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A B S T R A C T

Delimitation of soil types within a farm field is key for site-specific crop management. An alternative to this, is to
develop pedometric techniques that allow an efficient combination of soil survey information and high-re-
solution terrain attribute data. The aim of this study was to present and evaluate a pedometric technique to
delimit soil-specific zones at field scale by coupled Random forest, fuzzy k-means clustering and spatial principal
components algorithms (RF-KM-sPCA) and by using information from soil surveys and terrain attributes derived
from a digital elevation model. The protocol involves three-steps: 1) automatic classification of small (20x20m)
spatial units (SU) using the knowledge of the soil map units present in the farm landscape, 2) aggregation of SUM
at farm scale and 3) validation of soil-specific zones. For the first step, we used the random forest algorithm with
10 terrain attributes. For the second step, KM-sPCA algorithms were used to cluster within field SU accounting
for autocorrelation. For the third step, apparent soil electrical conductivity and yield maps was used to validate
the delimitation of soil-specific zones. This technique produced more contiguous zones than other cluster
methods which do not use spatiality. Six farm fields with highly differences in soils were partitioned by the
proposed pedometric strategy. Apparent soil electrical conductivity and yield maps present significant differ-
ences among zones in all experimental fields. This analytic strategy, based in easy-to-obtain data, could be used
to improve precision agricultural managements.

1. Introduction

Soil properties that limit crop yield within agricultural fields often
vary considerably over space and time (Castro Franco et al., 2015;
Gebbers and Adamchuk, 2010). Usually, this variability is intentionally
ignored in soil sampling schemes, laboratory analyses and agronomic
strategies for crop management. Hence, it appears that applying stra-
tegies for soil-specific conditions in the context of precision agriculture
would have the potential to improve the way in which soils are cur-
rently managed. To achieve this, the method used to delimit the com-
plexity of soils of agricultural fields in subareas according to the soil
type should be simplified, so that these subareas could be individually
controlled with respect to management decisions (Fraisse et al., 2001;
Johnson et al., 2001).

Pedometrics techniques is the application of mathematical and
statistical models to study the distribution and genesis of soils (Rossiter,
2012), which within the context of digital soil mapping (McBratney
et al., 2003), could be useful to define soil-specific zones in agricultural
fields. Generally, there are three pedometric approaches. The first one,

known as disaggregation of soil map units (DgSMU), allows delimiting
soil-specific zones at different scales by combining information ob-
tained from conventional soil surveys with information obtained from
digital soil mapping (Bui and Moran, 2001). The second one estimates
the spatial distribution of soil properties by using geostatistical methods
(Hempel et al., 2008). The main disadvantage of this approach, is that a
huge number of soil samples have to be collected and analyzed to
adequately represent the soil spatial variability (Fraisse et al., 2001).
The third approach estimates soil spatial patterns through machine
learning algorithms by using ancillary data such as apparent soil elec-
trical conductivity, remote sensing, and digital elevation models (DEM)
(Ahmad et al., 2010; Castro Franco et al., 2015; Nitze et al., 2012; Scull
et al., 2003).

In South America, the first and third approaches have had a great
potential to generate useful cartography to be implemented in soil-
specific management strategies. This is because in this region several
soil surveys are available, which can be disaggregated using digital soil
mapping tecniques (Pennock et al., 2015; Sanchez et al., 2009); Spa-
tially, this conventional survey is formed by polygons or Soil Map Units
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(SMU) according to their soil-landscape relationships (Jenny, 1941;
McBratney et al., 2003). Each SMU represents the “aggregation” of a
number of soil series which are identified by their spatial correspon-
dence; hence, each SMU is considered as a spatial generalization that
can be disaggregated (Nauman and Thompson, 2014). Also, multiple
ancillary information is available, which can be used to classify SMUs
from machine learning algorithms (Brungard et al., 2015; Heung et al.,
2016; Massawe et al., n.d.). Generally, these algorithms are used to

determine the spatial correlation among SMUs and ancillary informa-
tion of environmental data derived from DEM, remote sensing, and soil
sensing, in order to develop a training dataset (McBratney et al., 2003).
The learning relationships between SMU and environmental data are
adjusted in a model which is then applied in the validation procedure.
Within machine learning, Random Forest (RF) is an outstanding algo-
rithm (Gambill et al., 2016). The RF technique is an ensemble learning
technique which generates many classification trees that are aggregated

Fig. 1. Mapping of Soil Map-units (SMUs) according to INTA soil survey at scale 1:50,000 for each agricultural zone, Argentina. Spatial distribution of elevation from digital elevation
model (MDE-Ar) (back)
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to compute a classification (Breiman, 2001; Brungard et al., 2015). RF
usage has had a remarkable growth in pedometrics due to its efficiency
to predict soil properties and classify SMU (Heung et al., 2016).

The couple of fuzzy k-means clustering and spatial principal com-
ponent analysis (KM-sPCA) consists of a spatial multivariate clustering
algorithm which has been demonstrated to be efficient to delineate soil-
specific zones at field scale using ancillary information derived from
precision agriculture technologies (Córdoba et al., 2013). KM-sPCA is
based on principal component analysis but incorporates a constraint
due to spatial correlation or dependence among variables (Córdoba
et al., 2016). To our knowledge, no studies have evaluated coupled RF-
KM-sPCA as a pedometric technique for DgSMU to define soil-specific
zones at field scale.

The aim of this study was to present and evaluate a pedometric
technique for DgSMU to delimit soil-specific zones at field scale by
coupled RF-KM-sPCA and by using information from soil surveys and
terrain attributes derived from DEM. RF was used as an automatic
classification algorithm for SMU. Once the classification was computed,
KM-sPCA was used as a spatial clustering algorithm within each SMU
and soil-specific zones were defined. This strategy was tested in farm
fields of three subregions in the Argentine Pampas region. Soil-specific
zones were validated using information obtained by apparent electrical
conductivity and yield maps. The application of these algorithms will
offer a novel approach to optimize the automatic delimitation of soil-
specific zones at field scale that could be worth for implementation of
precision agriculture management and hydrological models.

2. Materials and methods

2.1. Study area

The study area covered three agricultural zones of the Pampean

region, Argentina, from 32S – 37S to 58W – 62W (Fig. 1), with roughly
different pedological conditions: the southeast of Buenos Aires province
(Zone A), the southeast of Córdoba province (Zone B) and the southeast
of Entre Ríos province (Zone C). Zone A is characterized by the presence
of Petrocalcic Argiudolls with limited soil depth, Zone B is character-
ized by sandy soils, and Zone C is characterized by Vertic Argiudolls.

Two agricultural fields were selected in each zone. In Zone A, fields
A1 and A2 had 42 and 114 ha respectively and were located in Balcarce
(−37.6080 S, −58.6340 W; Datum WGS84) and Tandil (−37.2070 S,
−59.4190 W), respectively. In Zone B, fields B1 and B2 had 42 and
44 ha, respectively, and were located in Canals (field B1: −33.5223 S,
−62.8955 W; field B2: −33.5558 S, −62.7623 W). In Zone C, the
fields selected were adjacent (−32.5144 S, −59.4717 W) with 84.4
and 44.9 ha, respectively.

2.2. Conventional soil survey

In these zones, a conventional soil survey at a scale of 1:50,000 was
developed by the project called “Soil Map Project of the Pampean
Region” (Plan Mapa de Suelos de la Región Pampeana), and was carried
out by the National Institute of Agricultural Technology (INTA) in the
sixties and early nineties (Moscatelli and Pazos, 2000), adopting the US
Department of Agriculture (USDA) Soil Taxonomy as the soil classifi-
cation system (Soil Survey Staff, 2014) (Figs. 1 and 2).

According to that, soils in field A1 correspond to SMUs called M11
and M16, placed in capability classes II_e and II_es, and productivity
indices 79.4_B and 70.4_B, respectively. The SMU M11 is a consociation
of Mar del Plata and Balcarce series. Mar del Plata series is a deep Typic
Argiudoll soil profile, while Balcarce is a Petrocalcic Argiudoll soil
(Fig. 2). A2 soils belong to SMUs Ta19 and MP2, placed in capability
classes III_es and II_es, and productivity indices 67_B and 77.2_B, re-
spectively. Ta19 is a consociation of Tandil and Azul series. MP2 is a

Fig. 2. Spatial distribution of Soil Map-unit (SMU) nearby six experimental fields (left), soil series description plot and percentage within SMU (right).
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consociation of Mar del Plata (80%) and Balcarce (20%) series. Both
fields are in a hillslope landscape, developed on well-drained, non-
saline, and non-alkaline loessic silt loam sediments, and slopes with
gradients from 1 to 3% (INTA, 2010).

Field B1 soils correspond to SMUs called Cs and EAo2. The first is
completely formed by Canals series (100%), while the second is a
consociation of El Aromo and Canals series. B2 soils correspond to
SMUs ALd, Cs2 and EAo3, all of which are consociations. The first one is
between Alejo Ledesma and Canals series, the second one is between
Canals and El Albión series, and the third one is between Canals and El
Aromo series (Fig. 2).

Finally, C1 and C2 soils belong to the SMUs called LEm_II and CBo.
The first SMU is a consociation of La Emiliana and La Matilde series,
which are related to rolling gentle plain surface with a thick loess layer.
The second one is a consociation of Cuatro Bocas and La Tablada series,
which are located in rolling peniplains with a thin loess layer. Cuatro
Bocas and La Tablada soil series are classified as Vertic Argiudolls,
while La Emiliana is classified as Typic Argiudoll (Fig. 2).

2.3. Terrain attributes

A 30-m spatial resolution DEM was used to calculate terrain attri-
butes. This DEM is a revised version of DEM SRTM 30m, developed at
the Instituto Geográfico Nacional of Argentina (MDE-Ar), available on
line at www.ign.gob.ar. In this DEM, (i) the water bodies were identifi-
cated, delineated and determinated; (ii) the voids were filled; (iii) the
pixels values were spatially filtered with respect to their neighboring
values; and (iv) the limits were masked (IGN, 2016).

The terrain attributes calculated from this DEM were: relative slope
position, aspect, curvature, flow accumulated, catchment slope, catch-
ment area, modified catchment area, topographic wetness indices,
convergence index, channel network, valley depth, vertical distance
and topographic position index. All of them were calculated using
SAGA GIS v2.3.1 (SAGA Development Team, 2016).

2.4. Procedure to delimit soil-specific zones

In each study zone, the different SMUs were gathered in an area of
600 ha approximately around each experimental field (Fig. 1). All ter-
rain attributes were delimited according to these areas and a 20-m
regular grid was built. Then, the projected coordinate system POSGAR-
07 Datum WGS84 and the values for each point were added to the grid
attributes table. This procedure was carried out using QGIS v2.16.2
(QGIS v2.16.1 Nodebo, 2016). This grid was used as input for the
DgSUM process, which was done following three steps:

2.4.1. Step 1: SMU classification using RF
A classification was performed with RF based on a 20-m regular

grid, which had the information of all terrain attributes, and the SMU to
which it spatially belongs (Breiman, 2001). The propose of this classi-
fication was to imitate the point of view of soil surveyors, during the
delimitation of each SMUs in the soil survey and to define a topographic
fingerprint for each one (Bui and Moran, 2001). RF used a specific
number of decision trees, ntree, by random selection from the 20-m
regular grid. At each node, a bootstrap sample of predictors was taken
(mtry argument). Two thirds of the bootstrap sample was used, by

Table 1
Area and fluctuation of true/false predictions for SMU in each experimental field.

Field Soil map-unit Area represented (%) Spatial units Prediction (%) Field Soil map-unit Area represented (%) Spatial units Prediction (%)

True False True False

A1 MP8 16.86 32,742 97.30 2.70 A2 MP16 0.57 1178 92.02 7.98
MP11 47.37 92,020 94.70 5.30 SP6 3.73 7689 87.92 12.08
CoAoC 1.74 3371 86.68 13.32 MP18 20.41 42,046 97.85 2.15
Bal15 7.26 14,112 96.87 3.13 Tdf1 0.20 408 82.35 17.65
SP6 1.81 3522 89.98 10.02 MP44 5.00 10,297 93.07 6.93
MP2 0.06 109 77.06 22.94 Eg 1.29 2649 75.80 24.20
LA 0.92 1791 87.27 12.73 MP45 1.71 3527 82.76 17.24
LA4 2.55 4955 95.88 4.12 Bal29 1.39 2853 84.30 15.70
MP24 7.22 14,025 87.24 12.76 Az46 8.09 16,660 97.88 2.12
MP16 0.82 1597 5.26 94.74 CoAoC 0.52 1061 75.02 24.98
R 13.31 25,856 94.81 5.19 Ta19 51.98 107,066 98.00 2.00
Bal4 0.08 153 91.50 8.50 CC9 0.02 50 58.00 42.00

MP46 2.60 5356 79.48 20.52
MP2 2.49 5136 79.77 20.23

B1 Cs2 8.15 20,433 96.77 3.23 B2 Cs2 12.88 32,267 97.31 2.69
EAo2 5.91 14,811 96.03 3.97 Eao 7.56 18,940 95.55 4.45
Cs4 1.95 4882 93.42 6.58 Cs4 0.62 1542 94.62 5.38
EAo2 1.98 4966 94.76 5.24 CoBm 0.66 1660 95.24 4.76
Cs3 0.99 2481 93.99 6.01 EAo3 0.22 546 86.08 13.92
EAo3 0.11 281 91.81 8.19 L 0.72 1793 96.77 3.23
Cs 45.71 114,626 98.29 1.71 Cs1 9.43 23,620 97.81 2.19
EAo1 14.20 35,608 96.04 3.96 LMd2 3.09 7748 96.59 3.41
Cs1 21.00 52,653 98.06 1.94 BGd 0.12 302 93.38 6.62

Cs 43.83 109,761 98.19 1.81
Cs3 0.12 294 94.90 5.10
Ald 2.36 5912 97.53 2.47
EAo2 1.22 3064 95.27 4.73
EAo1 17.17 43,002 96.89 3.11

C1-C2 Lfe 3.29 5982 98.38 1.62
ET 30.29 54,995 98.28 1.72
LEm_II 34.61 62,846 98.58 1.42
GI.TI 6.44 11,700 93.26 6.74
Cbo 15.92 28,913 98.09 1.91
Arg 5.54 10,058 97.27 2.73
LEm 2.60 4713 96.24 3.76
Cbo.h3 1.30 2362 94.83 5.17
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default, to build classification trees. The rest bootstrap (out-of-bag) was
used to estimate the error rate called out-of-bag error (OOB-error),
which was calculated to predict the SMU class of the remaining data
and their comparison with respect to known SMU class. RF was run
using randomForest R package (Liaw and Wiener, 2002; R Core Team,
2016).

RF allowed to detect the dependences between terrain attributes
and SMU class, and to select the relevant terrain attributes and also
calculate variable importance measure (Domenech et al., 2017; Vogels
et al., 2017). Mean-Decrease-in-Accuracy was used as a measure of
variable importance, which is defined as the loss of accuracy measured
by the OOB-error when leaving out a variable (Breiman, 2001). The
global importance for each terrain attribute were compared and ana-
lyzed for all SMUs, by field. Finally, to compare the importance of
terrain attributes between SMUs, a metric of relative importance was
calculated as the ratio between importance of each terrain attribute and
the highest importance at each SMU.

2.4.2. Step 2: spatial multivariate clustering within each SMU
The couple KM-sPCA algoritms was implemented as a methodology

to define the topographic fingerprint in each soil series associated with
different SMUs (Córdoba et al., 2013; Córdoba et al., 2016). The sources
of information were terrain attributes. sPCA is an extension of principal

component analysis, which incorporates spatial dependence between
original variables before they are computed in principal components.
The constraint imposed by spatial data is incorporated by Moran's index
(Córdoba et al., 2016). The goals of clustering analysis by sPCA are (i)
to include many sources of information derived from rising technolo-
gies such as terrain attributes, because this methodology is focused on
spatial multivariate analysis; and (ii) to specify an optimal number of
zones defined by performance indices. KM clustering is a classical non-
hierarchical clustering algorithm that can be implemented by using
statistical software. This algorithm has three primary matrices involved.
The first contains the data matrix X involves n observations with a < p
sPCA each; the second matrix is the cluster centroid matrix V, consisting
of k cluster centroids located in the attribute space defined by the re-
tained spatial principal components. The third is the fuzzy membership
matrix U, consisting of membership values to every cluster in V for each
sample point in X, bounded by the constraint that the sum of mem-
bership values for each observation should be equal to 1. An optimal
fuzzy k partition is defined as a minimization of the weighted measure
of squared distance between data points as class centroids:

∑ ∑=
= =

u dj U v( , ) ( ) ( )m
j

n

i

k

ij
m

ij
1 1

2

Fig. 3. Relative importance of terrain attributes in the classification of each Soil Map-unit (SMU) in each field, based on RF importance classification.
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where m is the fuzziness weighting coefficient (1≤m < ∞) and (dij)2

is the squared distance in the attribute space between point j and class
centroid i. The fully description of the couple fuzzy k-means clustering
and sPCA algoritms used in this work, can be consulted in Córdoba et al.
(2013).

The performance indices of the couple KM-sPCA were coefficient of
partition (fuzziness performance index (FPI)), classification entropy
(normalized classification entropy (NCE)) (Odeh et al., 1992), Xie-Beni
index (Pal and Bezdek, 1995), Fukuyama index (Fukuyama and Sugeno,
1989) and exponent of proportion (Windham, 1981). These indices
were combined in a summary index, which was calculated using the
Euclidian distance of all indices values, previously normalized by their
maximum values obtained through different classification methods
(Córdoba et al., 2013). The sPCA procedure was run using the InfoStat
v2015p Spatial Statistical module (Di Rienzo et al., 2015).

2.4.3. Step 3: validation of soil-specific zones
To validate soil-specific zone delimitation, apparent soil electrical

conductivity (ECa) measured by sensor Veris 3100® (VERIS
Technologies, Salina, KS, USA) and soybean yield maps for 2010 and
2011 were used. Both are tools of precision agriculture which have been
implemented to define site-specific management zones in farm fields
(Bobryk et al., 2016). The operational characteristics and protocol
measurement for Veris 3100® are described in Corwin and Lesch
(2005). The procedure for correction and removal of erroneous yield
monitor data was carried out following the protocol proposed by

Blackmore and Moore (1999).
Considering that ECa and yield may not be independent variables

(i.e. spatial correlation), a random sampling scheme without replace-
ment was carried out in each field. To do this, 100 samples whose size
represented 15% of data were chosen. For each sample, an ANOVA was
adjusted to investigate the effect of soil-specific zones on ECa and yield.
The model applied was:

= + + +y μ S Z S e( )ij i j i ij( )

where yij represents the value of ECa or yield within SMU i, in the soil-
specific zone j; μ represents the general mean; Si is the effect of SMU;
and Z(S)j(i) is the effect of the soil-specific zone within each SMU. This
procedure was carried out using InfoStat v2015p (Di Rienzo et al.,
2015). The Fischer's LSD test was used to determine differences be-
tween means of ECa and yield of soil-specific zones. Differences were
considered significant at P < 0.05. Finally, a visual analysis of the
differences between soil-specific zones in all experimental fields, was
carried out by a graphical method.

3. Results and discussion

3.1. SMU classification based on RF

In Zone A, the classification using RF was estimated for 14 SMUs of
A1 and for 12 SMUs of A2. In Zone B, it was estimated for 14 SMUs for
both fields. In Zone C, it was estimated for 8 SMUs. RF was computed

Fig. 4. Relative importance of terrain attributes in each Soil Map-unit (SMU) classification for experimental field (left) and global variable importance (right) based on Random Forest
algorithm results.
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using 1000 trees in all zones (“ntree” argument), because using a higher
number of trees did not improve the classification performance in any
zone (results not shown). Three terrain attributes were randomly se-
lected for each node in the tree (mtry argument), according to James
et al. (2013).

Table 1 shows the fluctuations of the classification results for each
experimental field. In all zones, the classification had more true pre-
dictions than false ones. Based on these results, we confirmed that the
classification and spatial delimitation of SMUs from available soil
survey for all experimental zones can be achieved using RF and terrain
attributes, in agreement with that reported by Häring et al. (2012). The
proportion of false predictions was related to (i) poor representation of
the SMU area; hence, small proportion of data for classification with RF;
and (ii) strong differences among SMUs at short distance due to changes
in effective soil depth (fields A1 and A2) and soil texture (fields B1, B2
and C1-C2).

3.2. Importance of terrain attributes

RF allowed calculating the most important terrain attributes to
classify each SMU and a global importance scale in each zone (Figs. 3
and 4). The importance of terrain attributes was not homogeneous for
SMUs or experimental zones. Therefore, this process was able to char-
acterize and identify the topographic fingerprint in each SMU.

In Zone A, elevation and valley depth were the most important to
classify SMUs. Although aspect was the third most important for A1, it
did not have the same importance for A2. In Zone B, convergence index,
modified catchment area and channel network were globally the most
important variables. Although curvature was the second most im-
portant variable in B1, it did not have the same importance for B2. In

Zone C, channel network and convergence index were globally the most
important terrain attributes.

These results confirmed those reported by Häring et al. (2012), who
reported that variations of relative importance of terrain attributes
provide essential information to classify SMUs. These variations define
both small scale variations as well as landscape scale patterns. For ex-
ample, the relative importance for elevation differed between MP11
and MP24 in field A1. MP11 has 40% of Balcarce soil series, which is
classified as Petrocalcic Argiudolls, while MP24 presents soil series
classified as Typic Argiudolls. It is well known that elevation patterns
and petrocalcic horizon are spatially correlated, due to the soil genesis
process in Zone A (Amiotti et al., 2001; Pazos and Mestelan, 2002).
Thus, elevation is a remarkable terrain attribute to classify SMUs that
include Petrocalcic Argiudoll soil series, as shown in SMUs MP11 and
MP24.

3.3. Soil-specific zones

Table 2 shows summary index values for the SMUs in each experi-
mental field. The optimal number of zones to delimit within each SMU
is determined when the summary index value is minimized (Córdoba
et al., 2013). MP11 in field A1, Cs in field B1 and CBo in field C1-C2
reached a minimum value when three zones were delimited, while the
rest of SMUs reached this value when only two zones were delimited.
Similar results have been reported by Peralta et al. (2015), who, by
using ECa in the southeastern of the Argentine pampas, determined that
elevation, effective soil depth, yield, FPI and NCE were minimized
when delimiting two or three zones within agricultural fields. Results of
zones delimited within each SMU for each field are shown in Fig. 5.

3.4. Effect of soil-specific zones on ECa

ECa was significantly different among zones delimited in every sets
of samples, for each soil type in all experimental fields (Fig. 6). These
results suggest that the proposed pedometric technique was efficient in
delimiting zones in all experimental fields. The lack of differences for
ECa_30 cm and ECa_90 cm was due to the particular features of each
SMU. For example, ECa_30 cm showed a uniform pattern in SMU MP24,
which was probably due to a heterogeneous soil profile at a depth
further than 60 cm, as is shown for ECa_90 cm. A similar interpretation
might be applied to SMU Ao3 in field B2. In TA19, the uniform pattern
for ECa_90 cm could be explained by similitudes in the thickness and
depth of the argillic horizon (Bt) between Azul and Tandil soil series
(Myers et al., 2010).

ECa_30 cm and ECa_90 cm had greater statistical differences in
zones delimited by soil type in fields C1-C2 than in the rest of SMUs
(Fig. 6). This could be explained by the presence and thickness of
horizons whose clay content was higher than 40% in fields C1-C2. It is
widely known that clay content is a soil property which determines ECa
spatial patterns (Vertic Argiudolls). According to Kitchen et al. (2005),
ECa is a key source of information to identify soil types, when soils have
high clay content. On the other hand, the significant differences for
ECa_90 cm in field B2 might be because of the high salt content at a
depth further than 30 cm, in zones related to SMU EAo3 in field B2
(Corwin et al., 2006).

In fields in Zone A, ECa_30 cm and ECa_90 cm had the least differ-
ence among soil-specific zones, and their values were similar to those
reported by Peralta et al. (2015). Pazos and Mestelan (2002) de-
termined that in soils whose SMUs have presence of Petrocalcic Ar-
giudolls as SMUs MP11 in field A1 or TA19 and MP2 in field A2, the
depth of the petrocalcic horizon varies at short distances (Domenech
et al., 2017). Thus, complex patterns are found because of the vertical
changes in clay content (Amiotti et al., 2001). On the other hand, high
values for ECa_30 cm and ECa_90 cm can be due to zones where the
depth of the petrocalcic horizon is smaller than 50 cm and a shallow
argillic horizon exists, as proposed by Boettinger et al. (1997). In

Table 2
Optimum number of zones within each experimental field based on summary index. Bold
letters means lowest summary index value.

Field Soil map-unit Number of zones Summary index⁎

A1 CoAoC 2 2.00
CoAoC 3 2.61
CoAoC 4 2.75
MP11 2 2.35
MP11 3 1.95
MP11 4 2.87
MP24 2 1.70
MP24 3 1.76
MP24 4 2.22

A2 MP2 2 1.52
MP2 3 1.80
MP2 4 2.12
Ta19 2 1.65
Ta19 3 2.04
Ta19 4 2.27

B1 Cs 2 1.97
Cs 3 1.60
Cs 4 2.25

B2 ALd 2 1.46
ALd 3 1.89
ALd 4 1.93
EAo3 2 1.73
EAo3 3 1.93
EAo3 4 1.99
Cs2 2 2.00
Cs2 3 2.11
Cs2 4 2.51

C1-C2 LEm 2 1.97
LEm 3 2.19
LEm 4 2.46
CBo 2 2.02
CBo 3 1.55
CBo 4 2.08

⁎ Summary index based on fuzziness performance index (FPI), normalized classifica-
tion entropy (NCE), Xie-Beni index, Fukuyama index and a proportion exponent.
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contrast, low values for ECa_30 cm and ECa_90 cm can be due to the
presence of Typic Argiudolls, which have an effective soil depth nearer
than 80 cm, and to the presence of thicker and deeper argillic horizons
(Doolittle et al., 1994).

3.5. Effect of soil-specific zones on yield

Soybean yield was significantly different among zones delimited in
every sets of samples, for each zone in all experimental fields (Fig. 7).
Based on these results (i), zone delimitation could be used to apply site-
specific management and (ii) yield maps may allow the validation of
zones defined by soil type at field scale. A few studies have reported the
use of yield maps to validate pedometric techniques at field scale

(Bobryk et al., 2016).
Soybean yield had the least difference in fields C1-C2 and the largest

in fields A1 and B1. When comparing ECa and soybean yield among
zones in fields C1-C2, their values did not change in the same magni-
tude. Those differences of ECa and yield among zones reflect that the
magnitude of the effect of soil variability depends on the crop and its
management practices. For example, Sadras and Calviño (2001) re-
ported that in zones with presence of Petrocalcic Argiudolls as SMUs
MP11 in field A1 or TA19 and MP2 in field A2, the response of crops to
physical restriction of root elongation were strongly influenced by the
interaction between crop phenology and seasonal pattern rain. So, these
authors demonstrated a marked difference in crop yield response to soil
depth among crop species and reported a ranking of tolerance to

Fig. 5. Spatial distribution of soil-specific zones delimited in each experimental farm field.
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shallow soil as: wheat > soybean > sunflower > maize. Thus, is
possible that the magnitude of differences of ECa among zones reflect
only the soil variability, whereas the magnitude of differences of crop
yield among zones reflect the interaction soil variability, crop species
and agronomic management practices.

Two aspects of our results should be highlighted. Firstly, the
pedometric technique developed here allowed applying zone delimi-
tation by soil type in agricultural fields from soil classification using
conventional soil survey (1:50,000) and from zone delimitation for site-
specific management. Numerous techniques of zone delimitation for
site-specific purposes have been reported (Córdoba et al., 2013;
Córdoba et al., 2016; Gavioli et al., 2016). However, a few of them have
proposed using both soil classification and zone delimitation for site-
specific management. Secondly, the simultaneous use of both ECa and
crop yield allowed determining the usefulness of the delimitation.
Therefore, the implementation of this pedometric technique could bring
useful and worthy information, enabling farmers an improvement in
the management of their resources and thus contributing to mitigate the
environmental risk in their agricultural production system.

4. Conclusions

Here, we presented a robust pedometric technique to delimit soil-
specific zones in farm fields, which coupled two other widely applied
ones. The first was based on an automatic SMU classification using the
Random Forest algorithm, information included in conventional soil
survey and terrain attributes obtained from a digital elevation model.
The automatic SMU classification allowed us to determine association
rules among terrain attributes which determined the spatial distribution
of each SMU. The second technique was based on a spatial dis-
aggregation for each SMU using a cluster analysis of spatial principal
components for terrain attributes in each SMU. This procedure was
applied in six farm fields located in three Argentine agricultural re-
gions, resulting in a delimitation of zones in each field. Zone validation

for decision support of soil-specific management was carried out
through ECa and crop yield maps, which are commonly used as sources
of ancillary information for precision agriculture. Statistical differences
for ECa and soybean yield for each soil-specific zone in all fields de-
monstrated that the technique developed was efficient in identifying
variability and in classifying soil types at field scale. The lack in some
cases of statistical differences was due to particular aspects related to
the depth of the petrocalcic horizon and the depth and thickness of the
argillic one. The validation of soil-specific zones using ECa and yield
maps simultaneously demonstrated to be a useful method to quantify
differences among zones and to determine their potential as a source of
ancillary information for implementing precision agriculture practices.
We conclude that the application of pedometric techniques involving
soil-landscape relationships, information available in conventional soil
survey, sources of topographic digital information and tools of precision
agriculture, might be appropriate to delimit soil types in agricultural
fields. This strategy may allow optimizing the use of inputs (seeds,
fertilizers, and pesticides) and the practices of soil and crop manage-
ment, mitigating the environmental risk on the current agricultural
production system and increasing the profit of emergent technologies.
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