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Abstract

In every country, public and private agencies allocate extensive
funding to collect large-scale statistical data, which in turn are studied
and analyzed in order to determine local, regional, national, and inter-
national policies regarding all aspects relevant to the welfare of society.
One important aspect of that process is the visualization of statistical
data with embedded geographical information, which most often relies
on archaic methods such as maps colored according to graded scales.
In this work, we apply non-standard visualization techniques based on
physical principles. We illustrate the method with recent statistics on
homicide rates in Brazil and their correlation to other publicly avail-
able data. This physics-based approach provides a novel tool that can
be used by interdisciplinary teams investigating statistics and model
projections in a variety of fields such as economics and gross domestic
product research, public health and epidemiology, socio-demographics,
political science, business and marketing, and many others.
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1 Introduction

Nowadays, interdisciplinary efforts in science directed towards the most acute
real-world problems of society are being increasingly encouraged and stimu-
lated. And rightly so, this task is even more urgent in the Latin American
region, which suffers from some of the highest rates of crime and violence
in the world [1] and their devastating effects on citizen security and human
rights [2], as well as from other endemic issues such as widespread illiteracy,
sharp socioeconomic disparities, undernourishment, etc. In this context, the
statistical physics community is in an excellent position to contribute invalu-
able new tools and insight to areas in which statistical analysis is performed
by long-standing, more traditional means.

One of the important aspects of dealing with statistical information is
data visualization. Indeed, as we enter the age of the petabyte, where we
routinely capture, warehouse and analyze massive amounts of data [3], pio-
neering methods of visualization are needed to change the way we understand
and disseminate science. Some examples of new visualization techniques re-
cently developed are state-of-the-art animations to see the quantum world,
accurate maps of the universe based on the Sloan Digital Sky Survey covering
large areas of the sky, and complex network representations that facilitate
the recognition of patterns in multidimensional complex systems [4].

In the field of applied statistics, traditional visualization tools such as
bar and pie charts, regression plots, and box plots, are still the most widely
used methods. Statistical data with embedded geographical information (for
instance, census data) are either organized in tables or shown by means of
standard maps with color codes by region. Such maps, however, can be mis-
leading. Often times, statistical measures are correlated with the population
density and other indicators, but those correlations remain hidden from the
representation. For instance, a plot of disease incidence will inevitably show
high incidence in cities and low incidence in rural areas, solely because more
people live in cities. An alternative representation is to plot the incidence
per capita, which solves this problem at the cost of discarding all informa-
tion about where most of the cases are occurring. In order to meaningfully
visualize statistical data, bringing together relevant statistical indicators and
the embedded geographical information, a different approach is needed.

Over the last few decades, some visualization work has focused on creating
so-called cartograms, in which geographic regions are deformed and rescaled
in proportion to their population or other statistical indicators. Several of
these efforts were inspired by physics. For instance, in the approach by
Gusein-Zade and Tikunov [5], a continuous displacement field is used to ex-
pand high population areas by means of a repulsive force. Other methods
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by Appel et al. [6] and by Dorling [7] are based on cellular automata, in
which local interaction rules allow boundaries to shrink or expand locally
until equilibrium is reached. Another procedure proposed by Kocmoud [8]
relies on a mechanical model of masses and springs, which is constained in or-
der to maintain some topographic features. Despite these efforts, cartograms
built following those methods proved problematic in a number of ways, lead-
ing to highly distorted shapes, overlapping regions, or strong dependences
on the choice of coordinate axes. More recently, Gastner and Newman [9]
proposed a new method for producing cartograms based on diffusion equa-
tions, which resolves the shortcomings experienced with previous techniques.
Starting with an inhomogeneously distributed statistical quantity (e.g. the
population density), diffusion equations are numerically integrated with ap-
propriate boundary conditions. By allowing the diffusion process to evolve
until an homogeneous equilibrium state is reached, the displacements can be
reinterpreted to generate a cartogram.

Within this context, in this work we implement the diffusion-based method
to create a variety of density-equalizing maps of the 27 Brazilian federative
units. By using this approach, we generate a series of cartograms that show
different ways of displaying population, homicide rates, and a combined in-
dex of education, health, and economic development. Depending on the way
the cartograms are built and how the statistics are chosen, different perspec-
tives can be gained from the data. Also, cross-correlations between statistical
quantities and their dynamical evolution can be represented in more effective
ways than standard visual methods. The aim of this paper is to show how
a novel physics-based visualization tool can be applied to real-world data of
great cross-disciplinary impact, as well as to discuss the benefits that can
be drawn from the new approach compared to the visual methods usually
employed by statisticians of public and private agencies.

The rest of this paper is organized as follows. In Section 2, we present
details on the diffusion-based method to generate density-equalizing maps.
Section 3 is devoted to the presentation and discussion of the cartograms,
while our conclusions are finally stated in Section 4.

2 The Diffusion-Based Cartogram Method

In this Section, we summarize the diffusion-based method for generating
density-equalizing maps [9]. Let us consider ρ0("r) the spatial density distri-
bution of the inhomogeneous statistical indicator that we want to represent
by means of a rescaled map. We will call ρ0("r) the population density, since
the population distribution is one of the indicators one may be interested
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in. Notice, however, that the method can be applied to any other statisti-
cal quantity distributed inhomogeneously in space, as will be shown in the
examples of Section 3. The basic idea is to rescale the map’s regions to be-
come proportional to their population, so that the population density on the
rescaled map is homogeneously distributed. If the total area of the map is
preserved, the homogeneous population density after rescaling will be equal
to the mean population density before rescaling, ρ̄0.

From a mathematical point of view, any total-area-preserving map rescal-
ing operation corresponds to a coordinate transformation "r → "r′ under the
condition that the determinant of the corresponding Jacobian matrix equal
the density ratio ρ0("r)/ρ̄0. Although this condition guarantees that the total
area of the map remains constant, it does not provide specific information
about the cartogram projection. In order to determine a unique projection,
we resort to the physical process of diffusion by considering the population
density as a time-dependent scalar field, ρ("r, t), that satisfies the initial con-
dition ρ("r, t = 0) ≡ ρ0("r). From a macroscopic perspective, the current
density, related to time-dependent velocity and density fields through

"J = "v("r, t)ρ("r, t) , (1)

is directed along the gradient of the density field:

"J = −D∇ρ , (2)

where D is the diffusion constant. Without loss of generality, we can conve-
niently select time and length units in order to set D ≡ 1. These equations,
together with the equation for the conservation of mass,

∇ · "J +
∂ρ

∂t
= 0 , (3)

lead to the well-known diffusion equation:

∇2ρ − ∂ρ

∂t
= 0 . (4)

We enclose the area of interest within a larger box, whose initial popula-
tion density matches the mean population density ρ̄0. The role of this box
is merely to act as a large container and avoid finite-size effects due to the
system’s boundaries. By solving this diffusion equation with the initial con-
dition ρ("r, t = 0) ≡ ρ0("r) and Neumann boundary conditions such that no
flow occurs through the boundaries of the container, the density field can be
determined at all times. Then, the velocity field follows as

"v("r, t) = −∇ρ("r, t)

ρ("r, t)
(5)

4



A B

Figure 1: Example showing the initial areas (enclosed by black dashed lines)
and final areas (enclosed by red solid lines) when the population density of
region B is twice as large as that of region A.

and from the latter, the cumulative displacement of any point in the map
can be calculated by solving the kinematics, i.e.

"r(t) = "r(0) +

∫ t

0

"v("r, t′)dt′ . (6)

The cartogram is thus derived by moving all region boundaries on the map
in such a way that the net flow passing through them is zero. In the large-t
limit, the population is uniform everywhere within the box and the regions
become rescaled to sizes proportional to their initial population densities.

As a simple example to illustrate the procedure, consider the system
shown in Fig. 1 by the black dashed lines. It consists of 2 regions of equal
size: region A on the left has population density ρ0,A = 1 (in arbitrary
units) and region B on the right has ρ0,B = 2. We embed both regions
within a large enclosure filled with the average density ρ̄0 = 1.5. Letting
the concentrations diffuse, the system evolves towards homogeneity. Once
equilibrium is attained, the region boundaries have been reshaped as shown
by the red solid lines. The rescaled map shows region B twice as large
as region A, as expected from the initial population density ratio. That
is, the ratio of final areas when the diffusion process reaches equilibrium,
Area(B)/Area(A) = 2, agrees with the ratio of initial densities, ρ0,B/ρ0,A =
2. In this way, the rescaled map has merged the geographical information
with the statistical information: while regions A and B are still recognizable,
the rescaled representation also tells us that B is twice as large as A in the
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Figure 2: Standard visualization of georeferenced statistical data: the shape
and area of each Brazilian state is a faithful geographical representation,
while the grayscale shading shows homicide rates per 100,000 inhabitants
using 2008 data from Ref. [10]. The highest homicide rate is 60.3 (Alagoas,
in black) and the lowest one is 12.4 (Piaúı, in white).

sense of the chosen statistical measure. The next Section is devoted to actual
examples showing different ways to implement these ideas.

3 Density-Equalizing Cartograms of Brazil:
Results and Discussion

In this Section, we implement the diffusion-based method to generate density-
equalizing cartograms of Brazil’s states. By using recent, publicly released
statistical data provided by Brazilian government agencies, we illustrate the
method and discuss different scenarios to apply this visualization technique.

Being one of the major challenges facing Brazil and, on a larger context,
the rest of Latin American countries as well, we focus on the geographical dis-
tribution of homicide statistics, their cross-correlation with other statistical
measures, and their time evolution. To that end, we examined data on na-
tionwide violent crime statistics very recently released in a joint report by the
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Figure 3: Cartogram showing areas proportional to each state’s population
and grayscale shading corresponding to homicide rates per 100,000 inhabi-
tants in 2008. Notice the shrinkage of the Northern and Center-West regions
in constrast with the expansion of the Federal District and the Southern,
South-Eastern, and North-Eastern regions. By paying the penalty of a highly
distorted geography, we integrate the information of homicide rates (shading)
with population size (areas).

Brazilian Ministry of Justice and the Instituto Sangari [10]. Demographic
data was obtained from the IBGE [11], Brazil’s chief government agency
responsible for statistical and geographical information, whose Portuguese
acronym stands for “Brazilian Institute of Geography and Statistics”. It is
interesting to point out, in passing, that the tool presented in this work inte-
grates geography and statistics into a unified visual framework, thus naturally
reconciling the two main subject areas of this agency. Furthermore, we used
the IFDM index from the so-called “FIRJAN System” [12], which measures
the combined education, health, and economic development at the municipal
level based on official data released by the Brazilian Ministries of Education,
Health, and Labor.

Homicide rates by state are usually depicted as in Fig. 2, in which the
shapes and areas of the states are faithful geographical representations, while
the different homicide rates are shown by means of color or grayscale shad-
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Figure 4: Cartogram showing the change of areas (relative to its geographi-
cally faithful size) proportional to each state’s population and grayscale shad-
ing corresponding to homicide rates per 100,000 inhabitants in 2008. This
cartogram is a compromise between the standard representation of Fig. 2
and the highly distorted cartogram of Fig. 3.

ings. This accurate geographical information comes at a price: from this
representation, we do not know which states or regions are the ones where
most homicides occur. Moreover, standing out in this map are the states with
large surface areas, which might not be relevant neither by having particu-
larly high homicide rates nor high absolute number of homicide counts. A
good example in this regard is offered by the largest state, Amazonas, which
ranks 17th among the 27 federative units (i.e. the 26 states plus the Federal
District) in the list of states with highest homicide rates, and also 17th in the
list of states with highest absolute homicide counts (using statistics corre-
sponding to 2008 [10]). In contrast, the top-ranking state in homicide rates,
Alagoas, appears barely noticeable due to its very small surface area.

In order to put in evidence the most populated states, we generate the
cartogram of Fig. 3 by assuming ρ0("r) ∝ Ni/Ai ∀"r ∈ Ai, where Ni is the
population and Ai the surface area of the i−th state. The density-equalizing
diffusion-based method thus leads to a representation in which the area of
each state is in proportion to its population. As in Fig. 2, the grayscale
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shading shows each state’s homicide rates per 100,000 inhabitants in 2008.
Since the absolute number of homicides is obtained from the product of homi-
cide rate times the population size, this representation arguably displays all
three statistics (i.e. population, homicide rate, and homicide counts). For in-
stance, large dark states in the North-Eastern region are emphasized, as well
as Espirito Santo and Rio de Janeiro, as most affected by violent crime both
in relative and absolute terms. Although having one of the lowest homicide
rates in Brazil, São Paulo stands out at the center of the cartogram due to
its being the most populated state in the country. Naturally, the cartogram
approach trades off geographical accuracy in exchange for incorporating ad-
ditional information. In the following figures, we discuss alternative ways to
implement such trade-offs.

Fig. 4 shows a compromise between the geographically accurate, standard
map of Fig. 2 and the highly distorted cartogram of Fig. 3. In this cartogram,
which is obtained from assuming ρ0("r) ∝ Ni ∀"r ∈ Ai, the change of area (rel-
ative to the geographically accurate representation) is proportional to each
state’s population. The grayscale shading, as before, corresponds to homi-
cide rates per 100,000 inhabitants in 2008. Therefore, each state’s area on
this cartogram conveys some information on the geographical surface area,
which was completely missing from the cartogram of Fig. 3. Moreover, the
shapes are less distorted than in the previous cartogram. It should be pointed
out, however, that since this cartogram integrates geographical and statisti-
cal information in a nontrivial manner, its interpretation is rendered more
difficult. For instance, the similarity of two states depicted with similar sizes
on the cartogram could be due to different combinations of population and
geographical surface area of those states. In Fig. 4, São Paulo and Minas
Gerais appear represented with similar sizes, which is due to the fact that
São Paulo’s population is roughly twice as large, while its surface area is
roughly half as large, as those of Minas Gerais.

In Fig. 5, the areas are proportional to each state’s homicide rates per
100,000 inhabitants in 2008, while the logarithmic grayscale shading reflects
each state’s population. That is, this figure reverses the roles of the two
statistics shown earlier in Fig. 3. This cartogram is obtained by assuming
ρ0("r) ∝ Ri/Ai ∀"r ∈ Ai, where Ri is the homicide rate of the i−th state. The
cartograms in Figs. 3 and 5 contain the same information, yet their appear-
ance is very different. One could argue that the focus of attention is first
guided towards the large states and, therefore, size takes precedence over
shade. Under that assumption, Fig. 3 places more emphasis on population
(by noticing first the most populated states and only later their correspond-
ing homicide rates), while conversely, Fig. 5 emphasizes homicide rates. Al-
though the preferential focus of attention (size, shape, or color) might depend
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Figure 5: Cartogram showing areas proportional to each state’s homicide
rates per 100,000 inhabitants in 2008 and logarithmic grayscale shading cor-
responding to each state’s population. In this case, the cartogram tends to
enhance the appearance of states and regions with high crime rates, as op-
posed to those with high population (compare with Fig. 3). For instance,
Roraima and Amapá in the Northern region stand out in this cartogram due
to their significant crime rates, but go unnoticed in Fig. 3 due to their small
population.

on the subject, it is interesting to point out that, as exemplified here, the
same data can be visualized in different ways that imply a different emphasis
on the represented quantities.

Uncovering correlations between crime statistics and other demographic,
social, and economic variables is an active focus of research aiming at under-
standing the conditions that foster criminal behavior. For instance, Gould
et al. found that low wages and unemployment make less-educated men
more likely to turn to crime [13]. The impact of unemployment on crime has
also been studied very recently using country-level statistical data from Eu-
rope [14]. Other recent studies on crime-rate regressions are e.g. Refs. [15, 16,
17] and references therein. Following our case study of state-level homicide
rates in Brazil, let us now illustrate how correlations can be put in evidence
by using diffusion-based cartograms.
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Figure 6: Scatterplot showing homicide rates and the IFDM index (both
corresponding to year 2008). The solid line is the best linear fit to the data.

As anticipated above, we used the IFDM index calculated from the so-
called “FIRJAN System” [12], which measures the combined education, health,
and economic development at the municipal level based on official data re-
leased by the Brazilian Ministries of Education, Health, and Labor. Since
the IFDM index is a measure of welfare and prosperity, it is reasonable to
expect states with higher IFDM scores to be less affected by violent crimes,
and viceversa. Indeed, the scatter plot in Fig. 6 hints to a plausible correla-
tion between the two statistics, as evidenced by a best linear fit with negative
slope (shown by the solid line) and a Pearson’s correlation coefficient equal to
−0.17. Notice, however, that the p-value for the null correlation hypothesis
is 0.385, and therefore, from a strict statistical perspective, we cannot rule
out the absence of correlations. In the context of this paper, our choice of the
IFDM index is only guided by the purpose of illustration of the cartogram
method.

Fig. 7 shows a cartogram that, as Fig. 5, displays the area of each state
proportional to each state’s homicide rates per 100,000 inhabitants in 2008.
The grayscale shading represents each state’s IFDM index (where darker
states have lower IFDM scores). On the one hand, this cartogram puts in
evidence the high geographical correlation of the IFDM index, with a dark
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Figure 7: Cartogram showing areas proportional to each state’s homicide
rates per 100,000 inhabitants in 2008 and grayscale shading corresponding to
each state’s IFDM index (where darker states have lower IFDM scores). The
cartogram puts in evidence the high geographical correlation of the IFDM
index, with a dark fringe crossing the Northern and North-Eastern regions,
while the states become increasingly lighter towards the South. Moreover,
the cartogram captures plausible correlations between the IFDM index and
crime rates, as for instance the large, dark North-Eastern regions (indicating
low development and high crime rates) and, inversely, the comparatively
smaller and lighter Southern states.

fringe crossing the Northern and North-Eastern regions, while the states
become increasingly lighter towards the South. This kind of geographical
correlation, immediately apparent in the cartogram representation, is more
difficult to spot in the scatter plot of Fig. 6. On the other hand, moreover,
the cartogram conveys plausible correlations with crime rates, as for instance
the large, dark North-Eastern regions (indicating low development and high
crime rates) and, inversely, the comparatively smaller and lighter Southern
states.
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Finally, another interesting application of the diffusion-based cartogram
representation is to capture the dynamical evolution of statistical quantities.
By using annual data on homicide rates from 1998 to 2008, we generated
additional frames by linear interpolation and created a movie showing sub-
stantial changes experienced over time (supplied as Electronic Supplementary
Material to this paper). As opposed to analogous movies based on the usual
color- or gray-scale representation (Fig. 2), cartogram movies display chang-
ing features such as shape and size, and therefore are particularly suitable
for enhancing the visualization of dynamical observables. This technique
can certainly improve the communication and outreach of statistical results
to both specialized and non-specialized audiences.

4 Conclusions and Outlook

Geography and statistics are ubiquitously intertwined in data collected to as-
sess the levels of health, socioeconomic development, literacy and education,
crime, and many other key indicators of the welfare of society. However,
georeferenced data are most often represented by traditional visualization
methods that do a poor job in integrating these two key aspects. In this
work, we implemented a physics-based visualization approach to integrate
geography and statistics into a unified framework. By trading off geograph-
ical accuracy in exchange for additional information, we explored different
alternative scenarios that emphasize different views on the data. We believe
that these novel techniques offer new avenues to communicate effectively and
reach out to specialized and non-specialized audiences in a wide variety of
applied statistics fields, including economics and gross domestic product re-
search, public health and epidemiology, socio-demographics, political science,
business and marketing, and many others.

Although we illustrated the diffusion-based approach with Brazilian geo-
referenced statistical data at the federative unit level, the method can be
extended to integrate different geographical and geopolitical scales, from lo-
cal (e.g. town districts) to global (e.g. regions within a country and even
relations among countries in the international context). Naturally, in order
to fully capture the inherent complexities of georeferenced data across multi-
ple dimensions, other methodologies are needed to complement the approach
presented here. To that end, methods based on multi-level Voronoi tessela-
tion [18] and multilayered complex network analysis and modeling [19, 20]
offer promising avenues of research.

Besides the specific aim of improving the visualization of statistics, we
hope that, in a broader context, this work will serve to illustrate possible
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cross-disciplinary endeavors addressing key local and regional issues. Indeed,
we stress the importance of two aspects, namely: (i) recognizing the need for
interdisciplinary work in many areas of applied science and the role physicists
can play in providing new analysis methods; and (ii) recognizing the need
to address key local and regional issues (e.g. within the Latin American
context) in those areas where basic and applied research can find a common
ground. Hopefully, this paper will contribute to those goals and stimulate
further work.
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