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Key points 

 This paper proposes a methodology for assessing global changes in drought characteristics 

under different warming levels, including an assessment of the related uncertainties. 

 Drought magnitude will halve in 20% of the global land surface with warming of 1.5°C and 

higher levels. 

 A progressive and significant increase in frequency of droughts is projected with warming in 

the Mediterranean basin, most of Africa, West and Southern Asia, Central America and 

Oceania, where droughts are projected to happen 5 to 10 times more frequent even under 

ambitious mitigation targets.  
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Abstract. Higher evaporative demands and more frequent and persistent dry spells associated with rising 

temperatures suggest that drought conditions could worsen in many regions of the world. In this study, we 

assess how drought conditions may develop across the globe for 1.5, 2, and 3°C warming compared to pre-

industrial temperatures. Results show that 2/3 of global population will experience a progressive increase in 

drought conditions with warming. For drying areas, drought duration are projected to rise at rapidly increasing 

rates with warming, averaged globally from 2.0 month/°C below 1.5°C to 4.2 month/°C when approaching 3°C. 

Drought magnitudes could double for 30% of global land mass under stringent mitigation. If contemporary 

warming rates continue, water supply-demand deficits could become five-fold in size for most of Africa, 

Australia, southern Europe, southern and central states of the US, Central America, the Caribbean, north-west 

China and parts of Southern America. In approximately 20% of the global land surface, drought magnitude will 

halve with warming of 1.5°C and higher levels, mainly most land areas north of latitude 55°N, but also parts of 

South-America, Eastern and South-eastern Asia. A progressive and significant increase in frequency of droughts 

is projected with warming in the Mediterranean basin, most of Africa, West and Southern Asia, Central America 

and Oceania, where droughts are projected to happen 5 to 10 times more frequent even under ambitious 

mitigation targets and current 100 year events could occur every 2 to 5 years under 3°C of warming. 

  

Plain Language Summary 

 

This research investigates the climatology of global drought conditions under different global warming levels. 

We consider warming levels of 1.5{degree sign}C and 2{degree sign}C set out as mitigation targets in the Paris 

Agreement, as well as 3{degree sign}C that is closer to what is expected by the end of the 21st Century if 

current emissions trends are retained.We found that the magnitude of droughts is likely to double in 30% of the 

global land mass under stringent mitigation policies. If global warming continues at the present rate, water 

supply-demand deficits would increase five-fold while current 1-in-100 year droughts would occur every 2 to 5 

years for most of Africa, Australia, southern Europe, southern and central USA, Central America, the 

Caribbean, north-west China and parts of Southern America. Approximately two thirds of the global population 

will experience a progressive increase in drought hazard with warming. In drying areas, drought durations are 

projected to rise rapidly with warming. The main impacts of long lasting droughts are linked to the lowering of 

the groundwater and of the water levels in reservoirs. This will impede replenishment of water supplies and may 

result in a difficult recovery and prolonged socio-economic impacts after severe droughts. 

 

1. Introduction 
 

Drought is a climatic hazard that occurs in most world climates and can have considerable 

economical, societal and environmental impacts. While global long-term trends in drought frequency 

and severity remain an element of debate in the literature (Dai 2013; Sheffield et al., 2012; Trenberth 

et al., 2014), in part owing to a lack of observations and a long list of sometimes conflicting drought 

definitions,  regional studies suggest an increasing trend in the intensity and frequency of droughts in 

several parts of the world, such as the Mediterranean (Spinoni et al., 2015a, Vicente Serrano et al., 
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2014), West Africa (Dai 2013; Sheffield et al., 2012, Masih et al., 2014), and Central China (Wang et 

al., 2017). In other regions, such as central North America (Peterson et al., 2013) and north-west 

Australia (Jones et al., 2009), drought conditions have become less severe in the second half of the 

20
th
 century.  

 

Alterations in surface hydroclimatic conditions due to climate change are complex, yet decreasing 

regional precipitation, more intense and frequent dry spells, and increasing evaporative demands 

driven by global warming could considerably worsen droughts in many regions of the globe. This 

understanding in combination with the devastating impacts of droughts on society has recently 

resulted in a number of global assessments of future drought conditions (e.g., Burke & Brown 2008; 

Sheffield & Wood 2008; Orlowsky & Seneviratne, 2013, Taylor et al., 2013; Prudhomme et al., 2014; 

Touma et al., 2015, Wanders et al., 2015, Zhao & Dai 2015; Zhao & Dai 2016).  

 

Projections of the evolution of droughts under global warming vary depending on the drought indices 

adopted. Due to its complexity and the diverse interests of those investigating droughts, no universal 

definition of droughts exists (Lloyd-Hughes, 2014). A drought can generally be defined as an 

extended period of abnormal below average natural water availability. Because droughts mostly arise 

from a significant deficiency in moisture supply in form of precipitation, many studies have focused 

on the input side, for example through the use of the Standard Precipitation Index (SPI; McKee et al., 

1993). Yet, high evaporative losses can seriously alter natural water availability, which has led to the 

use of water-balance methods such as the Palmer Drought Severity Index (PDSI; Palmer 1965) and 

the Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010). Using 

these two indices, Cook et al. (2014) show that an increased atmospheric evaporative demand (AED) 

due to warming not only intensifies drying in areas where precipitation will reduce, but that it will 

also drive areas into drought that will experience little drying or even wetting from precipitation 

trends alone. Hence, especially in view of global warming, accounting for alterations in atmospheric 

demand due to changes in specific humidity, surface wind speed, and surface down welling short- and 

long-wave radiation is essential to portray the evolution of droughts in a warmer world. However, 

these processes are complex and depend on the different sensitivity of the drought indices to the 

atmospheric evaporative demand as a function of climate characteristics (Vicente-Serrano et al., 

2015). For instance, an AED increase in areas of abundant precipitation might not increase drying 

(since temporal variability of precipitation is much higher than the variability of AED and droughts 

mostly depend on precipitation), and could even favor vegetation activity and growth given that water 

availability is not a limiting factor and vegetation growth is more constrained by temperature and 

radiation.  

The metric used here (SPEI) does not account for the physiological effects of elevated CO2 (eCO2) on 

transpiration, which can be very important (Betts et al., 2007). Decreasing stomatal conductance 
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induced by eCO2 increases canopy water-use efficiency (hence lower transpiration rates per unit leaf), 

yet this mechanism is potentially offset by the enhancement of leaf area and rooting depth (Donohue 

et al., 2017). Predicted responses of transpiration to eCO2 are highly variable amongst process-based 

models depending on what processes are accounted for and their parametrization, highlighting the 

current uncertainty about plant water use in response to eCO2 (De Kauwe et al., 2013). Recent 

findings further suggest that land surface models show systematic bias in simulating water and energy 

fluxes under water-stressed conditions (Ukkola et al., 2016). Due to the large uncertainty in the 

estimation of evapotranspiration that takes into account the effect of eCO2 and the consequent 

warming we build our analysis on reference evapotranspiration (ETo), which is a supply-independent 

measure of the evaporative demand of a terrestrial climate and represents the rate at which a given 

climate is trying to evaporate water from the soil-vegetation system (Scheff & Frierson 2014). ETo 

only depends on the meteorological inputs and it has the advantage of being spatially comparable 

under different climates and environmental conditions (Beguería et al., 2014). For instance, Feng et al. 

(2017) shows that drought indices normalized with reference evapotranspiration (Penman-Monteith) 

show comparable dryness to the soil moisture in the US, while empirical estimations (Thornthwaite) 

shows more unrealistic estimations. Moreover, the authors show that the drought indices that includes 

Penman-Monteith estimations are closely related to soil moisture both during the baseline period and 

for the CMIP5 projections.  

 

Assessments of future droughts also strongly depend on the greenhouse gas emissions scenario, the 

time horizon, and the set of climate simulations analyzed (Zhao & Dai, 2016). Previous assessments 

for selected scenarios and time windows provide valuable information in that they depict the 

evolution of the future drought hazard across the globe for the chosen scenario and time period. Yet, 

they do not directly link the frequency and severity of droughts to different thresholds of warming. 

Understanding the benefits of curbing global warming is, however, essential to support the Paris goals 

to keep warming below 2°C compared to pre-industrial temperatures and pursue a tougher target of 

1.5°C (UNEP, 2016).  

 

Here we present the first assessment of the climatology of drought conditions across the world under 

different levels of global warming. We consider Specific Warming Levels (SWLs) of 1.5°C and 2°C 

set out as mitigation targets in the Paris Agreement, as well as 3°C that is closer to what would be 

expected by the end of 21
st
 Century if current emissions pledges (Nationally Determined 

Contributions, NDCs) are followed (Raftery et al., 2017). Our analysis is based on the Representative 

Concentration Pathways (RCP) of 8.5 W m
-2

 as it allows to consider the full range of SWLs using a 

consistent set of projections, whereas lower emission pathway scenarios (RCP 2.6 and RCP 4.5) 

typically do not reach higher levels of warming (James et al., 2017). This assumes that the drought 
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climatology is fully defined by the SWL and not by the pathway to arrive to it. Maule et al. (2017) 

recently showed that the effect of different concentration pathways is small compared to internal 

climate variability on the timescales involved in reaching +2°C of warming.  

 

We use an ensemble of high-resolution climate simulations from downscaled General Circulation 

Models (GCMs) under RCP 8.5 and analyze drought conditions over 30-year time windows centered 

on the SWLs. The set of climate models were selected as representative of a range of outcomes for 

future climate change, including high and low climate sensitivity, different biases in baseline 

precipitation climatology, and different global patterns of precipitation change (Alfieri et al., 2017; 

2018). Drought changes with respect to historical conditions are derived from a peak over threshold 

analysis using the SPEI multi-scalar drought index that represents both the supply and demand sides 

of the surface moisture balance. Results are aggregated by region and global land surface, while the 

agreement of the ensemble projections is assessed through dedicated statistics. Section 2 presents the 

methodological aspects of our approach. Key results are then described in Section 3, followed by a 

discussion and concluding remarks in Section 4.  

 

2. Data and methods 

 
The analysis is based on a set of seven climate projections under the concentration pathway scenario 

RCP8.5 produced with EC-EARTH3-HR v3.1 (Hazeleger et al., 2012; Alfieri et al., 2017) by the 

Swedish Meteorological and Hydrological Institute (SMHI). The RCP 8.5 scenario assumes a CO2 

equivalent of about 1370 ppm and a corresponding warming of approximately 4.0°C with respect to 

pre-industrial temperatures by the end of the 21
st
 century (van Vuuren et al., 2011), which allows 

evaluating climate change effects under low as well as high levels of warming. Downscaled 

projections were obtained by forcing EC-EARTH3-HR with Sea Surface Temperature (SST) and sea-

ice concentrations from an independent set of driving GCMs produced within the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) as listed in Table S1. The seven forcing datasets were 

selected to represent the full spectra of all CMIP5 models by taking the models that have high or low 

climate sensitivity (IPSL-CM5A-LR and GFDL-ESM2M), or show extreme wet or dry response 

(GISS-E2-H and IPSL-CM5A-MR) at a given warming level. Together with the other three 

simulations, the seven members form an ensemble that covers the full width of the climate response in 

the CMIP5 database and thereby addresses the uncertainty in the climate projections. The benefits of 

downscaling the model outputs with EC-EARTH3-HR are to render uniform the simulations and 

increase their spatial resolution from the different original grids to 0.35°, leading to an improved 

characterization of drivers of the hydrological cycle (Demory et al., 2014) and comparable statistics 

among the models. Raw climate outputs rather than bias-corrected data were used to ensure 

conservation principles and physical consistency between the atmospheric variables, to avoid effects 
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of data quality and resolution in global observational datasets, and to exclude inflation of the 

magnitude of relative trends in precipitation extremes induced by bias correction (Ehret et al., 2012; 

Themeßl et al., 2012; Huang et al., 2014; Cannon et al., 2015). The procedure to compute the drought 

indicator (SPEI) involves the standardization of the difference between precipitation and reference 

evapotranspiration (ETo) by means of their monthly distributions. This procedure acts as an indirect 

bias correction of all the relevant variables as the final results are based on the standardized values 

and droughts are defined by dimensionless thresholds that correspond to specific probability values.  

The average global warming from the pre-industrial era is 0.6°C at the end of the baseline calculated 

from the 21-year running mean of the annual observed near surface temperature (GISTEMP Team, 

2017) averaged over the globe. In order to define the year of passing the SWLs for each climate 

ensemble member we added the change in projected global warming since 2005 to the observed 

warming in 2005, with the change based on the 21-year running mean of the global average 

temperature derived from the raw climate data. The resulting years of passing the SWLs are listed in 

Table S1.  

 

Our analyses are based on the Standardized Precipitation-Evaporation Index (SPEI; Vicente-Serrano 

et al., 2010), a standardized drought indicator (i.e. with mean=0 and standard deviation=1) that 

represents different features of the water balance and therefore is also sensitive to the variability and 

changes in climatic variables other than precipitation. Similar to the PDSI it includes the effects of the 

reference evapotranspiration on drought severity, yet it has the advantage of aggregating variables 

over different time dimensions that allows identifying different drought types and impacts, similar to 

the SPI (Beguería et al., 2014). Recent studies evaluated linkages between the accumulation period of 

drought indicators and impacts in various sectors based on empirical data (Sepulcre-Cantó et al., 

2012; Trambauer et al., 2014; Naumann et al., 2015; Bachmair et al., 2016; Blauhut et al., 2016). 

These indicate that dependencies between drought predictors and impacts are sector- and region-

specific. However, a 12-month aggregation period provides a good summary of the annual drought 

conditions and is useful for several purposes. For instance, Blauhut et al., (2016) show that SPEI with 

a 12-month accumulation period is the overall best predictor of the likelihood of impact occurrence in 

different sectors and macro regions in Europe. We therefore present changes in drought hazard based 

on the latter, further referred to as SPEI-12. This implies focusing on longer-term water deficits, 

representing hydrological droughts with impacts not only on agriculture but also on river flow and 

groundwater recharge. This analysis will exclude shorter-term events, which presents a certain 

limitation to the analysis. However, on a global level it allows for highlighting spatial patterns and 

differences between regions and as such provides useful information on the likely evolution of long-

term droughts under different warming levels. To account of the fact that dealing with drought 

concepts in deserts, hyper-arid and cold areas might be physically meaningless and could lead to 
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unreliable results (Carrao et al., 2014; Spinoni et al., 2015b), we used the global aridity index dataset 

from Spinoni et al. (2015b) to exclude the deserts, hyper-arid and cold regions from the analysis. 

 

 

 

 

 

The supply side of the water balance was derived directly from the precipitation simulated by the 

climate models. The methodology applied to estimate reference evapotranspiration (ETo) is relevant 

as discrepancies can propagate and have a significant effect when computing drought changes (van 

der Schrier et al., 2011; Sheffield et al., 2012). The use of simple evaporation formulae based only on 

temperature may overestimate drought trends with global warming when compared with more 

physically based methods that include a more comprehensive set of meteorological variables. ETo 

was therefore estimated here as the reference ET for a short crop with approximate height of 0.12m 

(similar to grass) based on the Penman-Monteith (P-M) equation. The P-M method uses daily 

minimum and maximum near-surface air temperature, near-surface specific humidity, surface air 

pressure, surface downwelling shortwave radiation, surface downwelling longwave radiation, and 

near-surface wind speed. Dewes et al. (2017) show that P-M provides a more physically robust 

treatment of ETo due to the sensitivity of the factors that are included in their formulation.  Many 

features like regional patterns of inter-annual variability are well represented only when the different 

drivers like wind speed or humidity are included in the formulation of ETo. In that sense, Dewes et al. 

(2017) show that P-M is also the most appropriate estimation of ETo for climate projections and to be 

included in indices like the SPEI as the uncertainties that might be linked to the drivers (wind, 

humidity, etc.) are smaller than the uncertainties produced by other sources. ETo computations were 

performed at a daily time step with the LISVAP pre-processor of the distributed hydrological model 

LISFLOOD (van der Knijff et al., 2010; Burek et al., 2013). 

 

Accumulated water deficits over the 12 month aggregation period were converted into SPEI-12 

standardized units by fitting a log-logistic distribution using an unbiased Probability Weighted 

Moments method (Vicente-Serrano & Beguería 2016). We then derive drought characteristics from 

the SPEI-12 series based on the truncation concept, which originates from the theory of runs (Mishra 

and Singh 2010). Following this approach, a drought event is defined as a period in which the drought 

indicator is below a certain threshold or truncation level. The drought characteristics considered here 

(see Table S2) are the run duration (length of event) and magnitude (cumulative deficit or the negative 

run sum). For the purpose of obtaining return values of the latter we fit a generalized Pareto 

distribution (GPD) by the method of moments through the deficit values of the selected drought 

events. To ensure sufficient events per 30-year time window (minimum of 5) and a stable estimation 
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of the GPD parameters, a threshold of -0.5 was applied to the SPEI-12 time series, which implies a 

negative deviation of at least 0.5 standard deviations in the SPEI-12 (representing  an accumulation 

period of 12 months) to define the onset of a drought. Further, interdependency between events was 

minimized by imposing at least one season (3 months) as the independence time between two dry 

periods, whereas minor events that can distort the extreme value analysis were excluded by assuming 

a minimum drought event duration of 3 months (Engeland et al., 2004; Feyen & Dankers 2009). 

Details on the estimation of the GPD parameters can be found in the supplementary material. 

 

Return times are estimated using a peaks-over threshold model, in which the generalized Pareto 

distribution (GPD) is fitted to those data that exceed a specified level. Given certain distributional 

assumptions, the GPD is asymptotically optimal for the parametric modeling of threshold exceedances 

(Coles, 2001). In the case of droughts this applies to shortfalls or deficits below a low threshold. It 

was assumed that the drought deficit volumes corresponding to the shortfalls are independent and 

identically distributed. With the location parameter (or distribution origin) set to the lower bound (or 

threshold = -0.5) of the partial duration series, drought deficits for different recurrence intervals were 

then derived by inferring the scale () and shape (ξ) parameters of the GP distribution in each pixel 

using the method of moments (Coles, 2001). This depends on the threshold used and is true when 

upper centiles are used but less clear for low centiles (e.g., Beguería, 2005). Moreover, differences in 

the obtained probabilities can be found for dry-spell series as a function of the chosen threshold 

(Vicente-Serrano & Beguería-Portugués, 2003). Details on the estimation and uncertainties of the 

GPD parameters can be found in the supplementary material. Optimally selected thresholds should 

provide the best return-time estimates for extremes at all levels; however, it is not necessary that they 

correspond to those deemed most relevant for impacts. A threshold of drought severity below -0.5 was 

selected to ensure a stable estimation and stationarity over each 30 year time-windows centered on 

each SWL. See the supplementary material for more details.  

 

The ensemble mean changes in drought characteristics under different SWLs compared to the baseline 

were evaluated through the Mann-Whitney-Wilcoxon test (Storch & Zwiers 2003; Swain & Hayhoe 

2015) and the corresponding p-value. This non-parametric test has the advantage of making no 

assumptions about the distribution of the data and was used to determine whether the mean values 

computed for the reference baseline and the specific warming levels are significantly different at a 

chosen level of significance. 

 

3. Results 
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Figure S1 shows statistics of drought duration based on SPEI-12 in the baseline and under the SWLs 

considered for the regions defined in Figure S2. The distributions comprise duration values over all 

climate members and land pixels of the region, for which median and average durations are reported 

in Table S3. Over all global land surface pixels (excluding Antarctica), the average and median 

drought duration in the baseline is 7 months (Figure S8). There is some variability in drought length 

among regions, with droughts presently lasting longest in Oceania (12 months) while Northern 

Europe faces the shortest (5 months) drought events. The global median drought length is projected to 

slowly increase with warming from 8 months under 1.5°C warming to 9.5 months under 3°C 

warming. The global average drought length, however, shows a much more pronounced rise, to 9 and 

11 months under 1.5°C and 2°C warming, respectively, which further climbs to 18 months when 

warming reaches 3°C. Apart from an increase in drought length for the majority of global land areas 

under warming, this implies a shift towards an increasingly positively skewed global distribution of 

drought length, with large variations in projected changes between regions and very strong increases 

in duration for some regions.  

 

Northern Africa will experience the most dramatic rise in drought persistence. With median drought 

duration rising to prevail up to 20% of the time under 3°C of warming, drought conditions as defined 

for the baseline may become almost normal conditions here in a few decades if present rates of 

warming continue. Strong increases in drought length aggregated over regions are also projected for 

Western and Southern Africa, the Caribbean, Central America, Southern Europe and West Asia. In 

general, droughts are projected to shorten in length for most land areas north of latitude 55°N, as 

exemplified by the projected distributions for the Russian Federation, Northern Europe and North 

America. Due to the spatial extent of the latter and the strong reduction in drought length in Canada 

and southern Alaska, the strong rise in drought length projected for southern and central states of the 

US is masked. Similar strong rises in drought length for Australia, Iran, north-west China, Chile, 

Venezuela and the central and eastern regions of Brazil are offset by less strong or opposite changes 

in other parts of these macro-regions. Even though climate in Australia is mainly arid or semi-arid, the 

recent observed increases in precipitation and atmospheric evaporative demand in the west and 

decreases in the east depicted by Donohue et al. (2010) are in line with the observed changes 

presented in Figure 1. Donahue et al. (2010) found that the Penman formulation produced the most 

reasonable estimation of potential evaporation dynamics in Australia. In their work an attribution 

analysis was performed using the Penman formulation to quantify the contribution of each input 

variable to overall trends in potential evaporation. Whilst changes in air temperature were found to 

produce a large increase in Penman potential evaporation rates, changes in the other key variables 

each reduced the rates, resulting in an overall negative trend in Penman potential evaporation. This 

supports the premise that the greater the number of the four key variables that are incorporated in a 
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formulation, the more realistic the trends from that formulation become (Chen et al., 2005; Shenbin et 

al., 2006). 

Spatial variations within macro-regions of projected droughts are better captured in Figure 1 that 

shows the global distribution of ensemble median drought magnitude in the baseline and changes 

therein under different levels of warming. Table S4 further lists the percentage of land fraction in each 

region that will experience a doubling and halving of drought magnitude. At present, drought 

magnitude is by far the largest in Australia, Eastern Africa, central Argentina and North-Eastern 

Brazil. Changes in drought magnitude and duration are strongly correlated and in the regions with 

increasing drought duration mentioned above, drought magnitudes are projected to rise rapidly with 

warming, with a doubling of drought magnitude in 30%, 38% and 51% of global land surface 

(excluding deserts, hyper-arid and cold regions) under 1.5, 2 and 3°C of warming, respectively. In 

most of Africa (except Equatorial Africa), Southern Europe, the Caribbean, Central America, West 

Asia and Australia accumulated water deficits could become more than 5-fold in size under 3°C of 

warming. In approximately 20% of the global land surface drought magnitude will halve with 

warming to 1.5°C and higher levels. This is mainly in the Russian Federation, southern Alaska and 

Canada, Northern Europe, but also parts of South-America, Eastern and South-eastern Asia.  

Figure 2 shows for each macro-region the median projected frequency (over all cells and climate 

members) under the different warming levels (vertical axis) of baseline drought magnitude return 

values (horizontal axis). Increasing (decreasing) drought recurrence is denoted by lines under (above) 

the identity line, the climate ensemble median absolute deviation (shaded areas) describes the climate 

inter-model spread uncertainty. The corresponding spatial pattern of changes in the frequency of the 

present 50 year drought magnitude is presented in Figure 3. In regions with a strong increase in 

drought magnitude, events that are now considered very extreme show a rapid increase in drought 

occurrence with warming. More than 15% of global land could be exposed to a baseline 100-year 

drought event every 5 years under 3°C of global warming. For most of Africa, aside the zone around 

the equator, but also the Caribbean, Central America, Central and West Asia, Oceania and north-west 

China, droughts are projected to happen 5 to 10 times more frequent even under ambitious mitigation 

targets. Strong rises in recurrence frequency with warming are further projected for Southern Europe, 

large parts of Western and Eastern Europe, southern and central US, Chile, as well as central and 

eastern regions of Brazil. Regions with a reduction in drought magnitudes show an opposite tendency 

with a reduction in drought frequency.  

 

4. Discussion and Conclusions 
 

With increasing levels of warming more heat is added to the climate system. This induces changes in 

evaporative demand and precipitation that are shown to follow the Clausius-Clapeyron (C-C) scaling 
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(Scheff & Frierson 2014). Even though, there is still an open debate on the validity of the C-C law 

(e.g. Vicente-Serrano et al., 2017) most climate models project an increase in global precipitation of 

1-3% per °C of global warming, although this value shows pronounced spatial variability (Liu et al., 

2013), with the global average precipitation constrained by the atmospheric radiative energy balance 

(Held & Soden 2006). Potential Evapotranspiration (PET), on the other hand, is predicted to increase 

by 1.5%-4% per °C warming (Scheff & Frierson 2014). This is confirmed by the progressive increase 

in ETo with warming that is projected with high confidence for all macro-regions (Figure S9). This 

implies that in the absence of a significant precipitation increase, this scenario leads to a general 

increase of drought conditions, as the drying of the surface is enhanced with water scarcity. However, 

regional changes in ETo depend also on the expected trends in other variables such as solar radiation, 

humidity and wind speed, which may diminish or exacerbate the role of temperature. 

  

 

Projected changes in precipitation exhibit substantial spatial variation (Figure S9), with increases for 

most mid- and high-latitude land masses and decreases over mid-latitude and subtropical arid and 

semi-arid regions. For many regions uncertainty in precipitation projections remains high (Carrão et 

al., 2017), particularly at higher levels of warming. There are few zones where the supply of water 

outweighs continental drying and the water balance will not progressively decline, like Northern 

Europe, South-eastern South America, Central Africa, Canada, the Russian Federation and China 

(except the north-west).  

 

There is further evidence of warming-induced changes in circulation patterns and large-scale 

convective organization that might contribute to the extension of areas experiencing droughts. Since 

two years, the Greater Horn of Africa grapples with the worst drought in decades, affecting millions 

of people. It is linked to the strong El Niño of 2015-2016, which could double in frequency owing to 

global warming (Cai et al., 2014). This increase in El Niño frequency results from warming surface 

waters over the eastern equatorial Pacific that occurs faster than in the surrounding ocean waters (Xie 

et al., 2010), which drastically affects convection patterns and the development of severe droughts in 

drought prone areas such as Eastern and Southern Australia, North Eastern South America, India and 

Southern Africa (Davey et al., 2014; Ashcroft et al., 2016).  

 

Other possible changes in large-scale atmospheric circulation that affect moisture regimes have been 

discussed in the literature. For instance, the seasonal migration of the intertropical convergence zone 

(ITCZ) and the locations of the large-scale subtropical dry zones and of the major tropical and 

subtropical deserts are projected to expand poleward due to the extension of the Hadley cell (Lu et al., 

2007). This in turn causes a drying tendency on the poleward flanks of the subtropics due to the 

expansion of the descending branch of the Hadley Cell, while the mid-latitude meridional circulation 
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cell moves poleward, shifting the main storm tracks towards the poles (Seager et al., 2010). 

Subtropical drying and poleward moistening are also enhanced by an increase in poleward moisture 

transport by transient eddies, which to a certain extent implies that evaporated moisture diverges from 

the anticyclonic to the cyclonic regions (Held & Soden 2006, Chou et al., 2009).  

 

As a result of these warming induced changes in moisture supply and demand, approximately 2/3 of 

the world population will experience progressively longer and more frequent droughts for increasing 

warming levels. Global mean drought length is projected to progressively increase with warming, 

with a rate of 2.0 months/°C until reaching 1.5°C and then rapidly accelerating to up to 4.2 months/°C 

when approaching 3°C of global warming. This acceleration in drought duration could lead to more 

frequent mega-droughts (a decade-scale drought) only few times observed in the past, like the dust 

bowl in the United States (Fye et al., 2003), the persistent drought in the Sahel (Folland et al., 1986) 

or the recent “Millennium Drought” in southeast Australia depicted as the worst drought on the 

records (van Dijk et al., 2013). Ault et al. (2014) show that in the U.S. Southwest the risk of a decade-

scale mega-drought in the coming century is at least 80%, and could be higher than 90% in certain 

areas. There is evidence of recurrent mega-droughts reconstructed from paleoclimate data over north-

central Europe in the last millennium (Cook et al., 2015), which reinforce other evidence from North 

America (Cook et al., 2014) and Asia (Cook et al., 2010) that droughts were more severe, extensive, 

and prolonged over Northern Hemisphere land areas before the 20th century.  

Elevated CO2 (eCO2) might partially offset the ecological effects of droughts by allowing plants to 

adapt even with less canopy conductance and lower levels of soil moisture available (Swann et al., 

2016; Betts et al., 2007). The models included in the present analysis do not consider the impact of 

CO2 fertilization, therefore the drought changes might be less intense if considering this effect. 

However, the level of uncertainties in representing the effects of eCO2 is still high to draw conclusive 

results in a global analysis. For instance, there is no evidence of long-term eCO2 effects on 

hydrological partitioning in tropical rainforest catchments (Yang et al., 2016). 

The main impact of long lasting droughts is linked to the lowering of groundwater and surface water 

reservoir levels that may temporary buffer demand under dry conditions. The projected strong 

lengthening of droughts will impede replenishment of water supplies and may result in a difficult 

recovery after the drought and long-term socio-economic impacts for any specific region (for 

instance, Diffenbaugh et al., 2015). The strong increase in frequency of droughts may further pose 

considerable challenges for the design of water resource systems in many regions of the world to cope 

with more frequent periods of reduced water availability.  
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Figure 1. Drought magnitude (upper-left plot) and relative changes [%] in drought magnitude with respect to 
the baseline for the three specific warming levels (1.5°C, 2.0°C, 3.0°C). Changes that are not statistically 
significant at the 10% level are shaded out in black. Territories excluded from the analysis are masked in grey.  
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Figure 2. Changes in return periods of droughts in the different macro regions for 1.5°C (grey), 2°C (orange) 
and 3°C (green). Dashed black line represents the no-change curve and inter-model median absolute deviation 
(shaded areas). 
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Figure 3. Drought Magnitude for 50-yr return period droughts (baseline) and the differences between return 
periods of 50-yr droughts for different warming levels (1.5°C, 2.0°C and 3.0° C). Changes that are not 
statistically significant at the 10% level are shaded out in black. Territories excluded from the analysis are 
masked in grey. 

 


