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Abstract

The GH/IGF axis plays an important role in the 
control of pre and postnatal growth. At least 48 
monogenic defects have been described affecting 

the production, secretion, and action of GH and IGFs.
Molecular defects of the GH/IGF axis resulting in 
short stature were arbitrarily classified into 4 groups: 
1. Combined pituitary hormone deficiency (CPHD) (a. 
syndromic CPHD and b. non-syndromic CPHD), 2. Isolated 
GH deficiency (IGHD), 3. GH insensitivity, and 4. IGF-I 
insensitivity. 
Genetic diagnosis is obtained in about 30-40% of children 
with growth retardation, severe IGHD, CPHD, apparent GH 
or IGF-I insensitivity, and small for gestational age. Increased 
accessibility to next generation sequencing (NGS) techniques 
resulted in a significant number of likely pathogenic variants 
in genes previously associated with short stature as well as 
in completely novel genes. Functional in vitro assays and 
in vivo animal models are required to determine the real 
contribution of these findings. 
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Introduction

The GH/IGF axis plays an important role in the control of 
pre and postnatal growth (1). While in the prenatal period, 
growth factors IGF-I and IGF-II are essential for longitudinal 
growth, mainly under the control of placental lactogen (PL) and 
nutritional resources (2), after birth pituitary GH becomes the 
predominant stimulator of IGF-I expression (3). From a historical 
point of view, in the 1920s and 1930s the growth promoting 
effect of pituitary extracts on rats (4) and the effect of the 
anterior pituitary on carbohydrate metabolism (5) were already 
recognized. However, much more research was still needed until 
human pituitary-extracted GH was available in 1958 to treat 
children diagnosed as GH deficient (GHD) based upon either 
clinical evaluation or bioassays measuring sulfation factor (6). 
It was not until the 1960s that a specific radioimmunoassay was 
available for the quantification of GH in serum samples (7) and 
the use of stimulation tests was a requirement to confirm the 
clinical diagnosis of GHD (8). The availability of recombinant 
human GH (rhGH) in 1985 opened up the possibility to potentially 
treat all patients diagnosed as GHD. 

Although the pathogenic etiology of GHD is variable, and may 
result from different causes such as trauma, brain surgery, 
tumor, infection, radiation, and autoimmune diseases, it 
became clear that genetic defects in the GH/IGF axis also 
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could be involved in alterations in the production, secretion, 
and action of GH and IGFs. The first molecular diagnosis of 
complete GHD was reported in 1981 in three families with 
severe isolated GHD that developed anti GH-antibodies in high 
titer when treated with hGH (9). In this review, we describe 
the molecular defects of the GH/IGF axis resulting in short 
stature. We arbitrarily classified the genetic defects in the 
GH/IGF axis into 4 groups: 1. CPHD (a. syndromic CPHD and b. 
non-syndromic CPHD), 2. Isolated GH deficiency (IGHD), 3. GH 
insensitivity, and 4. IGF-I insensitivity (figure 1).

Because genetic causes of defects in the GH/IGF axis have 
been exhaustively reviewed elsewhere (10-15), we chose 
to focus mainly on the genetic aspects, such as mode of 
inheritance and type of mutations, as well as in vivo knockout 
models in both mice and zebrafish to compare the clinical 
human phenotype with other vertebrate models widely used to 
model human disease.

Generation of Animal Models for 
Endocrine Genetic Diseases using 
Gene-Targeting Techniques

Animal models of genetic diseases constitute an important 
tool to understand the function of individual genes, 
particularly when they are used to reproduce human 
inherited diseases (16). In the case of the GH-IGF axis, 
several mice strands presenting severe growth impairment 
were studied (17,18). Later, molecular studies demonstrated 
that they presented naturally occurring gene mutations in 
specific genes involved in the regulation of GH expression (19). 
The development of homologous recombination in embryonic 
stem cells (20,21) by using specific targets to disrupt gene 
sequences allowed the generation of null mutants, where a 
gene is disrupted by the introduction of a cassette carrying 
a positive selection marker, such as the neomycin resistance 
gene, under the control of a strong promoter (16,22). Soon 
it became clear that, even considering the anatomic and 
physiological differences between rodents and humans, 
single-gene-knockout (KO) mice may recapitulate some of the 
consequences of the lack of GH (GH-deficient mice) and the 
lack of GH action (GH-insensitivity mice) (23-26).

To further dissect the impact of the ablation of a gene in a 
specific tissue, Sauer & Henderson developed the Cre/loxP 
system (27), in which a targeted gene was flanked by two 
loxP sequences (a 34-base pair sequence) that are specifically 
recognized by Cre, a recombinase protein encoded by the 
coliphage P1. Recombination occurs specifically at the loxP 
sequences with loss of the sequence flanked by these two sites. 
While the gene of interest is flanked by loxP sites, a Cre protein 
is transfected by using a vector under the control of a tissue 
specific enhancer-promoter (for example, the albumin promoter 

to selectively disrupt gene expression in the liver). With this 
strategy, the expression of IGF-I was selectively disrupted in the 
liver by Cre-mediated site-specific recombination. This was a 
remarkable achievement that allowed the characterization of 
the impact of circulating IGF-I on postnatal growth (28).

More recently, a novel technique was developed that uses 
engineered nucleases such as clustered regularly interspaced 
short palindromic repeats (CRISPR)-associated protein (cas)9 
that generates a DNA double-strand break at the targeted 
genomic locus. In the absence of a template, it results in an 
insertion and/or deletion that disrupts the targeted locus. In 
the presence of a donor template, carrying the mutation of 
interest, the repair results in the inclusion of the designed 
mutation (29,30). This technique proved much more efficient 
than homologous recombination and has demonstrated some 
therapeutic applications (31). 

The zebrafish (Danio rerio) is a vertebrate animal model which 
has many advantages compared to the mouse and is becoming 
an important model in translational research (32). Among the 
most important advantages are the transparency of the embryos 
(making it an ideal model for developmental biology), external 
fertilization, rapid development, and the large number of 
embryos obtained from each couple (ideal for high throughput 
analysis). Genetic manipulation is also relatively easy. Transient 
knockdown is achieved using morpholinos, which are synthetic 
oligonucleotides that either block translation by being 
complementary to the translational start site or block splicing by 
complentarity to the splicing sequence of the target mRNA (33). 
More recent knockout techniques, also applied in zebrafish, 
involve the use of CRISPR/Cas9, useful for obtaining stable 
transgenic lines with deletions or insertions (34). 

Combined Pituitary Hormone 
Deficiency (CPHD)

Combined pituitary hormone deficiency (CPHD) or 
panhypopituitarism is characterized by the absence of GH and 
one or more other pituitary hormones (LH, FSH, PRL, TSH, and 
ACTH). Although as many as 30 genes have been found to be 
associated with CPHD, eight of them are the most frequently 
studied: GLI2, HESX1, LHX3, LHX4, POU1F1, PROP1, OTX2, and 
SOX2 (12,13,35-37) (table 1).

Mutations in early transcription factors, such as LHX3, LHX4, 
HESX1, GLI2, OTX2, and SOX2 that participate in pituitary 
ontogenesis, lead to syndromic CPHD where pituitary 
dysfunction is associated with craniofacial anomalies such as 
septo-optic dysplasia or holoprosencephaly (HPE). On the other 
hand, mutations in later-acting transcription factors involved in 
pituitary cell differentiation, such as POUF1 and PROP1, lead 
to non-syndromic CPHD with a pituitary-specific phenotype and 
absence of craniofacial anomalies (13). 
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Figure 1. Monogenic defects in the GH/IGF axis
Genetic defects in early transcription factors that participate in the pituitary ontogenesis (LHX3, LHX4, HESX1, GLI2, OTX2, and SOX2, among 
others), result in syndromic combined pituitary hormone deficiency (CPHD), while gene mutations in those transcription factor that are expressed 
later during pituitary cell differentiation (POU1F1 and PROP1) result in non-syndromic CPHD. 
Genetic causes of isolated GH deficiency (IGHD) include defects in the gene that encodes GH (GH1), and other genes that are involved in the 
synthesis and secretion of GH (GHRHR, GHSR, BTK, RNPC3, IFT172, ALSM1).
GH insensitivity can arise from molecular defects in the gene encoding the GH receptor (GHR) or in several other genes that participate in the 
signaling transmission of GH action (STAT5B, STAT3, IKBKB, IL2RG, PIK3R1), IGF-I synthesis (IGF1), or IGF-I transport (IGFALS).
Resistance to IGF-I occurs associated to gene defects in its own receptor (IGF1R), a specific protease (PAPPA2) or the gene encoding IGF-II (IGF2). 
Straight blue arrows indicate sites of GH action (liver, muscle, adipose tissue). Straight red arrows indicate the action of “endocrine IGF-I”, mainly 
produced in the liver and circulating as free-IGF-I, forming binary complexes (associated to IGFBPs) or ternary complexes (associated to IGFBP-3, 
or -5 and ALS). Curved red arrows denote the action of “paracrine IGF-I” (acting near its site of production).
Appendix 
Glossary of gene names 
LHX3: Lim Homeobox Gene 3
LHX4: Lim Homeobox Gene 4
HESX1: Homeobox Gene Expressed in ES Cells 
GLI2: Gli-Kruppel Family Member 2
OTX2: Orthodenticle, Drosophila, Homolog of, 2 	
SOX2: SRY-Box 2
POU1F1: Pou Domain, Class 1, Transcription Factor 1
PROP1: Paired-Like Homeobox 1 
GH1: Growth Hormone 1
GHRHR: Growth Hormone-Releasing Hormone Receptor
GHSR: Growth Hormone Secretagogue Receptor
BTK: Bruton Agammaglobulinemia Tyrosine Kinase	
IFT172: Intraflagellar Transport 172, Chlamydomonas Homolog of
ALMS1: Alms1 Gene
GHR: Growth Hormone Receptor
STAT5B: Signal Transducer and Activator of Transcription 5b 
STAT3: Signal Transducer and Activator of Transcription 3 
IKBKB: Inhibitor of Kappa Light Chain Gene Enhancer in B Cells, Kinase of, Beta
IL2RG: Interleukin 2 Receptor, Gamma
PIK3R1: Phosphatidylinositol 3-Kinase, Regulatory Subunit 1 
IGF1: Insulin-Like Growth Factor I
IGFALS: Insulin-Like Growth Factor-Binding Protein, Acid-Labile Subunit
IGF1R: Insulin-Like Growth Factor I Receptor
IGF2: Insulin-Like Growth Factor II
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Syndromic CPHD
LHX3 gene (OMIM 600577), CPHD3 (OMIM 221750)

LHX3 is a member of the LIM homeodomain family of 
transcription factors which has a role in pituitary development 
and the organization of spinal cord neurons. Mutations in LHX3 
cause less than 1% of cases of CPHD and are characterized by 
absence of all anterior pituitary hormones except for ACTH 
and rigidity of the cervical spine (13). Some patients have 
sensorineural hearing loss. It has an autosomal recessive mode 
of inheritance and although there are reports of complete 
deletions of the gene, most mutations are missense or 

nonsense. LHX3 gene mutations were first reported by Netchine 
et al. in two unrelated families where affected subjects 
presented severe growth retardation and GH, TSH, PRL, LH, 
and FSH deficiencies (38). Affected subjects also presented 
a rigid cervical spine leading to limited head rotation. 
These patients were homozygous for a missense mutation 
(p.Tyr116Cys). Homozygous mutant mice for Lhx3 die in utero 
or within 24 hours post birth. Although Rathke’s pouch forms, it 
fails to grow and differentiate, resulting in the absence of the 
anterior and intermediate lobes of the pituitary and affecting 
the determination of all pituitary cell linages except the 
corticotrophs, similar to the human clinical phenotype (39-41).

Gene
OMIM

Phenotype
OMIM

Human phenotype Mouse phenotype Zebrafish phenotype

LHX3
600577

CPHD 3
221750

Absence of GH, PRL, TSH, LH, 
FSH, rigidity of the cervical 
spine

Die in utero or after 24 hours post 
birth, absence of GH, PRL, TSH, 
LH, FSH

Endocrine phenotype 
unknown

LHX4
602146

CPHD 4
262700

Variable GH, TSH, ACTH and 
LH, and FSH deficiencies, 
hypoplasia of the pituitary, 
poorly developed Sella-turcica

Absence of differentiation of the 
anterior pituitary cell lineages: 
GH, TSH, ACTH, LH, and FSH 
deficiencies

Endocrine phenotype 
unknown

HESX1
601802

GH deficiency with 
pituitary anomalies
CPHD 5
Septo-optic dysplasia
182230

Optic nerve hypoplasia, 
pituitary hypoplasia, midline 
brain abnormalities

Anterior central nervous system 
defects and pituitary dysplasia

Wildtype

GLI2
165230

Culler-Jones syndrome
615849
Holoprosencephaly 9
610829

HPE, craniofacial 
abnormalities, 
hypopituitarism

Embryonically lethal Reduced number of 
corticotrophs and 
increased number of 
lactotrophs

OTX2
600037

CPHD 6
613986

Anophthalmia or 
microphthalmia associated 
with pituitary hormone 
deficiency

Homozyogous knockout mice die 
during midgestation. Heterozygous 
mutant mice present eye, pituitary 
and craniofacial defects

Mild microphthalmia 
and shortening of the 
pharyngeal skeleton

SOX2
184429

Optic nerve hypoplasia 
and abnormalities of the 
central nervous system
206900

Anophthalmia or 
microphthalmia and 
hypoplastic anterior pituitary

Heterozygous mutants present 
reduced somatotroph number, GH 
content and reduction of pituitary 
size. Adult mouse presents GH, 
PRL, and TSH deficiencies

Shorter anteroposterior 
axis, smaller eyes in and 
early lethality

POU1F1
173110

Pituitary hormone 
deficiency, combined,
613038

Pituitary hypoplasia and 
absence of GH, PRL and TSH

Snell mouse: growth insufficiency, 
infertility, hypothyroidism and 
deafness due to absence of GH, 
PRL, TSH, and gonadotropins

Severe dwarfism with 
absence of lactotrophs, 
somatotrophs, and 
thyrotrophs

PROP1
601538

Combined pituitary 
hormone deficiency 2
262600

Absence of GH, PRL, TSH, 
LH and FSH and pituitary 
hypoplasia

Ames mouse: absence of GH, PRL, 
TSH, LH and FSH and pituitary 
hypoplasia

Abnormal 
adenohypophysis and 
reduced expression of 
pou1f1, prl and gh

Table 1. Combined pituitary hormone deficiency (CPHD)
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Endocrine defects in zebrafish have not yet been characterized 
in lhx3 morphants. Nevertheless, lhx3 morphants zebrafish 
embryos show motoneuron alteration (42).

LHX4 gene (OMIM 602146), CPHD4 (OMIM 262700)

LHX4 also encodes a LIM homeodomain transcription factor 
implicated in pituitary development and the organization of 
spinal cord neurons. Mutations in LHX4 are responsible for 
less than 1% of CPHD cases which manifest with variable GH, 
TSH, ACTH and gonadotrophin deficiencies, hypoplasia of the 
pituitary and a poorly developed sella turcica (13). Mutations 
are mostly missense and deletions which are inherited in an 
autosomal dominant fashion with incomplete penetrance. 
One homozygous missense variant (p.Trh126Met) is associated 
with a lethal phenotype (43). A germline splice-site mutation 
in the LHX4 gene was first reported by Machinis et al in 2001 
in a family where affected members presented short stature, 
pituitary and hindbrain defects, and abnormalities of the 
sella turcica. The intronic mutation has a dominant pattern 
of inheritance (44). Clinical characteristics of patients with 
LHX4 mutations have been reviewed recently (45). Mice 
deficient of Lhx4 do not undergo differentiation of the 
anterior pituitary cell lineages (40). As in lhx3, endocrine 
consequences of the absence of lhx4 have not been studied in 
zebrafish yet. 

HESX1 gene (OMIM 601802), GHD with pituitary anomalies, 
CPHD5, and septo-optic dysplasia (OMIM 182230)

HESX1 is a member of the paired-like class of homeobox 
transcription factors with a crucial role in the formation of 
the pituitary and forebrain. HESX1 mutations are responsible 
for less than 1% of cases in which CPHD is associated with 
optic nerve hypoplasia, pituitary hypoplasia, and midline 
brain abnormalities (13). Dattani et al. reported two siblings 
with septo-optic dysplasia (SOD) homozygous for a p.Arg53Cys 
missense mutation within the HESX1 homeodomain which 
destroyed its ability to bind target DNA (46). However, HESX1 
mutations are not a common finding in patients with SOD since 
sequencing of this gene in 228 patients presenting congenital 
pituitary defects (IGHD or SOD with panhypopituitarism) 
identified only three different heterozygous missense 
mutations in three patients with mild pituitary hypoplasia or 
SOD (47). Autosomal dominant with incomplete penetrance 
as well as autosomal recessive patterns of inheritance have 
been reported (48). Hesx1 null mice exhibited anterior central 
nervous system defects and pituitary dysplasia similar to 
the phenotype observed in humans (46). Although hesx1 
knockdown had no effect on zebrafish, Andoniadou et al. 
showed that injecting a hesx1 morpholino into a ‘sensitized’ 
headless (tcf3) zebrafish mutant leads to severe forebrain and 
eye defects, suggesting an interaction between hesx1 and the 
wnt pathway in zebrafish (49).

GLI2 gene (OMIM 165230), Culler-Jones syndrome, (OMIM 
615849) holoprosencephaly 9 (OMIM 610829)

The GLI2 gene is a transcription factor involved in the 
Sonic Hedgehog (SHH) pathway. GLI2 mutations were first 
identified in patients with holoprosencephaly (HPE) (50). HPE 
is characterized by defects in forebrain cleavage which include 
defective anterior pituitary formation and panhypopituitarism. 
HPE can also be caused by mutations in SHH, PTCH1, TGIF, 
SIX3, ZIC2, NODAL, FOXH1, CDON, FGF8, and DISP1 (51-54). 
GLI2 molecular defects are inherited in an autosomal dominant 
pattern with incomplete penetrance and variable phenotype, 
and the most common mutations are frameshift, nonsense and 
missense heterozygous mutations. By screening 390 unrelated 
patients, Roessler et al identified heterozygous truncating 
mutations in the GLI2 gene caused by non-sense (p.Trp113*; 
p.Arg168*), frameshift (c.2274del1), and splice-site (IVS5 + 
1G>A) mutations in four families. Clinical features included 
defective anterior pituitary formation and panhypopituitarism, 
with or without overt forebrain cleavage abnormalities, 
and HPE-like midfacial hypoplasia (50). Mutations in GLI2 
occur in 1.5 % of CPHD cases (13). Gli2 knockout mice die 
embryonically, and conditional knockout in Rathke’s 
pouch showed that it is necessary for pituitary progenitor 
specification, proliferation, and differentiation (55). Zebrafish 
knockdown studies show important differences with mice 
and humans. While in all other vertebrates, Gli2 is the main 
activator of Shh signalling and Gli1 is a minor one, in zebrafish 
it is the opposite; Gli1 rather than Gli2 is the main activator of 
Shh signalling (56-58). Zebrafish have two gli2 genes (gli2a and 
gli2b) and knockdown of both using morpholinos affected the 
endocrine cell position in the pituitary, reduced the number 
of corticotrophs and increased the number of lactotrophs (59).

OTX2 gene (OMIM 600037), CPHD 6 (OMIM 613986)

OTX2 is a gene encoding a member of the homeobox 
transcription factor that is involved in the development of 
the brain and head structures (11). Heterozygous missense 
gene mutations were reported in 2 patients presenting GH, 
TSH, LH, FSH, and ACTH deficiencies. Magnetic resonance 
imaging revealed anterior pituitary hypoplasia with an ectopic 
posterior pituitary (60). Both patients presented the same 
missense mutation in the OTX2 gene (p.Asn233Ser). In vitro 
studies showed that while wildtype and mutant OTX2 protein 
bound equally well to two specific sites in the 5-prime flanking 
region of the HESX1 gene, mutant OTX2 revealed decreased 
transactivation, resulting in a dominant negative inhibitor 
of HESX1 gene expression. While homozyogous Otx-knockout 
mice die during midgestation, Otx heterozygous mutant 
mice present eye, pituitary and craniofacial defects (61,62). 
In zebrafish, morpholinos targeting otx2 result in mild 
microphthalmia and shortening of the pharyngeal skeleton at 5 
days post fertilization (dpf) (63). 
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SOX2 gene (OMIM 184429), Optic nerve hypoplasia and 
abnormalities of the central nervous system (OMIM 
206900)

SOX2 (together with SOX1 and SOX3) is a member of 
transcription factor related to SRY family that is expressed in 
many different embryonic tissues involved in the development 
of brain, pituitary, and otic and nasal placodes (64). 
Submicroscopic deletions and truncating mutations in the 
SOX2 gene were identified in a small number of individuals 
with anophthalmia (65). In humans, the clinical presentation 
of patients with SOX2 mutations includes hypogonadotrophic 
hypogonadism and CPHD. Most of the affected cases presented 
anophthalmia/microphthalmia, developmental delay, short 
stature, and male genital tract abnormalities. Patients 
presented heterozygous de novo or inherited SOX2 mutations. 
They also may present other anomalies like anterior pituitary 
hypoplasia, defects of the corpus callosum, learning 
difficulties, sensorineural hearing loss, and esophageal atresia. 
Some of the mutations result in truncated protein products, 
exhibiting partial or complete loss of function (DNA binding, 
nuclear translocation or transactivation). Heterozygous 
loss of function of Sox2 in the mouse is associated with a 
reduction in somatotroph number and GH content, as part 
of a general reduction in pituitary size. It was also shown 
that the adult mouse presents low circulating levels of GH, 
PRL, and TSH (66). Zebrafish sox2 morphants have a shorter 
anteroposterior axis and smaller eyes in addition to early 
lethality (5 dpf) compared to wildtype controls (67).

Non-Syndromic CPHD
POU1F1 gene (OMIM 173110), CPHD1 (OMIM 613038)

The transcription factor POU1F1 (previously known 
as Pit1) belongs to the POU family of transcription 
factors and is essential for the differentiation of 
somatotrophs, lactotrophs, and thyrotrophs. POU1F1 
gene is specifically expressed in the developing pituitary 
before the differentiation of somatotrophs, lactotrophs, 
and thyrotrophs and plays an important role in the 
differentiation of these cell linages as well as in the 
transcriptionally regulated expression of GH, PRL, and TSH. 
POU1F1 mutations account for about 2.8 % of cases of 
CPHD with pituitary hypoplasia and absence of GH, PRL 
and TSH (13). In 1992, four independent groups (68-71) 
identified homozygous or heterozygous gene mutations 
in the POU1F1 gene (p.Arg172*, p.Arg271Trp, Ala158Pro) 
in patients with CPHD. In homozygous patients, POU1F1 
mutations were loss-of function, while in patients presenting 
heterozygous mutations, the mutant protein retained the 
ability to bind DNA but lost its transcriptional activity, 
presenting a dominant-negative effect. Its inheritance 
is usually autosomal recessive, but it can be autosomal 
dominant for dominant negative mutations such as 

p.Arg271Trp. Missense, nonsense, splicing, and frameshift 
mutations have been reported. Interestingly, the Snell 
mouse has a mutation in the Pou1f1 gene (Pou1f1dw/dw, 
p.Trp251Cys) and it exhibits growth insufficiency, infertility, 
hypothyroidism and deafness, with absence of GH, PRL, 
TSH, and gonadotropins (72-74). Zebrafish knockdown of 
pou1f1 shows severe dwarfism with absence of lactotrophs, 
somatotrophs and thyrotrophs (75).

PROP1 gene (OMIM 601538), CPHD2 (OMIM 262600)

Prop1 is a paired-like homeodomain transcription factor 
involved in the development of somatotrophs, lactotrophs, 
thyrotrophs, and gonadotrophs. Wu et al (76) identified 
homozygous or compound heterozygous mutations in the 
PROP1 gene in four CPHD families, in which affected patients 
presented GH, PRL, TSH, LH, and FSH deficiencies. Mutations 
in PROP1 are the most common cause of CPHD (representing 
up to 15 % of cases) and cause CPHD with pituitary hypoplasia 
and absence of GH, PRL, TSH, LH, and FSH (13). Its inheritance 
is autosomal recessive, and the most recurrent mutations 
are 301-302delAG and 150delA which have been found to be 
founder variants (77). The Ames dwarf mutant mouse is Prop1 
deficient and shows the same phenotype as patients with 
PROP1 mutations (78,79). Knockdown of prop1 in zebrafish 
embryos using morpholinos showed abnormal adenohypophysis 
morphology with reduced expression of pou1f1, PRL and 
GH (80). Interestingly, expression of lhx3 was also diminished.

Many other genes have been found to cause CPHD, but they 
are well beyond the scope of this review (for a more detailed 
description see reference 13). 

Isolated GH Deficiency (IGHD)

Growth hormone deficiency (GHD) is a relatively common 
disorder, occurring in 1 out of 4,000 to 10,000 live births (81). 
Most frequently, it occurs as a sporadic condition of unknown 
etiology (82) but severe forms of isolated GHD (IGHD) may 
have a genetic basis (83). The diagnosis of GHD in childhood 
is based on auxological assessment, radiological evaluation, 
and biochemical tests. The diagnosis of isolated GHD 
requires the characterization of normal function of other 
pituitary hormones including TSH, ACTH, PRL, LH, FSH, and 
ADH. However, since a progressive compromise of pituitary 
hormones has been reported in children previously diagnosed 
as GHD, this diagnosis is often a provisional one (84,85) and 
systematic follow-up of these patients is mandatory to identify 
those subjects that develop additional pituitary hormone 
deficiencies. Familial IGHD has been associated with four 
Mendelian disorders (86-88), including two autosomal recessive 
(Type IA and IB), one autosomal dominant (Type II), and one 
X-linked (Type III) form (table 2). 
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GH1 gene (OMIM 139250), Type IA GHD (OMIM 262400)

Type IA IGHD was first described by Illig et al. (89) in 1970 
in three Swiss siblings with severe short stature, early 
growth retardation, extreme dwarfism in adulthood, and a 
characteristic phenotype. These patients developed high titers 
of anti-GH antibodies, which arrested their growth response 
to pituitary-extracted GH treatment. However, it was not 
until 1981 that the etiology of this condition was resolved (9). 
Genomic DNA samples were enzymatically digested using 

endonucleases and DNA fragments characterized by Southern 
blot using 32P-labeled hGH cDNA sequences as probes. A 
homozygous deletion of about 7.5 kb, including the GH1 gene, 
was found in four affected subjects from three different 
families. This work could be considered the first genetic 
characterization of a molecular defect in the GH-IGF axis. 
Although most of the patients presenting relatively large 
deletions (including the GH1 gene) develop anti-GH antibodies 
preventing a growth response when treated with hGH, 
preservation of a growth response has been reported in some 
patients despite their high titer of anti-GH antibodies  (90). In 

Gene
OMIM

Phenotype
OMIM

Inher. Human phenotype
Mice

phenotype
Zebrafish

Phenotype

GH1
139250

Type IA complete 
GHD
262400

AR Ab formation on GH 
treatment

Dwarf phenotype vizzini mutant:
severe growth retardation, 
small body size and increased 
accumulation of adipose tissue

GH1
139250

Type IB GHD
612781

AR Immune tolerance to 
GH treatment. Low but 
detectable GH

Idem Idem

GH1
139250

Type II GHD
173100

AD Variable severity of GHD, 
potential evolved to MPHD

idem Idem

GH1
139250

Kowarski syndrome
262650

AR Bioinactive GH Idem Idem

GHRHR
139191

Type IB GHD
612781

AR Immune tolerance to 
GH treatment. Low but 
detectable GH

Little mouse: reduced 
GH secretion and a 
dwarf phenotype

Unknown

GHSR
601898

Partial GHD
615925

AR AD Partial GHD Serum IGF-I levels 
and body weight are 
modestly reduced, less 
appetite and adiposity 
compared to wildtype.

Unknown

BTK
300300

Agammaglobulinemia 
and GHD
307200

XLR Type III, 
hypogammaglobulinemia

Xid mouse: impairment 
of peripheral B cell 
maturation

Severe anterior truncation of 
embryos (dorsalization)

RNPC3
-

- AR Severe GHD, pituitary 
hypoplasia

Unknown caliban mutant: arrested 
development of digestive organs 
(intestine, liver and pancreas)

IFT172
607386

Short-rib thoracic 
dysplasia 10 with or 
without polydactyly
615630

AR Growth retardation, 
pituitary hypoplasia, and 
ectopic posterior pituitary

Wimple mouse: altered 
left-right patterning

Ventral body-axis curvature, 
formation of renal cysts and 
cartilage defects

ALMS1
606844

Alstrom syndrome
203800

AR Reduced GH reserve Obesity, hypogonadism, 
hyperinsulinemia, retinal 
dysfunction, and late-
onset hearing loss

Reduced beta-cell production

Table 2. Isolated GH deficiency (IGHD)
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addition, some patients harboring GH1 gene deletions do not 
develop anti-GH antibodies (91). 

To date, deletions of different sizes (6.7, 7.0, 7.6, 45 kb, 
double deletions) within the GH-gene cluster have been 
characterized as molecular defects in IGHD (92-95), with the 
6.7 Kb deletion being the most frequent (70-80%). Although 
most of the patients are homozygous for a specific deletion, 
and the parents heterozygous for the same genetic defect, 
some compound heterozygous cases with one deleted and 
one mutated allele or two different GH1 gene deletions have 
been reported in non-consanguineous families (96-99). Small 
deletions and even a single amino acid substitution can be the 
cause of isolated Type 1 GH deficiency (100,101).

Mouse models of the disease include a dwarf phenotype 
observed when somatotrophs were genetically ablated (102). 
Finally, a zebrafish mutant with a stop codon mutation in 
the gh1 gene, called vizzini, was identified in 2013 which 
displayed severe growth retardation and small body size 
compared to wildtype fish (103). This mutant also had 
increased accumulation of adipose tissue which was expanded 
at maturity.

GH1 gene (OMIM 139250), GHRHR gene (OMIM 139191), 
Type IB IGHD (OMIM 612781)

Patients with Type 1B IGHD are characterized by low but 
detectable circulating GH levels and short stature. Because 
these patients do not develop neutralizing anti-GH antibodies, 
they retain the capability to display growth acceleration 
when treated with rhGH (104). They present an autosomal 
recessive pattern of inheritance and the clinical phenotype is 
more variable than that observed in Type 1A. Some patients 
resemble those with Type 1A, presenting early postnatal severe 
growth retardation, whereas in other cases growth failure is 
only evident later in childhood. All these observations suggest 
that more than a single gene could be responsible for this 
alteration. Indeed, defects in 2 genes have been reported 
to cause GHD Type 1B: GH1 and GHRHR. While mutations in 
the GH1 gene are usually splice site mutations (105), non-
sense and missense mutations in the GHRHR gene also have 
been found in patients with Type IB IGHD (106). The little 
mouse, a spontaneous mutant mouse, presents severe growth 
retardation, an autosomal recessive pattern of inheritance, 
and diminished secretion of GH and IGF-I, which resembles 
the clinical phenotype of patients with Type IB IGHD. In 
1993, analysis of the GHRHR gene in this mouse revealed a 
single substitution at codon 60 (p.Asp60Gly) that resulted in 
complete absence of binding of GHRHR for its ligand (107,108). 
Three years later, a non-sense mutation in the GHRHR gene 
was described in two cousins from a consanguineous Indian 
family (109). Two large kindreds presenting GHRHR gene 
defects have been described: a. eighteen IGHD subjects 
from the Pakistani province of Sindh all presented the same 

nonsense mutation (p.Glu72*) (110,111) and b. a cohort of 
105 individuals from the rural county of Itabaianinha, in 
the northeastern Brazilian state of Sergipe, presented a 
transversion (c.57+1G>A) in the consensus GT of the 5´splice 
donor site of intron 1 of the GHRHR gene (112,113). This 
mutation leads to the retention of intron 1 and the appearance 
of a premature stop codon 213 bases downstream. These 
subjects exhibit reduced GH responsiveness to stimulatory 
tests, reduced levels of IGF-I, IGFBP-3 and ALS, and anterior 
pituitary hypoplasia (for a detailed review see reference 114). 
To date, no zebrafish knockdown studies have been performed 
in the GHRHR gene.

GH1 gene (OMIM 139250), Type II IGHD (OMIM 173100)

This autosomal dominant IGHD constitutes the more 
frequent genetic alteration in the GH1 gene (106). Most of 
the mutations affect the first six base-pairs of intervening 
sequence 3 (5´IVS-3) (106,115,116), resulting in misssplicing 
at the mRNA level and the subsequent loss of exon 3. 
This alteration results in the production of a 17.5 kb GH 
isoform (117). Mutations have also been reported in exon 
3 splice enhancer 1 (ESE1) as well as ESE2 (118). These 
mutations also result in increased levels of exon 3 skipped 
transcripts (119,120). This GH isoform lacks amino acids 32-71 
and exhibits a dominant-negative effect on the secretion 
of the 22-kDa isoforms. The 17.5 kDa GH isoform is initially 
retained in the endoplasmic reticulum, disrupting the Golgi 
apparatus, and thus impairing the normal trafficking of the 
22-kDa GH (121). Transgenic mice overexpressing the 17.5 
kDa isoform exhibit a defect in the maturation of the GH 
secretory vesicles and present anterior pituitary hypoplasia 
due to loss of the majority of somatotrophs (122,123). Patients 
affected with Type II IGHD present a variable degree of growth 
retardation, probably reflecting the variable degree of exon 
3 skipping (82). In vitro experiments have demonstrated that 
in a pituitary cell line, the expression of the 17.5-kDa-mutant 
GH induced endoplasmic reticulum stress and apoptosis, 
contributing to the decrease in wildtype GH secretion (124). 
The relative amount of the 17.5 kDa to 22 kDa hGH isoform 
could determine the impact on pituitary size, the severity 
of GHD, and the appearance of other pituitary hormone 
deficiencies (125,126). For this reason, these patients should 
be carefully followed for the early detection and replacement 
of other hormonal deficiencies. 

A recurrent missense mutation in the GH1 gene also results in 
IGHD Type II. The p.Arg183His (p.Arg209His according to the 
novel nomenclature) GH1 gene mutation, characterized in 
more than 50 subjects worldwide, results in large phenotypic 
variability, ranging from normal stature and GH secretion to 
severe GHD (127,128). Accordingly, in ten affected subjects 
from three unrelated families followed in our hospital, we 
have found a large variability in height SDS among untreated 
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affected individuals, with adult heights ranging from –5.41 
to -2.28 SDS (unpublished data). The biological mechanism 
by which this heterozygous mutation results in a functional 
deficient state has not been completely elucidated. The 
mutant p.Arg209His-GH appears to fold properly and has full 
bioactivity, but after packaging into secretory granules it is 
poorly secreted, presenting a dominant-negative effect on the 
secretion of the WT-GH (127).

BTK gene (OMIM 300300), Type III IGHD (OMIM 307200)

Type III IGHD is an X-linked recessive condition in which 
affected patients present deficiency of both GH and 
immunoglobulin (129,130). Mutations and/or deletions in 
the long arm of chromosome X could be responsible for 
this alteration. In addition, an intronic point mutation 
(c.1882+5G>A), leading to exon-skipping and a premature 
stop codon in the BTK gene, has also been reported to 
be responsible for this disease (131). The xid or X-linked 
immunodeficiency mouse has a missense mutation in the Btk 
protein (132). Btk deficiency in the mouse is associated with 
an impairment of peripheral B cell maturation, without a 
major early B cell developmental block (133). In zebrafish, 
knockdown of btk gene using a splicing morpholino leads to 
severe anterior truncation of embryos (dorsalization) and 
this was shown to occur through an increase in wnt-beta-
catenin signaling evidencing BTK as a negative regulator of this 
signaling pathway (134). 

GH1 gene (OMIM 139250), Bioinactive GH (OMIM 262650)

Short stature associated to a bioinactive GH was first proposed 
by Kowarski et al (135) in two short boys presenting normal 
stimulated GH and low somatomedin/IGF-I levels. They 
responded normally to acute and chronic rhGH administration 
by increasing IGF-I levels and growth velocity. Several years 
later, patients with normal levels of GH and short stature were 
found to have heterozygous GH1 gene mutations. Arg77Cys-
GH not only failed to stimulate tyrosine phosphorylation in 
IM-9 cells but also inhibited the ability of wildtype GH to 
stimulate phosphorylation, thus having a dominant negative 
action (136). The GH1 mutation p.Asp112Gly results in a 
protein that, when associated to GHBP, preferentially forms 
GH-GHBP complexes with a 1:1 ratio, instead of the normal 
1:2 ratio produced by wild type GH. This mutant GH was less 
capable of phosphorylating tyrosine residues in GHR, JAK2, 
and STAT5 in IM-9 cells compared to wildtype GH (137). These 
two GH-mutant proteins with reduced or absent bioactivity, 
probably impaired the wildtype GH action and therefore could 
be responsible for the short stature observed in these patients.

GHSR gene (OMIM 601898), isolated partial GHD (OMIM 
615925)

Isolated partial GHD (GHDP) can also be caused by 
heterozygous, compound heterozygous or homozygous 

mutations in the growth hormone secretagogue receptor 
gene (GHSR). In 2006, Pantel and colleagues (138) described 
homozygous and heterozygous p.Ala204Glu mutations in 
two probands from two unrelated Moroccan families. Short 
stature was present in some but not all heterozygous carriers’ 
relatives, indicating incomplete penetrance and variable 
expressivity. Functional in vitro studies indicate that the 
mutant GHSR presented decreased cell surface expression and 
lacked constitutive activity of the receptor, while preserving 
its ability to respond to ghrelin, its natural ligand. Subjects 
carrying GHSR mutations present a clinical and biochemical 
phenotype of partial GHD or idiopathic short stature (139). 
Three different mouse models with GHSR deficiency have 
been reported in the literature. In two of them, GHSR gene 
has been removed by homologous recombination of mouse 
embryonic stem (ES) cells (140,141) while the other had 
the GHSR locus modified by the insertion of a loxP-flanked 
transcription blocking cassette (142). Although the Ghsr-null 
mice are not dwarf, serum IGF-I levels and body weight are 
modestly reduced compared to wildtype littermates (140,142). 
Despite this modest impact on postnatal growth, the major 
impact of GHSR deficiency seems to be related to some 
protection against diet-induced obesity (142). There is no 
known zebrafish knockdown of this gene yet.

RNPC3 gene

A novel monogenic defect resulting in severe IGHD has been 
reported (143) in three sisters born with normal length to 
normal statured and non-consanguineous parents. The patients 
showed severe postnatal growth retardation (height -5.0 
to -6.6 SDS at diagnosis), typical physical features of GHD 
including delayed bone maturation, mild microcephaly and 
normal development. GH levels after standard stimuli and 
basal IGF-I and IGFBP-3 levels were almost undetectable. They 
presented a good response to therapeutic rhGH replacement. 
RT-PCR indicated normal amount and sequence of GH1 gene 
transcripts. Whole exome sequencing (WES) analysis of one 
proband revealed a missense (c.1320C>A, p.Pro474Thr) and a 
nonsense (c.1504C>T, p.Arg502*) mutation in the RNPC3 gene. 
Sanger sequencing validated that the three affected sisters 
are compound heterozygous for both mutations. This gene 
encodes a 65K protein that is a component of the U12-type 
spliceosome. Two types of spliceosomes catalyze splicing of 
pre-mRNAs. The major U2-type spliceosome is found in all 
eukaryotes and removes more than 99% of pre-mRNA introns. 
The minor U12-type spliceosome is found in some eukaryotes, 
is rare and has distinct splice consensus signals. The 
p.Pro747Thr mutation alters a highly conserved proline residue 
located in a turn position between β-3-strand and α-2-helix. 
Such turn positions are typically non-replaceable by other 
amino acids. In addition to mRNA instability due to non-sense 
mediated RNA decay (NMD), the p.Arg502* mutation deletes 
the last 15 C-terminal residues that are highly conserved. 
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No mouse model for Rnpc3 gene knockout has been reported 
yet. Zebrafish rnpc3 mutant caliban, identified in an 
ethylnitrosourea (ENU) mutagenesis screen, shows arrested 
development of digestive organs, intestine, liver, and pancreas 
at 120 hours post fertilization (hpf) and these embryos die 
between 7- 10 dpf. These embryos also show delayed yolk 
resorption and smaller eyes (144). 

IFT172 gene (OMIM 607386), short-rib thoracic dysplasia 
10 with or without polydactyly (OMIM 615630)

A single case of functional GHD caused by compound 
heterozygous mutations in the IFT172 gene (a missense 
mutation p.Cys1727Arg and a splice site mutation c.337-2A>C) 
have been reported in a boy with growth retardation, pituitary 
hypoplasia, and ectopic posterior pituitary (145). Although 
mutations in this gene, important for ciliary function, have 
been previously described in retinitis pigmentosa and short-
rib thoracic dysplasia, the interaction between the protein 
coded by the IFT172 gene with LHX3 and LHX4 could indicate 
a role for this gene in pituitary development (146). The mouse 
null mutant wimple has loss of motor neuron specification in 
the ventral neural tube and defects in left-right patterning. 
Both are due to a loss of hedgehog signaling (147). Zebrafish 
morphants have ciliopathy phenotypes, including ventral body-
axis curvature, formation of renal cysts and cartilage defects 
which resemble the human phenotype (148). They also show 
hydrocephaly, an altered cranial structure and defects in 
photoreceptors of the retina (149).

ALMS1 gen (OMIM 606844), Alström syndrome (OMIM 
203800)

Reduced GH reserve indicative of functional GHD has been 
reported in non-obese patients affected with Alström syndrome, 
a rare autosomal recessive monogenic disease classified as a 
ciliopathy disease (150). Alms1-/- mice, generated through 
an ES cell line with gene-trapped Alms1, developed obesity, 
hypogonadism, hyperinsulinemia, retinal dysfunction, and 
late-onset hearing loss, similar to the human phenotype of 
the disease (151). Zebrafish embryos depleted of alms1 using 
morpholinos showed beta-cell decrease in the pancreas (152). 
This was also validated using a CRISP/cas9 approach (152).

GH Insensitivity (“Primary IGF-I 
Deficiency”)

Insensitivity to GH (GHI) is characterized by low IGF-I levels 
associated with normal or elevated GH levels and a lack 
of IGF-I response to GH treatment. Since GH synthesis and 
secretion are preserved in IGF-I insensitivity, some authors 
have suggested the term “primary IGF-I deficiency” to 
differentiate these patients from those with GHD in 
which IGF-I is low due to the lack of GH (“secondary IGF-I 

deficiency”). Several genetic defects are responsible for the 
impairment of GH action resulting in short stature that can 
affect intrauterine growth or be present in the postnatal 
period (14,153-155). These disorders involve at least eight 
different genes (table 3).

GHR gene (OMIM 600496), Laron syndrome (OMIM 
262500), partial GH insensitivity (OMIM 604271) 

Complete GH insensitivity (GHI) was first reported by Laron et 
al. in 1966 (156) in three siblings of Yemenite origin, presenting 
the classical clinical appearance of GHD but with GH levels 
that were markedly elevated. Although the possibility of an 
inactive GH molecule was first hypothesized, the finding that 
liver membranes prepared from biopsies of these patients 
were unable to bind iodinated GH, strongly suggested that the 
alteration resided in the target effector for GH. Cloning of the 
GHR gene opened up the possibility to characterize patients 
with this condition presenting a partial deletion of the GHR 
gene (157). In 30 patients described by Laron and his colleagues, 
adult height ranged from 108 to 136 cm (158). Years later, 20 
patients with GHR deficiency were described among members 
of an inbred white population from the province of Loja in 
southern Ecuador (159,160). At least 70 different mutations 
affecting the GHR gene have been reported in more than 300 
patients (161). The majority of cases were homozygous for 
GHR gene mutations, usually in consanguineous families (161). 
In most cases, the mutations affect the extracellular domain 
of the receptor, resulting in abnormal GH binding and low to 
undetectable GHBP levels. When the gene defect occurs in the 
transmembrane or cytoplasmatic domains, GHBP levels could be 
normal or even high. GHR gene mutations may result in defects 
in receptor dimerization, cell membrane anchorage, or signal 
transduction (161). Usually, GHI is inherited as an autosomal 
recessive condition, but a few cases have been reported 
where heterozygous GHR mutations exert a dominant negative 
effect (162-164). These last cases, as well as those caused by 
an intronic mutation and the activation of a pseudoexon (165), 
present less pronounced growth retardation and a milder clinical 
phenotype. In the most severe clinical cases of complete GHI, 
rhIGF-I is the only therapeutic option to increase linear growth. 
However, patients with less severe GHI, such as those presenting 
heterozygous GHR mutations, may benefit from rhGH or from 
a combination of rhGH and rhIGF-I (164). GHR-knockout mice 
showed severe postnatal growth retardation, undetectable GHR 
and GHBP, and very low levels of IGF-I, all findings similar to what 
was observed in patients with complete GHR deficiency (Laron 
syndrome) (25). In addition, this mouse has lower glucose and 
insulin levels, indicators of increased insulin sensitivity (166). In 
the liver, lack of GH receptor resulted in a higher abundance of 
insulin receptor (IR) and increased insulin-stimulated tyrosine 
phosphorylation of IR, likely mechanisms that could explain the 
increased insulin sensitivity (167). There is no known zebrafish 
mutant or morphant for this gene yet.
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STAT5B gene (OMIM 604260) GH insensitivity with 
immune deficiency (OMIM 245590)

The family of signal transducers and activators of transcription 
(STATs) includes seven members that act both as intracellular 
signaling mediators and transcription factors (168). They are 

activated by multiple growth factors and cytokines. Although 
GH activates four members of this family (STAT1, STAT3, 
STAT5a, and STAT5b), STAT-5b is the key mediator of GH 
promoting actions. In 2003, a homozygous mutation in STAT5B 
gene was described in a 16-year-old girl with severe postnatal 

Gene
OMIM

Phenotype
OMIM

Inher. Human phenotype
Mice

phenotype
Zebrafish

Phenotype

GHR
600946

Laron dwarfism
262500
Partial GH 
insensitivity
604271

AR
AD

Severe growth retardation, high 
GH and reduced IGF-I levels

Severe postnatal growth 
retardation, undetectable GHR 
and GHBP, and very low levels 
of IGF-I. Low glucose and insulin 
levels, indicators of increased 
insulin sensitivity

Unknown

STAT5B
604260

GH insensitivity with 
immune deficiency
245590

AR
AD

Severe growth retardation, 
high GH, and reduced IGF-I 
levels. Moderate to severe 
immunodeficiency.
Recurrent pulmonary infections 
and lymphocytic interstitial 
pneumonia

Fewer thymocytes and 
splenocytes and a SCID 
phenotype

Significant 
reduction of 
body weight and 
size in embryos 
and adults. Loss 
of sexual size 
dimorphism

STAT3
102582

Infantile-onset 
multisystem 
autoimmune disease
615952

AD Variable degree of immune 
dysregulation and the early 
appearance of different 
autoimmune diseases. Partial GH 
insensitivity

75% perinatal mortality 
and growth retardation 
with increased apoptosis in 
thymocytes

Scoliosis, excessive 
inflammation 
and smaller than 
wildtype. Die at 
juvenile stages

IKBKB
603258

Immunodeficiency 
15
615592

AR Immune disorder, growth 
retardation and partial GH and 
IGF-I insensitivity

Defective induction of HIF-1α 
target genes including vascular 
endothelial growth factor. 
Alteration of innate immunity 

Unknown

IL2RG
308380

Severe combined 
immunodeficiency, 
X-linked, T-cell-
negative, B-cell-
positive, NK cell-
negative
300400

AR Severe combined immune 
deficiency. 
Some patients present GH 
insensitivity

Hypoplastic thymuses and a 
reduced number of lymphocytes. 
Absence of NK cells

Reduced embryonic 
lymphopoiesis

PIK3R1
171833

SHORT syndrome
269880

AR Some patients present low 
levels of IGF-I with insufficient 
response to rhGH

Increased insulin sensitivity and 
hypoglycemia

Angiogenesis 
defects

IGF1
147440

IGF-I deficiency
608747

AR
AD

Growth retardation with 
deafness and mental retardation

Birth weight of about 60% 
compared to normal mice. 
Severe postnatal growth 
retardation. Increased GH levels

Unknown

IGFALS
601489

Acid-labile subunit 
deficiency
615961

AR Severe IGF-I and IGFBP-3 
deficiencies with mild growth 
retardation. Poor response to 
rhGH treatment

13% smaller at 10 weeks of 
age and marked reductions of 
circulating IGF-I and IGBP-3 
levels

Unknown

Table 3. GH insensitivity
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growth retardation and IGF-I deficiency (169). She had a 
history of recurrent pulmonary infections and lymphocytic 
interstitial pneumonia, presenting immunodeficiency 
characterized by a defect in T cell immunity. Since STAT5b 
is also required in the signaling of several cytokines such as 
interleukin-2 and γ-interferon, it seems likely that the growth 
failure and the immune defect are both due to its inactivation. 
Ten patients with STAT5b deficiency have been reported, 
all presenting severe growth failure, complete GHI and a 
moderate to severe immunodeficiency. GHI resulted in marked 
growth retardation which is always present, but with a more 
variable severity of the immune deficiency and pulmonary 
disease (170-174). Interestingly, haploinsufficiency for STAT5B 
gene appears to affect growth, since heterozygous carriers 
are shorter than their wildtype relatives (175). At the time 
this review was written, heterozygous STAT5B gene mutations 
with dominant-negative effect were described in three 
families in which affected members presented short stature 
associated with partial GH insensitivity but not severe immune 
alterations. These STAT5B missense mutations (p.Gln177Pro, 
p.ALa478Val, and p.Gln474Arg) are robustly phosphorylated 
upon stimulation but are not able to translocate to the nucleus 
or to bind STAT5B DNA response elements. In addition, these 
variants are able to dimerize to wildtype STAT5B disrupting 
the transcriptional function of wiltype STAT5B and exerting a 
dominant-negative effect (176). 

Complete loss of Stat5 (a and b) in mice leads to Severe 
Combined Immunodeficiency (SCID). These mice die 
before or shortly after birth, presenting significantly 
fewer thymocytes and splenocytes than their wildtype 
littermates (177). Although there are 2 stat5b genes in 
zebrafish (stat5b.1 and stat5b.2), it appears that stat5b.1 
is the corresponding homologue of mammalian STAT5B in 
fish (178). Stat5b.1 mutant fish generated using CRISPR/Cas9 
results in a significant reduction of body weight and length 
in both embryos and adult zebrafish (178). Also, sexual size 
dimorphism was eliminated in these adult fish, where normally 
females are larger and heavier than males. Interestingly, there 
seems to be a positive feedback loop whereby stat5b positively 
regulates gh1 expression in zebrafish, which is absent in 
mammals (178). 

STAT3 gene (OMIM 102582), infantile-onset multisystem 
autoimmune disease (OMIM 615952)

Heterozygous gain-of-function mutations in the STAT3 gene 
have been reported in patients presenting a variable degree 
of immune dysregulation and the early appearance of 
different autoimmune diseases (type-1 diabetes, autoimmune 
enteropathy, thyroid dysfunction, pulmonary disease, 
hemolytic anemia, thrombocytopenia, neutropenia, juvenile-
onset arthritis, eczema) (179-182). Most of the affected 
patients present growth failure, normal GH levels, and low 

IGF-I levels, indicative of some degree of GHI. Constitutive 
activation of STAT3 is associated with increased expression of 
SOCS3 (suppressor of cytokines signaling) (179). Members of 
the SOCS family block STAT activation by turning off the initial 
signal (183). Epstein-Barr virus-transformed cell lines derived 
from patients carrying activating STAT3 mutations display 
reduced STAT5b phosphorylation in response to interleukin-2, 
a plausible explanation for the observed GHI (181). Patients 
carrying activating STAT3 mutations preserve some degree 
of responsiveness to rhGH treatment (181,182). The 
severity of the immune disorder and autoimmunity caused 
by germline STAT3 gain-of-function mutations results in a 
severe life-threatening condition. Although bone marrow 
transplantation and anti-IL6R monoclonal antibody have 
been used as therapeutic tools, the results were not always 
successful (179,180,182). Potential novel therapeutic 
approaches include small-molecule inhibitors of STAT3 (181). 

Stat3-/- mice die around embryonic day 7 (184). Heterozygous 
mice carrying the mutation p.Ser727Ala (SA) in one allele 
and a deletion in the other Stat3 allele (STAT3 SA/- mice) 
have normal amounts of Stat3 in all cells except fibroblasts 
which have a 25 % or less Stat3 transcriptional response. 
These mice had 75 % perinatal mortality and growth 
retardation with increased apoptosis in thymocytes in the 
surviving mice (185). There are many studies involving the 
zebrafish stat3 gene. Morpholinos to knockdown stat3 have 
implicated this transcription factor in heart, eye and hair cell 
regeneration in zebrafish (186-188). Finally, a recent study 
generated null mutations in zebrafish stat3 which resulted in 
mutants that die during juvenile stages exhibiting scoliosis and 
excessive inflammation (189). They also appeared smaller than 
wildtype fish. All these zebrafish mutants are models of STAT3 
inactivation, but a gain-of-function stat3 zebrafish model has 
not yet been reported. 

IKBKB gene (OMIM 603258), Immunodeficiency 15 (OMIM 
615592)

The nuclear factor κB family of transcription factors modulates 
gene expression by binding to specific DNA regulatory elements 
as homo or heterodimers. In the unstimulated state, NF-κB 
dimers are bound to IκB preventing translocation to the 
nucleus (190), thereby maintaining NF-Κb in an inactive state. 
Heterozygous mutations in IKBKB gene, that encodes for the 
inhibitory IκBα protein, have been described in two patients 
with immune disorder, growth retardation and partial GH and 
IGF-I insensitivity (191). 

In the mouse, IKK-β deficiency results in defective induction 
of HIF-1α target genes including vascular endothelial growth 
factor (VEGF). IKK-β is an important physiological contributor 
to the hypoxic response, linking it to innate immunity and 
inflammation (192). Zebrafish knockdown studies have not 
been performed in this gene yet.
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I L2RG gene  (OMIM 308380) ,  Severe  combined 
immunodeficiency, X-linked, T cell-negative, B-cell-
positive, NK cell-negative, XSCID (OMIM 300400).

The IL-2 receptor γ common (IL-2Rγc) chain is the shared 
subunit of the receptors for the IL-2 family of cytokines. 
IL2RG associates with different interleukin receptor 
alpha chains to form heterodimers. Through the binding of 
cytokines, these receptors regulate homeostasis of the immune 
system. Mutations in the gene encoding the gamma subunit 
of the interleukin-2 receptor (IL2RG) are found in patients 
presenting this condition (193). Some patients with mutations in 
the IL2RG gene present a diminished or absent response to rhGH 
treatment both in terms of IGF-I increase as well as growth 
acceleration (194). In addition, GH stimulation of mutated B 
cells shows no phosphorylation of STAT5b and lack of nuclear 
translocation, indicative of a defect in GH signaling (195). 

Knockout mice for Il2rg gene lack gamma chain expression and 
have hypoplastic thymuses. Splenic T cells were diminished 
at 3 weeks of age, and B cells were greatly diminished in 
contrast to the situation in patients with XSCID (196). There 
are 2 zebrafish IL-2Rγc paralogs, il-2rγc.a and il-2rγc.b, and 
knockdown of il-2rγc.a but not il-2rγc.b leads to reduced 
embryonic lymphopoiesis (197).

PIK3R1 gene (OMIM 171833) SHORT syndrome (OMIM 
269880) 

PIK3R1 codes for the regulatory subunits of the phosphatidyl 
inositol-3 kinase class IA (PI3K) and is involved in activation 
of the AKT/mTOR pathway to ensure proper growth and cell 
proliferation (198). SHORT syndrome historically has been 
defined by its acronym: short stature (S), hyperextensibility 
of joints and/or inguinal hernia (H), ocular depression (O), 
Rieger abnormality (R) and teething delay (T) (199). PIK3R1 
heterozygous mutations have been identified in several 
patients affected with SHORT syndrome (200-203). Persistently 
low levels of IGF-I with insufficient response to rhGH has been 
shown in some patients, indicating some degree of GHI. 

Targeted disruption of the Pik3r1 gene in mice leads to 
increased insulin sensitivity and hypoglycemia due to increased 
glucose transport both in muscle and adipocytes (204). In 
addition, liver-specific deletion of Pik3r1 in mice also results 
in increased hepatic and peripheral insulin sensitivity (205). 
Zebrafish embryos injected with morpholinos to reduce pik3r1 
levels displayed angiogenesis defects with variable shortening 
of intersegmental vessel (ISV) length and were otherwise 
overtly normal (206).

IGF1 gene (OMIM 147440), growth retardation with 
deafness and mental retardation due to IGF-I deficiency 
(OMIM 608747)

The first molecular defect in the IGF1 gene was described 
in 1996 in a 15-year-old boy presenting severe intrauterine 

growth retardation, postnatal growth failure, sensorineural 
deafness, mental retardation, microcephaly, and delayed 
puberty (207). The patient was homozygous for a deletion of 
exon 4 and 5 in the IGF1 gene. Marked insulin-resistance was 
also present, likely related to the abnormally high GH levels 
and a functional GH receptor. The few other reported patients 
with IGF1 gene mutations present pre- and postnatal growth 
impairment, mental retardation, and hearing loss (208-211). 
A homozygous missense mutation (p.Val44Met) detected in 
a 55-year-old patient presenting severe intrauterine and 
postnatal growth retardation, microcephaly, and sensorineural 
deafness was functionally inactive with a 90-fold reduced 
affinity for the IGF-I receptor (209). The classical phenotype 
with prenatal growth retardation was observed in those cases 
with both affected alleles. A less severe phenotype without 
intrauterine growth retardation, microcephaly, or deafness, 
has been described in several members of a family, carrier 
of a frameshift mutation that, if expressed, resulted in a 
truncated and presumably inactive protein (210). A patient 
with non-dysmorphic phenotype and less severe pre- and 
postnatal growth retardation was homozygous for a missense 
mutation that reduces two- to three-fold the affinity of the 
mutant IGF-I for the IGF-1 receptor (211). Molecular defects 
of the IGF1 gene are rare, and only about 9 patients have 
been described (212). 

In the mouse, targeted disruption of Igf1 gene resulted in birth 
weight of about 60% compared to normal mice. Depending 
on the genetic background, Igf1(-/-) dwarf mice die shortly 
after birth or survive and reach adulthood (213). To further 
explore the role of liver-produced IGF-I, the major contributor 
of circulating IGF-I, Yakar et al (28) used the Cre/loxP 
recombination system to delete the igf1 gene exclusively in 
the liver (LID mouse). Although the LID mouse showed a severe 
reduction in circulating IGF-I levels, body weight, body length, 
and femoral length did not differ from wildtype littermates. 
However, due to the reduction of negative feed-back, this 
animal presents high circulating GH levels that could partially 
compensate for the reduction of circulating IGF-I levels. This 
study suggests an important role for locally produced IGF-I 
(autocrine/paracrine IGF-I) in longitudinal growth. The only 
study that used morpholinos to knockdown igf1 in zebrafish led 
to embryonic abnormalities that were not possible to discern 
from nonspecific toxic effects from the morpholino itself (214).

IGFALS gene (OMIM 601489), acid-labile subunit 
deficiency (OMIM 615961)

The acid-labile subunit (ALS), a member of the leucine-
rich repeats proteins, is a circulating protein that plays an 
important role in maintaining high circulating levels of IGF-
I. Although ALS has no discernible affinity for IGF-I, it is 
capable of binding binary complexes formed by IGF-I or IGF-II 
with IGFBP-3 or IGFBP-5, forming ternary complexes (215). 
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Thus, ALS could be considered a binding protein of binary 
complexes. The main role of ALS is to maintain up to 80-90% 
of the circulating IGFs in this ternary complex, extending the 
half-life of free IGF-I from 10 min to more than 12 hours (216).

The first description of complete ALS deficiency was reported 
in a 17-year-old boy with delayed onset of puberty, slow 
pubertal progress, and markedly reduced IGF-I and IGFBP-3 
levels that remained unchanged after GH stimulation (217). 
The patient was homozygous for a frameshift mutation in 
the IGFALS gene (p.Glu35Lysfs*87). Once the clinical 
characteristics and biochemical phenotype of ALS deficiency 
became recognized, severe IGF-I and IGFBP-3 deficiencies 
associated with moderate growth retardation (a “mismatch” 
between the severity of IGF-I and IGFBP-3 deficiencies and 
the mild effect on growth), several reports communicated at 
least 62 patients with this defect (218-228). In these patients, 
whereas circulating levels of IGF-I are dramatically decreased, 
local production appears to be preserved. Local expression of 
IGF-I, under the control of normal and/or increased GH levels, 
could be responsible for the preservation of linear growth near 
normal limits (229-231). Functional in vitro characterization 
of several IGFALS variants has shown that pathogenic variants 
result in the absence of ALS synthesis or intracellular retention 
of the mutant protein (232,233). In children with apparent 
GHI, systematic genetic characterization by candidate gene 
approach or WES has shown that mutations in the IGFALS 
gene, resulting in complete ALS deficiency, is the second most 
frequent gene defect, second only to GHR gene defects (234). 

It is noteworthy that heterozygous IGFALS gene mutations are 
present in a subgroup of children with idiopathic short stature 
presenting partial ALS deficiency (235,236). Characterization 

of children with partial ALS deficiency may prove clinically 
relevant, because these patients have shown responsiveness 
to rhGH treatment, increasing IGF-I levels and accelerating 
growth velocity (236,237). Whether this initial response results 
in an increase in adult height remains to be determined. 

Homozygous null mice for Igfals are 13% smaller than their 
wildtype littermates at 10 weeks of age (238). This modest 
phenotype, despite marked reductions of IGF-I and IGFBP-3 
levels in plasma, support the importance of locally produced 
IGF-I in growth. 

The zebrafish igfals morphants have not yet been reported.

IGF-I insensitivity

There are only a few molecular defects resulting in 
impairment of IGF-I action (table 4).

IGF1R gene (OMIM 147370), insulin-like growth factor I, 
resistance to (OMIM 270450)

A specific IGF-I receptor was first characterized in 1977 (239), 
but it was not until 1986 that the complete cDNA sequence for 
this receptor was published (240). Although several patients 
with intrauterine growth retardation presenting elevated 
levels of GH and IGF-I, suggestive of some degree of IGF-I 
resistance, were reported in the 1980s and 1990s, (241-243), 
it was not until 2003 that the first patients with IGF1R gene 
mutations were reported (244). The first mutations in this 
gene were detected in patients with intrauterine growth 
retardation or short stature and elevated IGF-I levels (244). 
This original report was essentially the result of two separate 

Gene
OMIM

Phenotype
OMIM

Inher. Human phenotype
Mice

phenotype
Zebrafish

Phenotype

IGF1R
147370

Resistance to 
IGF-I
270450

AR
AD

Intrauterine growth 
retardation, postnatal growth 
retardation with normal/ 
elevated IGF-I levels

Mice are 45% smaller 
than widtype at birth 
with general organ 
hypoplasia

Reduced embryonic growth, 
arrested development, and 
increased lethality. Defects in 
retina, innear ear, heart, and 
motor neurons

PAPPA2
-

PAPPA2 
deficiency

-

AR Mild postnatal growth 
retardation with high levels of 
IGF-I, IGFBP-3, and ALS

Postnatal growth 
retardation

Ventral curvature of embryos, 
notochord defects, reduced 
jaw and angiogenesis defects

IGF2
147470

Severe growth 
restriction with 
distinctive 
facies
616489

Epigenetic Severe intrauterine and 
postnatal growth restriction 
and a Silver-Russell syndrome-
like phenotype

Heterozygous males 
have growth defects 
while females are 
normal. Homozygous 
males and females have 
growth defects

Knockdown of either ortholog 
or both leads to ventralized 
embryos with reduced growth, 
reduced eyes, disrupted brain 
structures and a defective 
cardiovascular system

Table 4. IGF-I resistance
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studies published together. The first group consisted of 42 
patients with intrauterine growth retardation and subsequent 
short stature. One girl was a compound heterozygote for a 
point mutation in exon 2 of the IGF1R gene (p.Arg108Gln/p.
Lys115Asn). Cultured fibroblasts from the patient had 
decreased IGF-I-receptor function. In the second cohort 
of 50 children with short stature and elevated circulating 
IGF-I levels, the authors identified one boy with a nonsense 
mutation (p.Arg59stop) that resulted in a reduced number of 
IGF-I receptors in fibroblasts. Both children had intrauterine 
growth retardation and poor postnatal growth. It is likely 
that, as is observed in the mouse, complete absence of IGF1R 
in humans may be lethal. This could explain why, except 
for two compound heterozygous cases (244,245), and two 
homozygous patients (246,247), only heterozygous cases have 
been reported. The few patients presenting mutations in 
both IGF1R alleles appear to retain some degree of IGF1R 
activity. Functional in vitro studies of naturally occurring IGF1R 
mutations suggest that different mechanisms could explain 
the impairment of IGF action: receptor haploinsufficiency, 
decreased biosynthesis, reduced binding affinity, interference 
of transmembrane signaling, and disruption of the tyrosine 
kinase activity (248). The impact of IGF1R mutations on 
intrauterine growth is variable, but is frequently more severe 
when maternally inherited, indicating that maternal IGF-I 
resistance during pregnancy is one factor contributing to the 
severity of growth retardation, possibly by decreasing placental 
growth (249). As many as 20 patients have been described with 
IGF1R mutations (250-256). These patients have shown a poor 
to moderate clinical response to rhGH treatment (248). 

Targeted disruption of the Igf1r in mice led to death shortly 
after birth due to respiratory failure and 45% smaller 
birth size than wildtype mice. They also have global organ 
hypoplasia (213). Zebrafish have 2 igf1r genes (igf1ra and 
igf1rb). Using either morpholinos or a dominant negative igf1r 
fusion protein to target these 2 genes in zebrafish resulted 
in reduced embryonic growth, arrested development, and 
increased lethality. In addition, these embryos had defects in 
the retina, inner ear, heart, and motor neurons (257).

Pregnancy-associated plasma protein A2 deficiency 
(PAPP-A2)

A completely new syndrome has been recently described, 
involving the first genetic defect in a protease. Pregnancy-
associated plasma protein-A2 (PAPP-A2) is a serum and 
tissue protease responsible for proteolysis of IGFBP-3 and 
IGFBP-5, regulating the bioavailability of IGF-I and IGF-II to 
their target tissues (258). Five affected subjects from two 
families presenting moderate growth retardation and elevated 
circulating levels of IGF-I, IGF-II, IGFBP-3, IGFBP-5, and ALS, 
were found to be homozygous for two different mutations 
in the PAPPA2 gene (p.Asp643fs25* and p.Ala1033Val) (259). 

In vitro analysis of IGFBP cleavage demonstrated that both 
mutations cause a complete absence of PAPP-A2 proteolytic 
activity. Size exclusion chromatography showed a significant 
increase in IGF-I bound in its ternary complex, and decrease in 
free and bioactive IGF-I concentrations. Other clinical findings 
included characteristic thin long bones most notable in the 
fibulae, tibiae, and femurs. While bone age was according to 
chronological age, bone mineral density (BMD) was decreased 
at the lumbar spine, and fasting glucose concentrations were 
normal with mild hyperinsulinemia. Interestingly, a one-
year treatment with rhIGF-I resulted in a clear increase in 
growth velocity and height in two siblings. Bioactive IGF-I was 
increased, and spontaneous GH secretion was diminished after 
acute administration of rhIGF-1, whereas serum total IGF-I and 
IGFBP-3 levels remained elevated (260). Besides the moderate 
increase in growth velocity, one-year treatment with rhIGF-I 
resulted in a reduction of insulin resistance and an increase in 
total body BMD (261).

The finding of PAPPA2 mutations as an etiological cause of 
short stature has both clinical and physiological consequences. 
The molecular diagnosis resulted useful for the selection of the 
proper therapeutic agent to increase adult height and, on the 
other hand, illustrate the important physiological role of the 
IGFBPs and their specific proteases in the regulation of IGF-I 
bioavailability (262).

The Pappa2a knockout mouse was of normal size at birth but 
had postnatal growth retardation (263). The knockout mice 
also display disproportionally reduced dimensions of specific 
bones, including skull and mandible (264). Knockdown of 
zebrafish papp-a2 results in ventral curvature of embryos as 
well as notochord defects implicating this protein in notochord 
development. In addition, the jaw is significantly reduced, 
indicating a role for papp-a2 in cranial cartilage development. 
Finally, embryos also have defects in angiogenesis (265).

IGF2 gene (OMIM 147470), severe growth restriction 
with distinctive facies (OMIM 616489)

In 2015 Begemann et al. reported an IGF2 nonsense variant 
(p.Ser64*) in a multigenerational family with four members 
presenting growth restriction (266). Only transmission of the 
paternally affected allele resulted in growth impairment in 
those tissues involved in growth, confirming the monoallelic 
expression of the maternally imprinted IGF2 gene. The 
affected patients have severe intrauterine and postnatal 
growth restriction and a Silver-Russell syndrome (SRS)-
like phenotype. More recently, two independent reports 
described two patients with a frameshift (p.Leu37Glnfs*31) 
and a missense (p.Gly34Asp) de novo mutation in the IGF2 
gene, presenting a characteristic SRS-phenotype, (267,268), 
indicating that this alteration could arise as a de novo 
condition in non-familial patients affected with SRS. 
Remarkably, in these last cases the mutations resided in the 
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paternal allele, an expected result considering the paternal 
monoallelic expression of the IGF2 gene in non-hepatic tissues. 
Two out of three patients showed a satisfactory growth 
increase after chronic rhGH treatment (267). 

Targeted disruption of Igf2 in mice led to heterozygous 
male mice with growth defects yet phenotypically normal 
heterozygous females. Homozygous female mutants resemble 
their heterozygous growth defective male siblings (269). 
In contrast, the zebrafish genome contains 2 co-orthologs 
of mammalian IGF2 gene (igf2a and igf2b). Knockdown of 
either gene using morpholinos led to ventralized embryos 
characterized by reduced growth, reduced eyes, disrupted 
brain structures and a defective cardiovascular system. 
Knockdown of both genes simultaneously increased the 
severity of the phenotype. This implicates both genes in dorso-
ventral patterning during development in zebrafish (270,271).

Conclusions

From the molecular characterization of the first genetic defect 
in the GH/IGF axis, a complete GH1 gene deletion in patients 
with severe isolated GHD and profound growth retardation 
by Phillips III and their colleagues in 1981, mutations in 
more than 48 different genes have been described all along 
the GH/IGF axis. These defects result in alteration of GH 
synthesis/secretion (isolated or associated to other pituitary 
hormones), defects in GH action (alteration at the level of 
the GH receptor, the intracellular signaling pathway, or the 
transport of IGFs), or IGF-I action (alteration of IGF-I synthesis 
or transport). Most of these molecular defects were discovered 
by the candidate gene approach, by using clinical data and 
biochemical profiles to select the more likely candidate 
gene(s) to be studied. Since 2012, with the development of 
next generation sequencing (NGS) techniques, capable of 
determining the WES or even the whole genome sequence 
(WGS) within weeks, new genetic clinical conditions have 
been elucidated in patients where clinical and biochemical 
data did not suggest an obvious candidate gene or where 
several likely candidate genes had to be explored and the 
conventional sequencing of each one would be more expensive 
and time consuming than the NGS approach. In addition, 
this last approach has revealed novel genetic defects, 
previously unknown or unsuspected given the clinical and 
biochemical characteristics of the subjects under study. It 
has also been shown that in a small percentage of cases, 
more than one gene could be affected, resulting in a more 
complex clinical presentation, usually presenting overlapping 
phenotypic features (272). It has been proposed that genetic 
evaluation of short stature is indicated in those cases that 
present severe GHD, multiple pituitary hormone deficiency, 
unequivocal GH insensitivity, small for gestational age 
without catch-up growth, additional congenital anomalies or 

dysmorphic features, evidence of skeletal dysplasia, associated 
intellectual disability, microcephaly, and severe growth 
retardation (273). Even with careful selection of patients, a 
genetic diagnosis is obtained in only 30-40% of patients with 
IGHD, CPHD, apparent GH or IGF-I insensitivity (13,234). Due 
to increased accessibility to NGS, a significant number of 
likely pathogenic variants have been described in novel genes 
in patients with short stature and defects in the GH/IGF axis. 
These variants appear both in genes previously associated 
with these conditions as well as in completely novel genes. 
Characterization of these variants by functional in vitro assays 
and in vivo animal models is required to determine the real 
contribution of these findings. 
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