(
|l1|nK,l1 + |l2|nK,l2 + |l3|nK,l3

)
·nK,l1 = 0.

Now we suppose that l1 is an internal edge of K ∈Th and that K has the edge l2 6= l1 on
the boundary of Ω , as depicted in Figure 1(b). Then, we have

MK,l1;K,l2 = 0,

while the other entries remain unchanged. It follows that property (16) holds true and

∑
(K′,l′):K′∈Th,l′∈L (K′)

MK,l1;K′,l′ =−
1
2

ah|KE(K, l1)
|l1||l2|
|K|

nK,l1 ·nK,l2 > 0.

Finally, we consider the case in which l1 is a boundary edge of K ∈ Th while l2 and l3 are
the other edges K, see Figure 1(c). In this case we have

MK,l1;K;l1 = µl1 |l1|,
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while the other entries remain as in the first considered case apart from MK,l1;K1;l′1
which is

not defined because l1 is a boundary edge. Then (16) again holds true and if (15) holds we
have

∑
(K′,l′):K′∈Th,l′∈L (K′)

MK,l1;K′,l′ =−
1
2

ah|KE(K, l1)
|l1|2

|K|
+µl1 |l1|> 0.

Then we can apply, for instance [11, Part III Theorem 3.1, page 279] to conclude that M is
a M-matrix. ut

Remark 4 As already observed, the projection reduces the connectivity of M. Indeed, with-
out the projection in the penalization term (as in the case of the standard IIP method) the set
in (13) would be larger, that is, there will be more non-zero entries in the matrix M. This
fact spoils the M-matrix property, since some of the additional entries have the wrong sign.

Remark 5 In the case of nonconforming meshes the M-matrix property does not hold, in
general. Nevertheless, the numerical experiments presented in Section 5 show that the qual-
ity of the solution is not spoiled by the lack of this property (see remark 6).

4 The a posteriori estimation

In this section we introduce the estimator and prove the main result of the paper.
For the sake of simplicity, from now on we are going to assume that ε(x) ≡ ε constant

on Ω and g is the restriction to ΓD of a function in Vh ∩H1(Ω). Furthermore, we assume
that all the integrals involving the right hand side f are exactly computed (as, for instance,
in the case that f is a polynomial).

4.1 The result

Let us introduce the following mesh dependent norm. For v ∈ H1(Th) we define

|||v|||2 = |ε1/2 v|21,h + ∑
e∈E0∪ED

γε

he
‖ [[v ]]‖2

0,e , (17)

with γ > γ0 > 0 independent of h and of ε .
Moreover, as in [13], for q ∈ (L2(Ω))2 we take

|q|∗ = sup
v∈H1

0,ΓD
(Ω)\{0}

∫
Ω

q ·∇v dx
|||v|||

. (18)

We then define

|v|2
β
= |βv|2∗+ ∑

e∈E0∪ED

he

ε
‖ [[v ]]‖2

0,e . (19)

The bilinear form A defined in (4) satisfies the inf-sup condition: there exists C > 0
independent of ε such that

inf
u∈H1

0,ΓD
(Ω)\{0}

sup
v∈H1

0,ΓD
(Ω)\{0}

A(u,v)
(|||u|||+ |βu|∗)|||v|||

≥C. (20)
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This property is proved in [13, Lemma 4.4] for the case ΓD = ∂Ω . It extends without changes
to our case.

For each element K, we define the local error indicator ηK , as given by the sum of three
contributions

η
2
K := η

2
RK

+η
2
Jσ

K
+η

2
Ju

K
, (21)

where the three terms are defined as follows

η
2
RK

:=
h2

K
ε
‖ f −div (ah∇Tuh)‖2

0,K =
h2

K
ε
‖ f‖2

0,K , (22)

which is the interior residual term,

η
2
Jσ

K
:=

1
2 ∑

e⊂∂K\ΓD

he

ε
‖ [[ah∇Tuh ]]‖2

0,e, (23)

which controls the jump of the approximated flux, and

η
2
Ju

K
:=

1
2 ∑

e⊂∂K\∂Ω

(
γε

he
+

he

ε

)
‖ [[uh ]]‖2

0,e + ∑
e⊂∂K∩ΓD

(
γε

he
+

he

ε

)
‖uh−g‖2

0,e, (24)

which is the jump of the discrete solution.
The a posteriori error estimator is then defined as

η :=

(
∑

K∈Th

η
2
RK

+η
2
Jσ

K
+η

2
Ju

K

)1/2

. (25)

We further define the exponentially fitted data approximation term

θ
2
K :=

1
ε
‖ε∇uh−βuh−ah∇Tuh‖2

0,K , (26)

and the exponential fitting approximation error by

θ :=

(
∑
K

θ
2
K

) 1
2

. (27)

We shall prove the following result.

Theorem 2 Let u be the solution of (1) and let uh be the solution of (11). Let the error
estimator η be defined by (25) and the exponential fitting approximation error θ defined by
(27). Then, we have the a posteriori error bound

|||u−uh|||+ |u−uh|β ≤C (η +θ) , (28)

with C independent of ε and h.
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4.2 Approximation Operators

We need to define a conforming approximation for functions in Vh. We recall that we assume
that the family of meshes Th satisfies the restrictions described in section 2.

We denote by V c
h the conforming subspace of Vh given by V c

h = Vh ∩H1
0,ΓD

(Ω). Next
result is taken from [8, Theorem 2.1].

Suppose that χ is the restriction to ΓD of a function in Vh∩H1(Ω). Then, there exists an
operator Ξh : Vh→ H1(Ω) such that for all v ∈Vh we have Ξhv|ΓD = χ and for a constant C

∑
K∈Th

‖v−Ξhv‖2
L2(K) ≤ C

(
∑

e∈E0

he ‖ [[v ]]‖2
0,e + ∑

e∈ED

he|v−χ|20,e

)
, (29)

∑
K∈Th

‖∇(v−Ξhv)‖2
L2(K) ≤ C

(
∑

e∈E0

h−1
e ‖ [[v ]]‖

2
0,e + ∑

e∈ED

h−1
e |v−χ|20,e

)
. (30)

We further need the existence of an interpolation operator Ih : H1
0,ΓD

(Ω)→V c
h with the

following error estimates: for all v ∈ H1
0,ΓD

(Ω)

‖v−Ihv‖L2(Ω) ≤ C

(
∑

K∈Th

h2
K |v|2H1(K),

) 1
2

(31)

‖v−Ihv‖H1(Ω) ≤ C|v|H1(Ω). (32)

Since we are assuming that the mesh Th is obtained from a conforming shape regular
mesh by means of a few number of refinements/derefinements together with the local quasi-
uniformity property, we can take as Ih the Scott-Zhang interpolation operator [14] on the
mentioned conforming mesh.

4.3 Estimate

Now we are ready for the proof of our main result.

Proof (Proof of Theorem 2) As in [6], the key starting point is the decomposition of the
solution uh into a conforming part plus a remainder. More precisely, given uh solution of the
discrete problem (11), we can split it as Ξhuh plus a remainder. Denoting uc

h = Ξhuh, and
denoting the remainder by ur

h, we have

uh = uc
h +ur

h.

Therefore, we have

|||u−uh|||+ |β (u−uh)|∗ ≤ |||u−uc
h|||+ |β (u−uc

h)|∗+ |||ur
h|||+ |βur

h|∗.

First, we notice that |||ur
h|||+ |βur

h|∗ can be controlled by means of (29) and (30), since
ur

h = uh−Ξhuh by definition, and by the fact that [[ur
h ]] = [[uh ]] , obtaining

|||ur
h|||2 + |βur

h|2∗ ≤ ∑
e∈E0

[
(1+ γ)

ε

he
+‖β‖L∞(Ω)

he

ε

]
‖ [[uh ]]‖2

0,e +

∑
e∈ED

[
(1+ γ)

ε

he
+‖β‖L∞(Ω)

he

ε

]
‖uh−g‖2

0,e. (33)
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Since g is the restriction to ΓD of a function in Vh∩H1(Ω) and because of the construc-
tion of Ξh, we have u = uc

h = g on ΓD and, therefore, u− uc
h ∈ H1

0,ΓD
(Ω). So we use the

inf-sup condition (20) to obtain for all v ∈ H1
0,ΓD

(Ω)

|||u−uc
h|||+ |β (u−uc

h)|∗ ≤C sup
v∈H1

0,ΓD
(Ω)\{0}

A(u−uc
h,v)

|||v|||
. (34)

Using that u is solution of the continuous problem and uc
h = uh− ur

h, for v ∈ H1
0,ΓD

(Ω) we
obtain

A(u−uc
h,v) =

∫
Ω

f v dx−∑
K

∫
K
(ε∇uc

h−βuc
h) ·∇v dx

=
∫

Ω

f v dx−∑
K

∫
K
(ε∇uh−βuh) ·∇v dx+∑

K

∫
K
(ε∇ur

h−βur
h) ·∇v dx

=
∫

Ω

f (v−Ihv) dx−∑
K

∫
K
(ε∇uh−βuh−ah∇Tuh) ·∇v dx

+
∫

Ω

f Ihv dx−∑
K

∫
K

ah∇Tuh ·∇v dx+∑
K

∫
K
(ε∇ur

h−βur
h) ·∇v dx.

Using now the discrete equation (11), tested against Ihv ∈ H1
0,ΓD

(Ω), and taking into ac-
count that the jumps of Ihv on internal and Dirichlet edges vanish, we have∫

Ω

f Ihv dx = ∑
K

∫
K

ah∇Tuh ·∇Ihv dx.

Hence

A(u−uc
h,v) =

∫
Ω

f (v−Ihv) dx−∑
K

∫
K
(ε∇uh−βuh−ah∇Tuh) ·∇v dx

−∑
K

∫
K

ah∇Tuh ·∇(v−Ihv) dx+∑
K

∫
K
(ε∇ur

h−βur
h) ·∇v dx.(35)

Let us consider separately each term of the last equation. Using the L2-approximation esti-
mate (31) for the Scott-Zhang interpolation operator, we can estimate the first term of (35)
as ∣∣∣∣∫

Ω

f (v−Ihv) dx
∣∣∣∣≤
(

∑
K

h2
K
ε
‖ f‖2

)1/2

|||v|||. (36)

From the definition (27) of the exponentially fitted data approximation error, for the second
term of (35) we have ∣∣∣∣∣∑K

∫
K
(ε∇uh−βuh−ah∇Tuh) ·∇v dx

∣∣∣∣∣≤ θ |||v|||. (37)

For the third term of (35), integrating by parts, taking into account that ah∇hTuh is piecewise
constant, using that H1-functions have vanishing jumps, using a trace inequality to bound
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‖v−Ihv‖L2(e) on edges, and finally using the approximation estimates (31) and (32) for the
Scott-Zhang interpolation operator, we have∣∣∣∣∣∑K

∫
K

ah∇Tuh ·∇(v−Ihv) dx

∣∣∣∣∣ =
∣∣∣∣∫

ΓN

(v−Ihv)n ·ah∇Tuh ds+
∫

Γ 0
[[ah∇Thuh ]]{v−Ihv}ds

∣∣∣∣
≤

(
∑

e∈E0∪EN

he

ε
‖ [[ah∇Thuh ]]‖2

0,e

)1/2

|||v|||. (38)

The fourth term of (35) is controlled thanks to (29) (since ur
h = uh−Ξhuh, by definition)

∣∣∣∣∣∑K
∫

K
(ε∇ur

h−βur
h) ·∇v dx

∣∣∣∣∣
≤

( ∑
e∈E0∪ED

ε

he
‖ [[uh ]]‖2

0,e

)1/2

+‖β‖L∞(Ω)

(
∑

e∈E0∪ED

he

ε
‖ [[uh ]]‖2

0,e

)1/2
 |||v|||. (39)

Collecting (36), (37), (38) and (39), and using the definition of (25) of η we obtain from
(35)

|A(u−uc
h,v)| ≤ C (η +θ) |||v|||.

Therefore, inserting this inequality in (34), we have

|||u−uc
h|||+ |β (u−uc

h)|∗ ≤C (η +θ)

and, which together with (33) gives

|||u−uh|||+ |β (u−uh)|∗ ≤C (η +θ) .

The proof is then concluded since |u−uh|β ≤ |β (u−uh)|∗+η .

5 Numerical experiments

In this section we present some numerical experiments using the a posteriori error estimates
of Theorem 2 as error indicator for an adaptive refinement strategy.

The starting mesh is a non structured shape regular mesh of weakly acute type with 28
elements and 84 degrees of freedom. In the experiments, we construct adaptively refined
sequences of meshes by marking elements for refinement according to the size of the local
indicator ζK defined as ζ 2

K := η2
K + θ 2

K , where ηK and θK are defined in (21) and (26), re-
spectively. The refinement fraction is set to 50% and the derefinement fraction is set to 10%.
In each refinement step, we split the triangles which are marked for refinement into four
congruent triangles. In this way the weakly acute property of the initial mesh is conserved
in all the refinement steps.
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5.1 Test 1

In this first test we deal with an example for which we know the exact solution, so that
we can study numerically the errors. Consider the equation (1) in the domain Ω = (0,1)2

with β = [1,1], homogeneous Dirichlet boundary condition on ∂Ω and the right hand side
f given by

f (x,y) = 2

(
1+ e−

1
ε −2e

x−1
ε

1− e−
1
ε

+
1+ e−

1
ε −2e

y−1
ε

1− e−
1
ε

+2x+2y−2

)

The exact solution is then

u(x,y) =

(
1+ e−

1
ε −2e

x−1
ε

1− e−
1
ε

+2x−1

)(
1+ e−

1
ε −2e

y−1
ε

1− e−
1
ε

+2y−1

)
.

Since the solution, otherwise smooth, presents boundary layers at x = 1 and y = 1, this
test is designed to study the relationship between the estimator ζ := η + θ and the true
error in dependence on the diffusion parameter ε . Figure 2 plots (in log-log scale) the value
of the estimator (labelled as EST), of the energy norm (17) (labelled as T-ERR) against
the squared root of the number of elements, for ε = 10−1,10−2,10−3. As in [13] we also
plot the ε-weighted L2-norm ε−1/2‖u− uh‖0,Ω (labelled as L-ERR), which is a bound of
|β (u−uh)|∗.

We observe that the estimator curve is always above the true error curve, according to
Theorem 2. Moreover, in all cases, the energy norm reaches an order one convergence, while
the norm ε−1/2‖u− uh‖0 reaches an order 2 convergence (orders 1 and 2 are displayed by
the small triangles). In figure 2(d), we further plot, for ε = 10−3, the energy and L2 norms
for an uniformly refined sequence of meshes. As expected, with a comparable number of
elements as in figure 2(c), optimal order of convergence is far to be attained.

Figure 3 shows the ratio between the estimator ζ and the energy norm, for ε = 10−1,
10−2, 10−3. The asymptotic value of the ratio seems not to depend significantly on ε , show-
ing the robustness of the presented estimator with respect to ε .

5.2 Test 2

We study now a propagation of a boundary discontinuity for ε = 10−4. In the domain Ω =
(−1,1)2 we take β = [1,1], f = 0 and ΓD = ∂Ω . The boundary condition is

g(x,y) =
{

1 if x =−1 and y≥− 1
3 , or if y = 1 and x≤ 1

3
0 elsewhere

Figure 4 shows the mesh and the solution after 17 refinement steps. We observe that in
a large portion of the domain, far from internal and boundary layers, several triangles have
not been refined. The estimator provides marked elements for the refinement iteration steps
only where needed.

Figure 5 plots the total estimator ζ , introduced above, and the different terms that con-
tribute to it. In this example, we do not know the exact solution, so we cannot plot the true
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(c) ε = 10−3, adaptivity. (d) ε = 10−3, uniform refinement.

Fig. 2 Test 1. The estimator and the true error.
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Fig. 3 Test 1. The ratio ζ/|||u−uh|||, for ε = 10−1,10−2,10−3.
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Fig. 4 Test 2, mesh and solution after 17 refinements.
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Fig. 5 Test 2. The total error estimator and its different terms.

error. Observing the different contributions to the estimator, we notice that the term θ (de-
fined by (27)) that in principle could be considered as a data approximation error term, due
to the exponential fitting, cannot be neglected in the indicator in the actual implementation
of the adaptive strategy. Indeed, it is of the same order of the total estimator.

5.3 Test 3

Now we explore the case of a rotating flow transporting a boundary sharp profile. In the
domain Ω = (−1,1)× (0,1) we consider

β =
(
2y(1− x2),−2x(1− y2)

)
, f = 0.

The Dirichlet boundary condition is taken as

g(x,y) =
{

1+ tanh(10(2x+1)) if x≤ 0 and y = 0
0 elsewhere
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Fig. 6 Test 3. Mesh and solution after 20 refinements.
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Fig. 7 Test 3. The total error estimator and its different terms.

In this case, we approximate the vector β on each element K by its value in the barycen-
ter, which we denote by (β̃ 1

K , β̃
2
K), and we define the piecewise linear function ψ on K as

ψK(x,y) = β̃
1
Kx+ β̃

2
Ky.

Figure 6 shows the mesh and the solution after 20 refinement steps. We observe that
most elements are within the boundary layer, close to the singularity in the origin and where
the solution exhibits the steepest behavior.

Figure 7 plots the total estimator ζ , and the different terms that contribute to it. We point
out that here the field β is approximated and this fact is taken care of in the exponential
fitting data approximation error term θ . However, its effect on the overall indicator is not
predominant, as shown in figure 7. Moreover, this is also confirmed by the quality of the
mesh in figure 6, where the stronger refinement takes place in correspondence to the worse
behavior of the solution.

Remark 6 The adaptive algorithm is initialized on a weakly acute conforming mesh, there-
fore, thanks to the M-matrix property the initial solution is non negative and it does not
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exhibits spurious oscillations. Instead, in the successive refinement steps, the M-matrix prop-
erty does not hold, since the inverse of the matrix is not positive. Nevertheless, the quality
of the solution is not spoiled. For test 2, in Figure 4 we observe that the solution conserves
the positivity and does not have spurious oscillations. For test 3, the solution in Figure 6
presents only very small wiggles.
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