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Abstract 

We consider a definition of entropy for discrete amenable action 
groups and extend the equality between entropy and dimension for 
amenable groups. This last result was proved by Simpson for the 

special case of dZ -actions. 

1. Introduction 

In the area of dynamical systems, the study of dimension of sets 
constitutes a relevant discipline. One of the main goals in this context is to 
analyze the complexity of diverse objects. The determination of adequate 
“characteristic dimensions” of special sets, for instance attractors, was a 
matter of research by both the mathematicians and physicists. Important 
invariants to measure the complexity of the systems as well as the average 
amount of information are the metric and topological entropies. 

The use of groups as dynamical objects, which is an interesting issue in 
ergodic theory, consists in taking groups acting on a measure, or topological, 
space, obtaining the dynamics from the action. One very developed topic in 
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this subject was the extension of the Birkhoff ergodic theorem to measure-
preserving action groups as dynamics. The classical ergodic theorem 
concerns to measure preserving Z-actions, and the extension deals with more 
general group actions, so in [9] and [2] the point-wise convergence of 
ergodic averages for action groups is considered. One meaningful 
contribution, in this field, is the work of Lindenstrauss [7] who has 
generalized the classical Birkhoff ergodic theorem to action amenable 
groups. In this way dynamical invariants from group actions deserved to be 
introduced, being countable discrete amenable groups mostly used to this end 
(see for instance references [11, 5] and [14]). In [14], Zhou introduced the so 
called tail entropy for countable amenable groups which describes the 
complexity of the system at small pieces, i.e. counting the elements of 
refinements of a covering U  relative to subcoverings of ,U  besides is 
presented a measure-theoretic entropy and proved a variational principle for 
refining partitions. The definition in [14] extends that introduced by 
Misiurewicz for Z-actions [8]. In [12], Simpson considered entropies for 

dZ -actions and established equalities among entropy, Hausdorff dimension 
and Kolmogorov complexity, in the setting of actions on symbolic spaces. 

In this article, we extend to amenable groups the equality “entropy = 

dimension” established by Simpson in [12] for dZ -actions, and earlier by 

Furstenberg [3] for +Z -actions. The main tool to do this is the Lindenstrauss 
covering lemma [7]. This important result states that from translates of sets of 
a finite Følner sequence contained in a compact F, can be randomly extracted 
an almost-disjoint sequence which covers most part of F. This is like a 
generalization of the Vitali lemma. Finally, we analyze the possibility of 
extending to amenable actions the relationship between entropy and 

Kolmogorov complexity, proved in [12] for dZ -actions. To study the scaled 
case for the complexity we consider an extension to amenable action of a 
version of scaled complexity introduced by Galotolo [4] for the classical        
Z-actions. The Kolmogorov complexity of a sequence in a given description 
language, is the minimal sequence (program) to produce this sequence to 
output. The Galatolo version of complexity measures complexity of an orbit. 
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2. Preliminaries Definitions 

Let Γ be a locally compact topological group. Amenability is formulated 
in different ways, the most convenient for our purpose, which is the one used 
in Lindenstrauss theory, is the following: Γ is amenable if for any compact 

Γ⊂K  and for any 0>δ  there exists a compact Γ⊂F  such that 

 ,δ<
Δ
F
KFF  (1) 

a set F with this condition is called ( )δ,K -invariant. 

A sequence ( )nF  of compact subsets of Γ is a Følner sequence if for any 

compact subset K of Γ and for any ,0>δ  

 δ<
Δ

n

nn
F
KFF  (2) 

holds for large enough n. In other word, a ( )nF  is a Følner sequence if, for 

large enough n, each set nF  is ( )δ,K -invariant. For ,Z=Γ  we can take 

{ },...,,2,1 nFn =  while for dZ  the natural example is { } ....,, d
n nnF −=  

A sequence ( )nF  is tempered if there is a 0>C  such that, the Schulman 

condition 

 C
F

FF

n

n

k
nk

<=

−∪
1

1

 (3) 

is satisfied. Any amenable group has a tempered Følner sequence [7]. For a 
discrete group Γ, the amenability is equivalently formulated as that every 
continuous action of Γ on a compact space has an invariant measure. With ,  

we denote the left invariant Haar measure on Γ which, for discrete groups, is 
the usual counting measure. 

By a Γ-system is understood a pair ( ),, ΓX  where X is a compact metric 
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space and Γ is a group acting on X. A measure μ on X is said Γ-invariant if 
for any measurable subset E of X and for any Γ∈γ  is ( ) ( ).EE μ=γμ  We 

denote by ( )Γ,XM  the set of Γ-invariant probability measures on X. This 

set is compact with respect to the weak topology. 

Symbolic spaces for group actions are defined as follows: let Ω be a non-
empty finite set of symbols and let Γ be a discrete amenable group, let us 
denote 

{ },: Ω→Γ=ΩΓ x  

i.e. the sequences ( )( ) .Γ∈γγx  Also this space can be expressed as ∏
Γ∈γ

Γ Ω=Ω ,  

therefore if Ω has the discrete topology, then ΓΩ  can be endowed with the 

product topology. The shift action on Γ on ΓΩ  is given by the map 

ΓΓ Ω→Ω×Γ:T  

( ) ( ) ( )., γ′γ=γγ′ xxT  

The compact dynamical system ( )T,ΓΩ  is usually called the full shift. A 

subshift is a closed subset Z of ΓΩ  which is also invariant by the shift action. 
A language of the subshift Z is the set ( )ZL  formed by sequences in points 

of Z. For a Følner sequence ( )nF  let { },,: ΓΩ∈Ω→|=Ω xFx nF
F

n
n  i.e. 

the restrictions of sequences of ΓΩ  to .nF  Thus each element of nFΩ  can 

be identified with a string ( )N...,,, 21=L  with .Ω∈i  Let =Ω∗  

∪
1

.
≥
Ω

n

Fn  Now for a Følner sequence ( ),nF  set ( ) ( ) nF
n ZFZ Ω= ∩LL :,  and 

for any ( ) ( )., nF
n FZxx n L∈|=  The cylinder ( ( ) )nxC  is formed by the 

sequence Zy ∈  such that ( ) ( ).: n
F

n xyy n =|=  The counting of the growing 

of the cardinality of ( )nFZ ,L  is used for the definition of entropy of 

subshifts. For the full subshift, i.e. ,ΓΩ=Z  ( ) ., nF
nF Ω=ΩΓL  
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3. Entropies for Amenable Groups 

Let ( )Γ,X  be a Γ-system with Γ a discrete countable amenable group. 

For an open cover U  of X, we denote 

 ( ) { VVU :min cardN =  is a finite subcovering of }.U  (4) 

If 21, UU  are covers of X, then set { 2112121 ,: UUUU UUU ∈=∨ ∩  

}2U∈  and for any Γ∈γ  let ( ) { }.:11 UU ∈γ=γ −− UU  If ( )nF  is a Følner 

sequence in Γ, then define ( ).1 UU −

∈γ
γ=

n

n

F

F ∨  

Definition. The upper and lower entropies are defined, respectively, as 

( ) ( ),,,sup, U
U

Γ=Γ XhXh  

( ) ( )U
U

,,sup, Γ=Γ XhXh  (5) 

with 

( ) ( ),log1suplim,, nF

nn
N

F
Xh UU

∞→
=Γ  

( ) ( ).log1inflim,, nF

nn
N

F
Xh UU

∞→
=Γ  (6) 

Remark 1. Since ( ) ( ) ( ),2121 UUUU NNN ≤∨  and hence 

( ) ( ) ( ),logloglog mnmn FFFF NNN UUU +≤∪  by the Ornstein and Weiss 

lemma ([11, 6]), results hh =  and the limit in (5) exists. 

Remark 2. If Γ acts isometrically on a compact metric space X, i.e. 

( ) ( ),,, yxdyxd =γγ  for any ,Γ∈γ  then ( )nFN U  remains bounded for any 

n, and therefore ( ) ( ) .0,, =Γ=Γ XhXh  

For closed subshift ,ΓΩ⊂Z  we can set 
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( ) ( ) ,,log1suplim, n
nn

FZ
F

Zh L
∞→

=Γ  

( ) ( ) .,log1inflim, n
nn

FZ
F

Zh L
∞→

=Γ  (7) 

The explanation of this definition may be adopted for subshifts briefly as 
follows: a (topological) generator is a cover U  with the property that there is 

an n such that nFU  is a refinement of any covering .V  If U  is a generator, 

then the supremum in (6) is reached and ( ) ( )UU ,,,, Γ=Γ XhXh nF  and 

( ) ( ),,,,, UU Γ=Γ XhXh nF  for any n. In the case of subshifts, a covering 

is by cylinders { },...,,1 Ω= CCC  with { ( ) },: iexxCi =Ω∈= Γ  where e 

is the identity in Γ. Thus C can be taken as a generator and the counting 

( )nFN C  is precisely ( ) ., nFZL  For the full shift ,ΓΩ⊂Z  ( ) =ΓΩΓ ,h  

.log Ω  Since Z is closed, there is an 0n  such that ( ) 0, nF
nFZ Ω<L  

so that ( ) Ω< log,log1
0

0
n

n
FZF L  and then ( ) .log, Ω<ΓZh  

A definition in terms of separated sets, like in the classical case, can be 
formulated as follows: a subset E of X, is ( )εΓ ,, nF -separated if for any 

,Eyx ∈≠  ( ) ε>γγ xxd ,  for some .nF∈γ  

Let ( ) ( ){ }.separated-,,is:max,, εΓ=εΓ nn FEcardEFr  Then define 

( ) ( ),,,lim,
0

εΓ=Γ
→ε

XHXH  

( ) ( )εΓ=Γ
→ε

,,lim,
0

XHXH  (8) 

with 

( ) ( ),,,log1suplim,, εΓ=εΓ
∞→

n
nn

Fr
F

XH  

( ) ( ).,,log1inflim,, εΓ=εΓ
∞→

n
nn

Fr
F

XH  (9) 
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The equivalence between the two definitions can be seen in a rather 
similar way as in the case of integer actions, we do this in a following 
section. Also, like in Z-actions the definition does not depend on the metric. 

3.1. Measure-theoretic entropy for amenable groups 

The entropy of a partition P  can be defined like in the classical case         

of Z-actions: let ( ) ( ) ( )∑
∈

μμ−=μΓ
P

P
P

PPXH log,,,  and ( ) =Γμ P,,Xh  

( ).,,,lim1 nF
nn

XH
F

PμΓ
∞→

 The limit does exist ([7, 11]). The entropy 

( )Γμ ,Xh  is defined taking the supremum over all the finite partitions .P  

For the case of subshifts the canonical partition is taken by cylinders and it 

may be denoted directly by ( ),, Γμ Zh  for .ΓΩ⊂Z  

4. Dimension and Entropy 

In this section, we extend to amenable action groups the result of 

Simpson [12], obtained for dZ -actions, which relates, for closed subshifts of 
a symbolic space, Hausdorff dimension with entropy. We firstly recall the 
definition of Hausdorff dimension of sets, this quantity was widely used in 
multifractal analysis to describe the structure of level sets in which the phase 
space is decomposed (multifractal decomposition). 

Definition. Let X be a compact metric space and let 

( ) ( ) ,inf,,
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=εα ∑
∈

α

GG Y
diamYXG  

where the infimum is taken over all the coverings G  of X with .ε≤Gdiam  

The outer α-Hausdorff measure of X is ( ) ( )εα=μ →εα ,,lim 0 XGX  and 

finally the Hausdorff dimension of X is ( ){ }.0:infdim =μα= α XXH  

The Hausdorff dimension is not a “dynamical quantity”, as it does not 
depend on the dynamics, to relate it with a dimension given by the dynamics, 
like the entropy. We work in the setting of symbolic dynamics. Let Z be a 
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closed subset of a full shift ,ΓΩ  for a Følner sequence ( )nF  set =nF  

{ }n
F

nn
n

γγγ ...,,, 21  and to any sequence of { }ΓΩ∈Ω→|=Ω xFx nF
F

n
n ,:  

can be assigned a string ( )nF...,,, 21=L  with ( ) ,1 i
nx =γ  ,2,1=i  

,..., nF  we denote this ( ),...,,, 21 nn FFx =↔| L  and .nF=L  

Let { ( ) }ΓΩ∈=↔|= xx nn FF ,...,,, nF21LG  and .nFGG ∪=∗  

The shift ΓΩ  can be endowed with a metric as follows: let ,, ΓΩ∈yx               

if nF  is the maximal value for which ,LL =  where =↔| LnFx  

( ) ( ),...,,,...,,, 2121 nnn FFF y =↔|⋅ L  then set ( ) .2, nFyxd −=  

As it was pointed out in [12], the definition of Hausdorff dimension, for the 

case ,dZ=Γ  in the setting of symbolic spaces can be reformulated 
considering cylinders as basic sets and with respect to the above metric, this 
fact can be easily extended for our more general context. If Z is a closed 

subshift in ,ΓΩ  then for any ,L↔| nFx  ,Zx ∈  is valid ( ) =| nFxdiamC  

( ) .22 nFdiamC −− == LL  In this way the Hausdorff measure of a closed 

subshift ΓΩ⊂Z  is defined as 

 ( )
( )
∑

∈

α−
α =μ

GLL

L

,
2

C
Z  (10) 

and ( ){ }.0:infdim =μα= α ZZH  

We recall now the main grounds of the Lindenstrauss theory for 
amenable groups. Let us consider a Γ-system ( ),, ΓX  let ( )nF  be a tempered 

sequence in Γ and let F be a compact subset of Γ. Lindenstrauss introduced 
collections of right translates of sets ,...,,, 21 NFFF  which “almost” cover F. 

The collection F  is specified by subsets jA  of Γ with ,FAF jj ⊂  =j  

,...,,2,1 N  and 

 { }....,,2,1,: NjAaaF jj =∈=F  (11) 
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From the collection ,F  we can randomly extract an adequate finite 

subcollection. More formally this is done in the following way: let ( )P,Ω  be 

a probability space, { } { }{ }1,0...,,2,1: →Γ×ϖ=Ω N  and let 

( ),: FPF →Ω  

( ).ϖϖ F  (12) 

Define a counting function ,: N→Λϖ F  by 

( ) ( )
( )
∑

ϖ∈

ϖ γ=γΛ
FB

BI ,  (13) 

with BI  the characteristic function of B. For any ( ),FP∈B  let ∑
∈

=
SB

BS .  

The covering lemma of Lindenstrauss [7] says that for a given 0>δ  the 
map F  can be chosen such that 

 (i) ( ( ) ( ) ) ,11 δ+≤≥γΛγΛ ϖϖE  

(ii) ( )( ) ( ) ,,
1
∪
N

j
jACh

=
δ≤ϖFE  

where ( )
δ+

δ
=δ

C
Ch

1
,  with the constant C for the tempered sequence ( )NF  

and the expectation value E. 

These conditions mean that, on average, the random subcollections are 
almost disjoint and the sets in ( )ϖF  cover “the most” of F. A collection 

( )Γ⊂ PF  is δ-disjoint if for any ,F∈A  there is a AA ⊂0  such that 0A  

( ) Aδ−≥ 1  and 00 BA ∩  for every .F∈≠ AB  The covering lemma is 

proved in [7] mainly by Lemma 2.6 and Corollary 2.7 which express that: if 
F  is a collection of subsets of Γ specified by the translates of a given 

sequence of subsets of Γ and ,Γ⊂F  then there is a subcollection F  of F  

such that ( ) ,1 Fδ−≥∪F  where ∪ ∪
F

F
∈

=
A

A.  
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If L is a string associated to a sequence ,nFx |  then the translate of the 

string L by an element γ is understood as .nFγ=γL  

The following fact is used in the next theorem: if Z is a closed subshift in 

,ΓΩ  then Z can be covered by cylinders associated to strings I  in ∗G  [12], 

( )∪
I

CZ
∈

⊂
L

L .  Let ∪
∞

=
=

1
,II  in a similar form as is done in [12]. Then the 

sets I  can be chosen such that 
( )
∑

∈

α− <
ILL

L

,
12

C
 and 

( )
.2

1 ,
∞<=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑ ∑
∞

= ∈

α− S
k

k

C ILL

L  

Theorem 1. Let Z be a closed subshift in ,ΓΩ  with Γ a discrete 

countable amenable group, and let ( )nF  be a Følner tempered sequence. 

Then ( ) .dim, ZZh H=Γ  

Proof. The inequality ( ) ZZh Hdim, ≥Γ  is proved in a similar way as 

in [12] (we display the proof for completeness). For converse, lines from [12] 
are followed using the above results from Lindenstrauss theory. In the 
definition of entropy log with base 2 is used. 

Let C  be the partition by cylinders of Z. Then, it can be proved that if 

( ),, Γ>α Zh  then ( ) .0
2

lim =
α∞→ n

n

F

F

n

N C  To see this, we have, by the definition 

of entropy that for any ,0>ε  ( )Γ>α ,Zh  and for n large enough, ( )nFN C  

( ).2 ε−α< nF  Therefore ( ) ε−α− < nnn FFF N 22 C  and thus ( )
α−∞→ n

n

F

F

n

N
2

lim C  

0=  if ( )., Γ>α Zh  As is pointed out earlier ( ( ) ) ( )∪ ∪
Zx

x
I

n CxCZ
∈

↔
∈

=⊂

L
L

L .  
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Recall that ( ) ( ) .22 n
n

F
F diamCxdiamC −− ===| LL  Since 

( ) ,0
2

lim =
α−∞→ n

n

F

F

n

N C  if ( ),, Γ>α Zh  we get ( ) 0=μα Z  for ( )Γ>α ,Zh  

and then ( ) .dim, ZZh H≥Γ  

Let us consider the set nF  of the Følner sequence with n large enough. 

Let { }NFFF ...,,, 21=F  be a tempered sequence in Γ, and let .nFF =  

Then, by the Lindenstrauss theory F can be “almost covered” by the 
translates of the sets .iF  Let F  be the subcollection randomly obtained form 

the translates with almost cover F, i.e. for 0>δ  holds ∪ F⊂F  and 

( ) .1 Fδ−≥∪F  Let ,∪F−= FU  so ∪F−= FU  and <U  

.Fδ  Let ,iii aFG =  Mi ...,,2,1=  be translates of the elements of F  

which form the sequence F  and let { }....,,1
i
G

i
i i

G γγ=  The set F can be 

described by these translated sets. Let us select one element from each ,iG  

namely { },...,,1 MH γγ=  and let .HUV −=  The set F, or equivalently, 

the string ,Fx |  can be characterized by sequences [ ] ,...,, 21 Ω∈δ Faa  

( ) ,jax =γ  for any V∈γ  as well as the translates of elements of .F  Let α 

be such that ( ) .0=μα Z  Then, we have ( ) SFZ FF δα Ω< 22,L  or 

( ) ( ) .2, log2 SFZ F <Ωδ+αL  Therefore, since F is a member of the 

sequence with n large enough, then it is proved that ( ) α≤Γ,Zh  with α 

such that ( ) .0=μα Z  Hence, ( ) .dim, ZZh H≤Γ  ~ 

5. On the Relationship Between Dimension and Kolmogorov 
Complexity for Amenable Groups 

In [12], Simpson proved the equality between Hausdorff dimension of        
a shift and the Kolmogorov complexity and the growing rate of the 

Kolmogorov complexity of sequences ,nFx |  Zx ∈  for dZ -actions. By         



A. M. Mesón and F. Vericat 48 

Z-action groups the equality between complexity and measure-theoretic 
entropy was established by Brudno [1]. The extension to general amenable 
discrete groups can be done in a more or less direct way with some 
modifications that we shall point out. Let us begin with a brief account of 
Kolmogorov complexity, which is a very important subject in information 
theory. Informally speaking the Kolmogorov complexity of a sequence in a 
given description language, is the minimal program that produces this 
sequence as the output. More formally by a description language, L  may be 
understood as a map ,: HL →S  where S consists of a set of sequences in, 
say, two symbols (binary sequence), and S is formed by sequences in               
n-symbols, for any n. Thus L  makes a correspondence between binary 
strings and strings of any length. If the description language L  can be 
described by a Turing machine M says that it is computable, i.e. a sequence s 
is in the domain of L  whenever ( )sM  is an accepted state by M. A 

description of a string H∈t  by the language L  is a string Ss ∈  with 
( ) .ts =L  By ,s  we denote the length of the sequence s. 

Definition. The Kolmogorov complexity, with respect to a language L  of 
a string s is defined as the minimal length of a description of s, namely 

( ) ( ){ } { },:min ∞== ∪tsstK LL  

where ∞ is the output for the language when t is not possible. 

The invariance theorem establishes the existence of a “universal” 
language in the following sense, if a string has a description in a given 
language this description may be used in the universal language except for a 
constant. More precisely the invariance theorem says that if 1L  and 2L  are 

two description languages, then there is a constant C such that ( ) =tK 1L  

( ) ,2 CtK +L  for any s and where the constant C depends only on the 

languages. Thus a universal optimal language can be considered and the 
complexity can be defined with respect to this language, and hence the 
language can be omitted in the definition of Kolmogorov complexity. 

In the case of subshifts, take 
nF∪GGS == ∗  with { ,L↔|= nn FF xG  
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}ΓΩ∈x  and the languages are the allowed sequences of the subshifts. Then 

in this setting the definition of complexity of a sequence x belonging to a 
subshift Z can be formulated by 

 ( )
( )

.suplim
n

F

n F
xK

xK n|=
∞→

 (14) 

In [12], it is proved that ( ) ( )Γ≤ ,ZhxK  for any Zx ∈  and ( ) =xK  

( )Γμ ,Zh  for any μ-a.e. .Zx ∈  Here we display the first inequality and ( )xK  

( )Γ≤ μ ,Zh  for any ergodic Γ-invariant measure μ. The following variational 

theorem holds. 

Theorem [10, 13]. For an amenable action group on a probability space 
( ),, μX  

( )
( )

{ ( )}
( )

{ ( )},,sup,sup,
,,

Γ=Γ=Γ μ
Γ

μ
Γ

XhXhXh
XX EMM

 

where ( )Γ,XEM  is the set of Γ-invariant ergodic probability measures on X. 

Therefore, if the supremum is attained at an ergodic measure ,μ  then 

( ) ( ) ( ).,, Γ=Γ= μ ZhZhxK  

Lindenstrauss proved the Shannon-McMillan theorem for amenable 
groups. 

Theorem [7]. Let Γ be a discrete amenable group, which acts ergodically 
on probability space ( ),, μX  and let P  be a finite partition of X. If ( )nF  be 

a Følner tempered sequence with the property ∞→
n

Fn
log

 (increasing 

property), then 

 ( ( )) ( ),,,log1lim PP Γ=μ μ
∞→

Xhx
F

Fn

nn
 (15) 

for μ-almost every x, where ( )xFnP  is the member of FnP  which contains x 

(the P -name of x). 
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Now we state the theorem which claims the equality between 
Kolmogorov complexity and entropy. As we have mentioned the proof 
follows steps closely to those of [12], with some modifications. For instance, 
the increasing condition be added. 

 Theorem 2. Let Γ be a discrete amenable group, and let Z be a closed 

subshift of ,ΓΩ  let μ be a shift invariant ergodic measure on Z. If ( )nF  is a 

Følner tempered with the increasing property ,
log

∞→
n

Fn  then 

( )
( )

( ),,suplim Γ≤
|

= μ
∞→

Zh
F
xK

xK
n

F

n

n  

for μ-almost every ,Zx ∈  and 

( ) ( ),, Γ≥ μ ZhxK  

for any Zx ∈  (we use in the entropy log in base 2). So that ( ) =xK  

( ),, Γμ Zh  for μ-almost every .Zx ∈  

Proof. Let .Zx ∈  Let ( )., Γ<α μ Zh  Choose 0>ε  be such that <ε+α  

( )., Γμ Zh  Using the Shannon-McMillan theorem, we can consider the sets: 

{ ( ) } { ( ( )) ( )}.2:: ε+α−<|μ|α<||= n
nnnn

F
FFnFFn xCxFxKxS ∩  

We have { ( ) } .2: α≤α<|| n
nn

F
nFF FxKxcard  

For a set { },: Ω→|=Ω⊂ nF
F FxY n

n  let us denote ( ) { ( )nFyCYC |=  

}.: Yy ∈  Thus 

( )( ) ( ({ ( ) })α<||μ≤μ nFFn FxKxCSC nn :  

{ ( ( )) ( )})ε+α−<|μ| n
nn

F
FF xCxC 2:∩  

( ) .222 ε−ε+α−α =≤ nnn FFF  
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By the increasing property, we have that ,2
log ε

>
n

Fn  for n large enough. 

Thus ,12 2n
nF <ε−  and hence ( )( )∑ ∞<μ .nSC  Then by the Borel-Cantelli 

lemma, all μ-a.e. Zx ∈  do not belong to all the sets ({ ( ) <|| nn FF xKxC :  

}) { ( ( )) ( )},2: ε+α−<|μ|α n
nn

F
FFn xCxCF ∩  for large enough n. In 

particular, ({ ( ) }),: α<||∉ nFF FxKxCx nn  μ-a.e., for n large. But if 

({ ( ) }),2: α<||∉ nFF FxKxCx nn  then { ( ) }.: α<||∉| nFFF FxKxx nnn  

Therefore, ( ) α≥| nF FxK n  for n large enough and for μ-almost every 

.Zx ∈  Finally, 

( ) ( )Γ≤ μ ,ZhxK  

for ,Zx ∈  μ-a.e. 

For the second inequality, let nm ≥  and N∈k  such that ≤≤ nkm  
.mkm +  Let us consider a partition of each nF  in r-blocks of measure ,mF  

hence ,mn FrF ≥  and ( ) ( ) .,, mn FZrFZ LL ≤  Thus, there is a 

constant C such that ( ) ( ) ,log,log 2 CnFZrxK mFn ++≤| L  and so for 

any ,Zx ∈  

( ) ( )
m

n

m

m

mn

F

n Fr
CF

Fr
FZr

F
xK n +

+≤
|

∞→∞→

2log,logsuplimsuplim L  

( ) ( ).,,logsuplim Γ== μ
∞→

Zh
F

FZ

m

m

m

L  ~ 

This result can be extended to an action on a compact topological space 
X, defining the complexity of a point x via the coding of the orbit of x by its 
name with respect to a given partition and a Følner sequence. This was done 
in [4] for Z-actions. Let { }kPP ...,,1=P  be finite partition of X and let ( )nF  

be a Følner sequence. Recall that P -name of x of length nF  is the member 
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of FnP  which contains x, i.e. the FnP -name of x will be a string 
( ) ( )nn FF x ...,,1, =PL  such that ,iPx ∈γ  when γ varies in .nF  In this 

way, we set 

 ( ) ( ( ))xKFxK nFn ,,, PP L=  (16) 

and 

 ( )
( ( ))

.suplim, ,

n

F

n F
xK

xK nPP
L

∞→
=  (17) 

Now we can state the above theorem for more general case. 

Theorem 3. Let Γ be a discrete amenable group acting on a topological 
compact space X, and let μ be a Γ-invariant ergodic measure on X. Let ( )nF  

be a Følner tempered with the increasing property .log ∞→n
Fn  Then  

( ) ( ),,,, PP Γ≤ μ XhxK  

for any μ-a.e. ,Xx ∈  and 

( ) ( ),,,, PP Γ≥ μ XhxK  

for any .Xx ∈  

The proof is similar to that of the theorem for subshifts with some 
modifications, for instance the sets nS  must be defined as 

{ (( ( ))) }α<|= nFFn FxKxS nn ,: PL  

{ ( ( )) ( )},2: ε+α−<μ| nn
n

FF
F xx P∩  

with ( ).,, PΓ<α μ Xh  

5.1. Scaled orbit complexity 

A version of complexity was introduced by Galotolo in [4], for the 
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classical case of Z-actions. This quantity is computed with respect to so 
called computable structure and measures the amount of information needed 
to follow the orbit of a point in a separable space X with determined 
precision. Thus this version gives the length of the smallest sequence 
(program) to approximate the orbit of a point. Recall that the Kolmogorov 
complexity of a point in an abstract space is the minimal program to produce 
the name of a point, with respect to a given partition, to output. Finite strings 
can be interpreted as points in an abstract metric space X by means of an 
“interpretation function” C which assigns to a finite string a point in the 
space X and whose image is dense in X. A point which is the dense image of 
interpretation map is called ideal, and an interpretation is computable when 
the distance between two ideal points can be approximated by a recursive 
algorithm. This concept will be useful to analyze the scaled case for a 
complexity indicator. 

Let Γ be an amenable discrete group acting on a separable space ( ),, dX  

and let S be the set of finite binary strings. As we said a computable 
interpretation on ( )dX ,  is a map XSC →:  such that ( )SC  is dense in X 

and if ( ),11 sCx =  ( )22 sCx =  are two ideal points, then there is a recursive 

algorithm function F defined on N×× SS  such that, for any ,1s  ,2s  n, 

( ) ( ) ( ),,,, 2121 nnssFxxd δ<−  with ( ) .0nn →δ  Two interpretations 

,1C  2C  are equivalent when ( ) ( )( )2211 , sCsCd  can be approximated by a 

recursive algorithm ( ),,, 21 nssFF =  for any n. A computable structure is 

an equivalence class C  of computable structures. Now, to define the orbit 
complexity a separable space ( )dX ,  endowed with a computable structure 

C  is considered which allows to model sequences as points of X. 

If ( )Γ,X  is a Γ-system where X is endowed with a computable structure 

,C  then a Γ-action is a morphism of computable structures if for any ,C∈C  

,, 21 Sss ∈  there is a recursive sequence ( ){ }21, ssFn  such that 

( ) ( )( ) ( ) ,21,, 2121
n

n ssFsCsCd <−γ  for any .Γ∈γ  
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An interesting property of morphisms is that for any ideal point ( )sCx =  

,X∈  there exists an algorithm which allows to find an ideal point Xy ∈  as 

close to γx as we wish [4]. The description of the process to check this fact is 
as follows: let ( )sCx =  be a given ideal point, then the set ( ){ }SzzC ∈:  is 

dense in X, and therefore if we calculate ( )tsFn ,1+  fixing s and varying t, a 

string 0t  can be obtained such that ( ) .21, 1
01

+
+ < n

n tsF  Setting ( ),0tCy =  

we obtain the desired point. 

If ( )nF  is a Følner sequence, then the ( )nF -orbit of a point x is the       

nF -sequence ( ) { } .
nn FF xxo ∈γγ=  A consequence of the above fact is that 

the orbit of ideal points can be approximated within a given accuracy. For an 

ideal point ( ),sCx =  N∈n  and ,0>ε  if { },...,,, 21
n
F

nn
n n

F γγγ=  then 

there are strings, ( ),,, ε= nii Fsss  nFi ...,,2,1=  such that ( ( ))i
n sCxd ,1γ  

,ε<  ....,,2,1 nFi =  

To define the orbit complexity with respect to computable structure 
approximations of orbits must be considered, i.e. strings of strings be 
modelled in space X as orbits of points of X. To do this let S be the set of 

finite binary strings and let ∗→ SSQ :  be a recursive function, where ∗S  is 

the set of finite sequences in elements of S. To assign a string in S to a 
sequence of points of X, consider a computable interpretation C and its 

natural extension to ∗∗ → XSC :  (with ∗X  the set of finite sequences in 
points of X). Then define the map 

∗→ XSH :  

( ) ( )( ).sQCsH =  

Definition. If s is a nF -sequence in X, then write ( ) ( ( )) .
nFsHsH ∈γγ=  

The scaled orbit complexity of the ( )nF -orbit of a point x with respect to a 

computable structure C and a scale sequence a is defined as 



Entropy and Complexity 55 

 ( ) ( )
( )

,,,,suplim,,,
n

n

n F
CFxCx

a
a ε

=ε
∞→

K
K  (18) 

where 

 ( ) { { ( ( ) ) }},,min:min,,, ε<γ=ε γ
∈γ

xsHdsCFx
nF

nK  (19) 

and set 

 ( ) ( ).,,,sup,,
0

aa ε=
>ε

CxCx KK  (20) 

Recall that the upper and lower local scaled entropies, in the style of 
Brin-Katok, are defined by the rate of the measure of the dynamical balls 
( ) ( ){ }.anyfor,,:,, nn FyxdyFxB ∈γε<γγ=ε  Following [4], we propose 

indicators based in the rate of the biggest and smallest balls containing 
( )ε,, nFxB  and be contained in ( ).,, εnFxB  By ( )xBr  is denoted the ball 

of centre x and radius r. 

Definition. Let ( ) ( ) ( ){ }ε⊂=ε ,,:sup,, nrn FxBxBrFxr  and ( )ε,, nFxR  

( ) ( ){ }.,,:inf ε⊃= nr FxBxBr  Consider 

( ) ( )
( )n

n

n F
Fxrxr

a
a ε−

=ε
∞→

,,logsuplim,,  

and 

( ) ( )
( )

.,,loginflim,,
n

n
n F

FxRxR
a

a ε−
=ε

∞→
 

Then the maximal and minimal initial condition sensitivity at the point x         
are defined by ( ) ( )aa ,,sup, 0 ε= >ε xrxr  and ( ) ( ),,,sup, 0 aa ε= >ε xRxR  

respectively. 

Definition. Let ( )Γ,X  be a Γ-system where X is equipped with a 

computable structure ,C  and let .0,, >ε∈∈ XxC C  Then the information 

contained in x, with accuracy ε, is given by 
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( ) ( )( ){ }.,:min,, ε<=ε xsCdsxCS  

Let 

( ) ( )( )
( )

,
,,log

,,,,suplim,,
ε
ε

=ε
∞→ n

n

n Fxr
FxrxCSxCS  

( ) ( )( )
( )ε

ε
=ε

→ ,,log
,,,,suplim,,

n

n

nn FxR
FxRxCSxCS  

and 

( ) ( ),,,lim,
0

ε=
→ε

xCSxCS  

( ) ( ).,lim,
0

xCSxCS
→ε

=  

Then, we have 

Proposition 4. Let ( )Γ,X  be a Γ-system an C  be a computable structure 

on X. If a is a scale sequence such that ( )nFa  has the same asymptotic 

behavior than 
( )

,0log
→

n

n
F
F

a
 then for any Xx ∈  and ,C∈C  

 ( ) ( ) ( ),,,,, aa xrxCSCx ≤K  (21) 

and if ( ) ,log nn FF =a  then 

 ( ) ( ) ( ) .1,,,, +≤ aa xrxCSCxK  (22) 

Proof. Let 0s  be a string in S. Then, we saw that the orbit of ( )0sC  can 

be approximated with accuracy ε, by the computable values of strings =is  

( ) ....,,2,1,,, nni FiFss =ε  Let Ss ∈  such that ( ) ( )....,,, 10 nFssssQ =  

Then .log 0sFCs n ++≤  If 0s  is considered as minimal for 

( )( ) ( ),,,,0 ε< nFxrxsCd  then ( )( ).,,,,0 ε= nFxrxCSs  Therefore, for 

,0>ε  the string s satisfies ( ( ) ) ε<γγ 2, xsHd  and ++≤ nFDs log  
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( )( ),,,,, εnFxrxCS  for some constant D. Thus ( ) +≤ε DCFx n ,,,K  

( )( )ε+ ,,,,log nn FxrxCSF  and then ( )
( ) ( ) ( )n

n
nn

n
F
F

F
D

F
CFx

aaa
log,,,

+≤
εK  

( )( ) ( )( )
( ) ( ) .,,log

,,log,,,,
nn

nn
FFxr

FxrFxrxCS
aε−

ε−ε
+  

Letting ,∞→n  ,0→ε  with a such that 
( )

,0log
→

n

n
F
F

a
 we get equation 

(21) and for ( ) nn FF log=a  is obtained equation (22). ~ 

References 

 [1] A. A. Brudno, Entropy and complexity of the trajectories of a dynamical system, 
Trans. Moscow. Math. Soc. 2 (1983), 127-151. 

 [2] K. Fujiwara and A. Nevo, Maximal and pointwise ergodic theorems for word-
hyperbolic groups, Erg. Th. Dynam. Sys. 18 (1998), 843-858. 

 [3] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in 
Diophantine approximation, Math. Sys. Theory 1(1) (2008), 1-49. 

 [4] S. Galotolo, Complexity, initial conditions, sensitivity, dimension and weak chaos 
in dynamical systems, Nonlinearity 16 (2003), 1219-1238. 

 [5] W. Huang, X. Ye and G. Zhang, Local entropy theory for countable amenable 
group actions, J. Fun. Anal. 261(4) (2011), 1028-1082. 

 [6] M. Gromov, Topological invariants of dynamical systems and spaces of 
holomorphic maps. I, Math. Phys. Anal. Geom. 2(4) (1999), 323-415. 

 [7] E. Lindenstrauss, Pointwise theorems for amenable groups, Inven. Math. 146 
(2001), 259-295. 

 [8] M. Misiurewicz, Topological conditional entropy, Studia Math. 55(2) (1976),        
175-200. 

 [9] A. Nevo and E. M. Stein, A generalization of Birkhoff’s pointwise ergodic 
theorem, Acta Math. 72 (1994), 151-159. 

 [10] J. Moulin Ollagnier and D. Pinchon, The variational principle, Studia Math. 72(2) 
(1982), 151-159. 

 [11] D. Ornstein and B. Weiss, Entropy and isomorphisms theorems for actions of 
amenable groups, J. Anal. Math. 48 (1987), 1-41. 



A. M. Mesón and F. Vericat 58 

 [12] S. G. Simpson, Symbolic dynamics: entropy = dimension = complexity, Theory 
Comput. Syst. 56(3) (2015), 527-543. 

 [13] A. M. Stepin and A. T. Tagi-Zade, Variational characterization of topological 
pressure of amenable groups of transformation, Dokl. Akad. Nauk. 254(3) (1980), 
545-549. 

 [14] Y. Zhou, Tail variational principle for countable discrete amenable group actions, 
J. Math. Anal. Appl. 433 (2016), 1513-1530. 


