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Recently, similarity of the functional network of the brain and the Ising model was investigated
in Nat. Phys. 6, 744 (2010). This similarity supports the idea that the brain is a self-organized
critical system. In this study we derive functional network of the 2D BTW sandpile model as a
self-organized critical model, and compare its charachteristics with those of the functional network
of the brain, obtained from functional magnetic resonance imaging (fMRI).
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I. INTRODUCTION

Brain consists of Tens of Billions of highly nonlinear
components and exhibits collective dynamics which in
many aspects resemble some of the well-known phenom-
ena in statistical physics [1]. Neurons can be consid-
ered as leaky integrators with a highly nonlinear input-
output transfer function [2]. The individual neurons in-
tegrate synaptic inputs received from other neurons and
if a threshold is crossed, they send their activity back to
the network. The neurons receiving stimulation can in
turn exceed threshold and transfer the activity to other
neurons and initiate an avalanche whose spatial and tem-
poral length determines how much the perturbation can
survive in the network. This process can be seen in many
other complex systems in which individual units with a
threshold, integrate and then send energy back to the
system [3–6]. In such systems the perturbations can die
out in very short distances or propagate through the net-
work as avalanches with no characteristic time and length
scale, indicating the system is in critical state [7]. Unlike
the conventional critical states in equilibrium statistical
mechanics which occur with fine-tuned parameters, these
critical states are attractors reached by starting far from
equilibrium; they are insensitive to parameters and many
dynamical systems with extended spatial degrees of free-
dom evolve into such self-organized critical states [7].
With no dominant characteristic scale the process show

scale-free behavior characterized by power law distribu-
tion. Power law scaling behavior in such systems reflects
the tendency of complex systems to develop correlation
that decays more slowly and extend over larger distances
in time and space than the mechanisms of the underlying
process would suggest [8–10]. Such power law statistics in
neuronal activity has been reported in several experimen-
tal and modeling studies (see e.g. [1, 11–20], and as an
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opposite view see [21]). Recent works on healthy brain at
small and large scales show that the brain dynamics is not
composed of completely random patterns or of periodic
oscillations [22], but in the critical state characterized by
a scale-free behavior. Studies show that several aspects
of information processing by neural networks, including
dynamic range of processing the stimulus and the amount
of information which can be transferred, are optimized in
the critical state [11, 23–25].

Scaling behavior can be seen in the functional connec-
tivity of the healthy brain [26–28] and possible deficit in
functional connectivity among brain regions contribute
to the cognitive dysfunction such as schizophrenia [29],
Alzheimer and epilepsy [28, 30, 31]. Functional connec-
tivity is a measure of correlation among voxels signal in
the functional magnetic resonance imaging (fMRI) from
the brain regions. Although in healthy adult brains struc-
tural and functional connectivity show positive correla-
tion, functional connectivity can be observed between the
regions with no direct structural connection [32]. In-
terestingly functional connectivity has been shown to
be robust against structural deficits. Experiments show
that there are compensatory reorganization mechanisms
which retain the functional coordination between brain
regions after removing structural connections [33, 34].

The data associated with fMRI for a brain in a resting
state (a condition in which the brain is not performing an
explicit task) indicate that the characteristic properties
of the human brain’s functional network have striking
similarities with properties extracted from the dynamics
of the 2-dimensional Ising model at its critical state [1,
14, 35, 36]. With each spin considered as a vertex of a
graph in the Ising model, spins that are more correlated
are connected to each other with undirected edges and
in this manner functional network of the Ising model is
constructed. It is shown that at the critical temperature
the functional network of the Ising model would be scale-
free with power law degree distribution, similar to that
of the functional network of the brain [1, 13, 27].

Small-world [37], scale-free [38] functional network of
the brain at the rest state is a strong evidence of the
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self-organized criticality (SOC) in the brain [1]. This be-
havior encourages us to using the BTW sandpile model,
suggested by Bak, Tang and Wiesenfeld, instead of the
2-dimensional Ising model to compare the results with
the behavior of the brain functional network [7, 39, 40].
BTW model represents the simple but complex non-
equilibrium dynamics of a driven dissipative system with
simple short-range interaction of the components, keep-
ing pressure on its cells until they exceed the specific
threshold (non-linearity in the model) and progress to-
ward critical state and leads it to produce the events
have been called avalanches [10]. That is the first and
the simplest example of self-organizing critical systems
[39].
In present study we extract the functional network of

the sandpile model with similar method introduced in
[14, 41]. We preferred the sandpile model to the Ising
model for two significant reasons. First, BTW model
can be investigated as a cellular automata [42], where
evolution rule of each cell is speculatively similar to the
evolution rule of an integrate-and-fire neuron [43]. So,
one can expect scaling behavior of 2-dimensional BTW
model to be similar to the scaling behavior of integrate-
and-fire neurons on a regular square lattice. Second, un-
like the Ising model, where emerging power law behavior
(criticality), is only possible by controlling temperature
of the model around the critical point, BTWmodel shows
critical behavior in a self-organized manner, without any
tunable external parameter [2, 43, 44].

II. THE ABELIAN SANDPILE MODEL

Self-organized criticality is introduced in 1987, based
on the dynamics of complex systems with a critical at-
tractor in their phase space portrait [7, 39]. Many of the
complex phenomena in the nature which show scaling
behavior [10] and make pink noise [45–47] –two specific
signs of SOC– can be explained with the same concepts
[10]. The BTW sandpile model is introduced as the most
basic system that provides all of main features of SOC
systems [7, 39, 44].
The BTW sandpile model in the two-dimensional L×L

square lattice is an Abelian sandpile model [48]. The
lattice contains L2 sites and each lattice site (i, j) has an
associated variable hij , where hij = 1, 2, 3, 4 shows the
height of the site [49]. In each step, a random site (i, j)
is chosen, and its height is increased by one:

hi,j −→ hi,j + 1. (1)

If the height of the site exceeds the threshold, hc = 4,
a toppling occurs. The toppling is characterized by the
following rules [39, 48]:











hi,j −→ hi,j − hc,

hi,j±1 −→ hi,j±1 + 1,

hi±1,j −→ hi±1,j + 1.

(2)

This may in turn lead to other unstable sites; so the up-
date rule Eq. (2) is continued for such sites till stable
state is reached, where the height of all the sites is below
the threshold, hc. In this model the system boundary is
open, so for a toppling event which occurs at the bound-
ary of the lattice, grains that fall outside the lattice are
disposed. The final state of the system obtained at each
step will be used at the next step by selecting another
random site. The simulation begins from random initial
condition, which may be a transient state of the system.
Dynamics of the sandpile model starts from such tran-
sient state and eventually reaches a steady state which
is suitable for calculating statistical quantities. Accord-
ing to our knowledge when the dynamics of BTW model
reaches to its steady state, it will not produce transient
state in the next steps [44]. The well-known Burning
algorithm [44] is used to distinguish the transition from
transient state to the steady state, and thereafter we per-
form all the next steps to calculate the statistical quan-
tities.
We use the two-point correlation coefficient between

height of arbitrary sites x = (i, j) and x
′ = (i′, j′)

r(hx, hx
′) =

〈hx(t)hx
′(t)〉 − 〈hx(t)〉〈hx

′(t)〉

σ(hx)σ(hx
′)

, (3)

to measure the degree of linear dependency between any
pair of sites [35]. In Eq. (3) σ2(hx) = 〈h2

x
〉 − 〈hx〉

2 and
〈· · · 〉 represents the average taken over the length of the
time series.

FIG. 1. (Color online) Functional network of the two-
dimensional BTW sandpile model for lattice size L = 32.

If the correlation coefficient r, is higher than a thresh-
old rc, we assume that the two sites are functionally con-
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nected. Each site in the two-dimensional lattice of the
sandpile model is considered as a vertex of a complex
network. Any two vertices corresponding to the two ar-
bitrary sites are connected to each other with an edge if
the correlation coefficient r between them is higher than
rc. Correlation matrix of the sandpile model was used
to produce the adjacency matrix of the network. This
network is called the functional network of model. Fi-
nally, network visualization (Fig. 1) and analysis were
performed by using the software Cytoscape 3.0.2 [50],
also part of analysis reported in Fig. 2 is performed by
SNAP 2.4 [51].

III. A SUITABLE CHOICE FOR rc

In this section we argue how we choose a suitable
threshold for the correlation coefficient rc, over which
the nodes are assumed to be functionally connected.
We have calculated the characteristic parameters for the
functional network of the sandpile model with lattice
size L = 64 for different values of rc, and for an equiv-
alent random network with the same number of nodes
and links. The results are shown in Fig. 2. As is seen
in Fig. 2(a), for rc . 0.8 the network has a large clus-
tering coefficient which is a signature of the regular and
small-world networks. For rc > 0.6, the ratio of the clus-
tering coefficient of the functional network to the same
parameter calculated for the equivalent random network
c/cran ≫ 1. For threshold values less than 0.4, the clus-
tering coefficients of the random network and the func-
tional network get closer together since both the networks
turn into all-to-all connected network.
In Fig. 2(b) we have shown the normalized size of

the largest connected network nc/N versus the threshold
value for correlation coefficient rc, where nc and N are
the number of vertices in the largest connected graph and
the total number of vertices in the network, respectively.
nc/N → 1 means all of the nodes in the network are
members of the largest connected graph and nc/N ≪ 1
means that largest connected graph is too small. The
total possible number of edges in a fully connected graph
of the size nc is nc(nc − 1)/2. We can define the density
of links ρl as the ratio of the number of edges, nl, to the
total possible number of edges in the largest connected
graph, 2nl/[nc(nc−1)]. Empty squares in Fig. 2(b) show
ρl: In the range of 0.5 to 0.8 the number of nodes in the
graph has an acceptable value and graph is sparse. For
rc . 0.5, the number of links in the functional network
is too large and the network approaches to a fully con-
nected network. Above this range rc & 0.8 the number
of nodes is too small and the statistical average is not
reliable. The density of links ρl in Fig. 2(b) is calculated
by averaging over 3 sets of data. In all data points with
rc < 0.9 error bars are smaller than symbol size, but for
rc ≥ 0.9 error is increased and is of the order of 0.01.
For small values of rc, the diameter d and average

shortest path length l are small similar to the ran-
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FIG. 2. (Color online) (a) The solid triangles (N) represent
clustering coefficient c for the functional network of the sand-
pile model, and the empty triangles (△) represent clustering
coefficient cran of the equivalent random network. (b) The
cross symbols (×) show the ratio of the number of vertices in
the largest connected graph to the total number of the vertices
in the network, nc/N . Empty squares (�) show the density
of the links ρl. (c) Solid diamonds (�) represent the network
diameter, d and solid circles (•) represent the network aver-
age shortest path length (characteristic path length), l. Also
empty symbols show the same parameters for the equivalent
random network, respectively. The network parameters are
calculated for the lattice size L = 64. The lines are drawn
only to guide eyes.
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dom graph, and they grow when the rc increases [see
Fig. 2(c)]. The results also show a steep drop in l and
d for rc & 0.8, because for the large values of rc the
largest connected graph is vanished. These parameters
are compared with the same parameters in the equiv-
alent random network with the same number of nodes
and edges and it can be seen that d & dran and l & lran
in the range 0.5 < rc < 0.8. In sum in this range, clus-
tering coefficient is large and the diameter and the av-
erage shortest path length are small, which means that
we have a small-world network. Logarithmic behavior of
the average shortest path length l in terms of nc, shown
in Fig. 3, confirms that the functional network is small-
world (in preparing Fig. 3 rc is tuned to keep the mean
degree constant 〈k〉 = 2nl/nc). Besides the above noted
properties (indicators of a small-world network), it will
be shown that in this range of the threshold for rc the
node degree distribution of the network has scaling be-
havior. In the following we choose rc = 0.6 to calculate
the characteristic parameters of the network, because for
this value connected graph contains the largest fraction
of vertices (nc/N), that gives best statistical results.
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FIG. 3. (Color online) Network average shortest path length
l in terms of the number of vertices nc shows logarithmic
behavior which is an indicator of the small-world network.

IV. RESULTS

Degree distribution of the functional network of the
sandpile model for three different threshold values rc
(0.6, 0.7, and 0.8), and lattice size L = 128 is plotted in
Fig. 4. Due to the small two-point correlation in the
BTW model, a fraction less than one percent of links in
the complete graph appears in the degree distribution of
the functional network. Scaling behavior of this graph
[p(k) ∼ k−γ ] shows that the functional network is scale-
free. Choosing rc in the range [0.6, 0.8] does not affect
the scaling exponent γ significantly, but the lattice pa-
rameters reported in the table I vary when rc changes, as

was shown in the Fig. 2. We also derived the functional
network considering anti-correlated nodes in BTW sand-
pile model (r < rc = −0.6). Consistent with the reported
data for Ising model in the critical temperature [35], the
resultant network is a random network with c ∼ 0.0,
l ∼ 4.4, and d ∼ 13, and scaling behavior of degree dis-
tribution is vanished.
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FIG. 4. (Color online) Degree distribution of the functional
network of the sandpile model for three different threshold
values rc. Straight lines with a slope of 1.9 and 2.3 in the plot
are drawn to guide eyes. Simulation is run for the sandpile
model with lattice size L = 128.

Fitting the three plots in Fig. 4 with regression over
0.98 shows power law behavior with exponent γ = 2.1±
0.2, which has a good agreement with the exponent of the
degree distribution of the functional network of the brain
[27]. Figure 4 also shows that, this model behaves similar
to Ising model in two dimensions at the critical point
(Fig. 5). Ising model is described by the Hamiltonian
[52],

H({σi}) = −J
∑

[i, j]

σiσj , (4)

where σi and J show ith spin and interaction strength,
respectively, and the notation [· · · ] indicates summation
taken over all nearest neighbor sites.

As was reported by Fraiman et al. degree distribu-
tion of the functional network of Ising model shows scal-
ing behavior, which indicates a scale-free network [35].
Someone may perform a power-law fitting in Fig. 5 for
rc = 0.7 and 0.8 and estimate its exponent ∼ 2. These
results were repeated to ensure the validity of our statis-
tical calculations in comparison with the corresponding
results for the functional network of Ising model [35].
In addition we have used logarithmic bin in calculations
to improve accuracy at the tail of distribution function
(Figs. 4 and 5). Logarithmic binning method controls
fluctuations and extends scaling behavior of distribution
function by one order of magnitude [53, 54].
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FIG. 5. (Color online) Degree distribution of the functional
network of Ising model at the critical temperature for three
different threshold values rc. Straight lines with a slope of 1.2
and 2.0 in the plot are drawn to guide eyes. Simulation is run
for the Ising model with lattice size L = 128.

We have also calculated the Pearson degree-degree cor-
relation coefficient [55],

rd−d =
n−1
l

∑

i jiki − [n−1
l

∑

i
1
2 (ji + ki)]

2

n−1
l

∑

i
1
2 (j

2
i + k2i )− [n−1

l

∑

i
1
2 (ji + ki)]2

, (5)

where ji and ki are the degrees of the vertices which are
connected by the ith edge, and

∑

i is summation over all
edges, where nl is number of edges in graph. rd−d lies
in the range of [−1,+1], where rd−d = +1 (−1) shows
an assortative (a disassortative) mixing of nodes in the
graph. The Pearson degree-degree correlation coefficient
is negative for some biological networks such as the struc-
tural neural network of the nematode C. Elegans ∼ 0.163
[55]. Our results show that the coefficient is 0.299 for
the functional network of BTW sandpile model, 0.274
for the functional network of Ising model at the critical
temperature, and 0.183 (0.385) at a sub-(super-) critical
temperature.
Other important characteristic parameters of the net-

work for sandpile model with rc = 0.6, and for the Ising
model at subcritical, critical, and supercritical temper-
ature for rc = 0.1, 0.6, and 0.09, are calculated by using
the software Cytoscape and are reported in Table I (In
both of model L = 128). For comparison, the results of
Fraiman et al., for the functional network of brain have
been added to the Table I [35].

V. DISCUSSION

Functional network of BTW sandpile model shows
small characteristic path length scale and large clustering
coefficient, in addition to the scaling behavior (see Table I
and Fig. 4). The first two properties show that we are
dealing with a small-world network and the last property

TABLE I. Characteristic properties of the functional networks
of the BTW sandpile model, the Ising model, and the brain.
5th row of data has been taken from the Fraiman et al. article
[35].

T rc N = L× L c l d

BTW sandpile model

− 0.60 16384 0.461 1.99 4

Ising model

2. 0.10 16384 0.083 3.16 5
2.405 0.60 16384 0.499 7.76 35

10. 0.09 16384 0.202 3.36 5

Brain

− 0.60 26985 0.454 4.4 13

suggests that the functional network of the sanpile model
is scale-free.
Nonlinear dynamics in this model is accompanied by

the incidence of self-organized critical behavior. In such
situations where adding a grain of sand to the sandpile
might drive all of the system by events called avalanches,
one can conclude existence of sites which are hubs in the
network and affect many other connected sites. Such be-
havior may be responsible for the facilitation of communi-
cation in the network. These hubs make large clustering
coefficient similar to the functional network of the brain
[1, 14]. On the other hand analysis of the fMRI images
and EEG data illustrates that the avalanche behavior is
involved in the transmission of data and has the essen-
tial role to speed up the communication between different
parts of the brain [23].
Dynamics of BTW model is in some sense similar to

the integrate-and-fire model [43]. Both of the models can
be considered as a cellular automata model. Terms of
rules in micro scale (evolution rule in each cell) [i.e. Eq.
2] which are used in simulating BTW model are similar
to those in the integrate-and-fire model, which is widely
used in the simulation of neuronal networks [43]. Leaky
integrate-and-fire model is described by

Cmv̇i =
∑

j 6=i

Iij −
vi
Rm

,

if vi > vc −→ vi = 0, (6)

where vi is the membrane voltage of ith neuron and Iij is
intensity of the synaptic stimulation from the jth neuron
to the ith neuron. vc, Cm, and Rm are membrane volt-
age threshold, membrane capacitance, and membrane re-
sistance, respectively. In both the models, the pressure
builds up to reach a specific threshold value, then re-
leases to the neighbor cells [i.e. in the BTW (integrate-
and-fire) model each sites integrates grains (stimulation)
till hc (vc) and in toppling (firing) send grains (stimula-
tion) to the neighboring sites]. Although here the BTW
is simulated on a regular lattice instead of a complex
network, which is usually used for simulating neural net-
works. It should be noted that the BTW sandpile model
with discrete dynamics of the nodes and nearest neighbor

http://www.cytoscape.org
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interactions, is not supposed to explain all the features of
the brain activity such as the exponent of spatial correla-
tion function in the blood-oxygen-level dependent of the
brain resting-state activity ∼ 0.47 reported by Eguiluz
et al. [18, 27], and for a more concrete comparison other
parameters like scaling behavior of functional network
should be explored [55–57]. Interestingly a recent study
shows that when the effect of noise is considered in a
continuous version of the sandpile model (the stochastic
parallel Zhang model), the resulted exponents are closer
to those reported for the brain activity [58].

This result may reinforces qualitative impression in the
reader, that if the dendritic growth mechanism extends

brain network by new synaptic connections based on the
correlations in the neural dynamics, even if the initial
structure of the brain network is a regular network, the
final will be a scale-free and small-world network [37, 59].
However it should not be forgotten that the structural
network and the function network of brain have funda-
mental differences [60].
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Muñoz, Phys. Rev. Lett. 89, 258702 (2002).
[60] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag,

Trends Cogn. Sci. 8, 418 (2004).

http://arxiv.org/abs/condmat/9909009
http://snap.stanford.edu/snap

