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a b s t r a c t

Thiswork revisits the dynamic behaviour of stirred continuous reactors inwhich a single bioreactionwith
unknown kinetics occurs. Conditions on the feeding strategy to avoid washing out the biomass and falling
in batch operation are obtained. These conditions derive in a closed positively invariant region including
the desired operating point. It is stated that no closed orbitsmay exist in this region and, furthermore, that
no fixed point exists but on one of its borders. Therefore, global stability is achieved by finding a feeding
law that fulfils the aforementioned invariant conditions and gives a single equilibrium for a first-order
dynamics. These results are useful to determine the stability properties of different control laws and,
more importantly, to design new ones. The main advantages of the proposed approach are its simplicity
and that, differing from previous results, input saturation does not affect stability results. The potentiality
of the developed tools is illustrated by means of classical and novel feeding laws.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A continuous bioreactor is a vessel where a biochemical re-
action takes place while fresh medium is continuously supplied
and an effluent stream is withdrawn to keep volume constant.
We focus on continuous stirred-tank bioreactors in which biomass
is suspended in the liquid medium and the composition of the
effluent is supposed to be the same as in the vessel.

This type of bioreactors has beenwidely used in industry during
the last decades with several purposes: either to produce chemical
compounds, to cultivate biomass, for extraction of intracellular
products and in bioremediation. They are also receiving a renewed
interest in research. Since microbial growth occurs in an unchang-
ing environment, continuous bioreactors are a source for large
volumes of uniform cells or protein. This is fundamental for low
noise characterisation of engineered microorganisms and biolog-
ical circuits in synthetic biology (Canton, Labno, & Endy, 2008;
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Saldanha, Brauer, & Botstein, 2014; Scott, Gunderson, Mateescu,
Zhang, & Hwa, 2010).

Continuous bioreactors are long-term processes along which
set-points, control objectives, physicochemical variables and dy-
namic behaviour can be changed by the operator. For instance,
in research applications it is interesting to grow cultures under
different conditions in order to properly characterise the mi-
croorganisms and to find optimum productivity (Paalme, Elken,
Kahru, Vanatalu, & Vilu, 1997; Takahashi, Miller, Ekness, Dunham,
& Klavins, 2015). Therefore, global stability is essential for their
successful control. To make most profit of the process, it is also
convenient to minimise the transient between consecutive steady
state operating points.

Control of continuous bioprocesses has been addressed using
different design tools. Linear control theory has been applied in
Dunn, Heinzle, Ingham, and Přenosil (2003). Exact feedback lin-
earisation has been exploited, for instance, in Bastin and Van Impe
(1995), Perrier and Dochain (1993) and Proll and Karim (1994), but
input flow saturation impacts directly on the controller stability
and performance. Lyapunov theory has also been used both for
stability analysis and control design (Mailleret, Bernard, & Steyer,
2004; Mazenc, Harmand, & Malisoff, 2016; Sbarciog, Loccufier,
& Noldus, 2005). In Sbarciog et al. (2005), Lyapunov functions
are used to determine domains of attraction of stable equilibria
for open-loop processes in which the dilution rate is constant.
In Mazenc et al. (2016), sampled measurement of substrate con-
centration is used for feedback control but it requires a model
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of the growth kinetics. In Karafyllis, Malisoff, and Krstic (2015),
the control of an age-structured continuous bioreactor modelled
by a partial differential equation is addressed, but the effect of
substrate on growth rate is not considered. InMailleret et al. (2004)
globally stable feedback laws are designed, being the feedback gain
dynamically adapted in such a way that control never saturates.
In this control, speed of convergence is not an issue, so it is not
set by controller tuning. There are other global control approaches
(Rapaport & Harmand, 2002), but they often do not explicitly
consider the constraints on the input flow.

Here we propose a simple and systematic methodology to
design globally stabilising controllers for continuous bioreactors
involving a pure culture growing on one limiting substrate. The
trade-off between convergence speed and global stability becomes
clear. One of the main advantages of the proposed approach is
that input flow saturation does not affect stability, so the designer
should not care about it. From a bioengineering viewpoint, this
paper offers a mathematical analysis to re-think and understand
trade-offs and limitations of empirical feeding laws.

We derive our results from a mass balance model of a contin-
uous bioprocess in which a single bioreaction occurs, a common
approach in the literature (Bastin & Van Impe, 1995; Mailleret et
al., 2004). Since no particular expression for the reaction kinetics is
considered, this model is suitable to describe the growth of a broad
variety of microorganisms. The method presented here is also a
basis for analysing and designing controllers for more complex
bioreactions.

2. Operating modes and dynamic model

2.1. Modes of operation

In industry, continuous reactors are often operated as
chemostats, that is the pump feeds fresh medium into the vessel
at a constant rate. Chemostats reach their steady state when the
dilution of the culture equals the microbial growth. Thus, the
experimenter manipulates the specific growth rate of microor-
ganisms by setting the set-point of the feeding pump. However,
chemostats suffer from some limitations. They are not reliable
to regulate specific growth rates close to maximum since an un-
expected or unmodelled growth inhibition may lead to biomass
wash-out. The culture might be lost during transient from one
steady state to another one unless set-point changes are made
slow enough. Additionally, multiplicity occurs when, as usual, the
growth is inhibited by a nutrient in excess.

Different closed-loop strategies have been developed as alter-
native to chemostats. For instance, nutristats regulate substrate
concentration at a given set-point. This operating mode avoids
multiplicity and allows driving the biochemical reaction to maxi-
mumspecific growth rate conditions. This operation is restricted to
those processes inwhich the nutrient can be reliablymeasured on-
line in lowconcentrations like inKleman, Chalmers, Luli, and Strohl
(1991) and Rutgers, Breure, and Andel (1994). On the other hand,
turbidostats regulate cell density at a prescribed value (de Vree,
Bosma, Wieggers, Gegic, Janssen, Barbosa, & Wijffels, 2016; Lee,
Boccazzi, Sinskey, & Ram, 2011). Cell density is continuously mon-
itored using a spectrophotometer/turbidometer to measure the
optical density for control purposes (Bolic, Larsson, Hugelier, Lantz,
Krahne, & Gernaey, 2016), or other methods based on dielectric
permittivity (Downey, Graham, Breit, & Glutting, 2014). Other op-
erating methods use on-line measurement of other variables such
as pH, dissolved oxygen (DO), oxygen uptake rate (OUR), oxygen
transfer rate (OTR), chemical oxygen demand (COD) to indirectly
regulate a key variable of the biochemical reaction (Nakano, Lee,
Yoshida, Matsumoto, Shiomi, & Katoh, 2006; Simova, Beshkova,
Angelov, & Dimitrov, 2008).

In all thesemodes of operation, the dilution rate is manipulated
to drive the process towards the desired operating point. Typically,
set-point step and ramp changes are implemented to study the
effects of the specific growth rate on the production rate and other
issues. However, arbitrary set-points for both biomass and sub-
strate concentrations cannot be achieved by onlymanipulating the
dilution rate because of reaction constraints. To overcome them, a
piece-wise constant inlet substrate concentration profile is often
implemented, limited by maximal biomass concentration or OTR
constraints. The switching times are chosen separated enough so
that the process is mostly operated at steady-state. A time of five
generations of microorganisms in the new macroscopical steady-
state is considered enough to assure internal steady-state in the
cell metabolism.

2.2. Mass balance dynamic model

We consider continuous bioprocesses in which a single species
of microorganisms grows in a perfectly stirred vessel. It is assumed
that the growth is limited by a single carbon and energy source
(CES) whereas other required nutrients are in excess or suitably
regulated. It is important to remark that no particularmodel for the
kinetics of the reaction is considered. In fact, bioreactions obeying
different types of kinetics could be:monotonic kinetics likeMonod,
Teissier and Moser, inhibitory kinetics by excessive substrate like
Haldane, inhibitory kinetics by excessive biomass like Contois, etc.
(Bellgardt, 2000). Therefore, the results presented below apply to
a very wide range of bioprocesses. Further, the extension to even
more general processes involving dual substrates will be briefly
discussed too.

Let us consider the bioreaction mass balance model:

Ẋ = µX − D(t)X X ∈ ℜ+ (1a)

Ṡ = −yµX + D(t)(S in(t) − S) S ∈ ℜ+ (1b)

where X and S are the biomass and substrate concentrations in
the reactor, respectively, µ is the specific growth rate, D is the
manipulated dilution rate, y is the substrate-to-biomass yield and
S in(t) is the substrate concentration in the inlet flow. In the mass
balance model (1), endogenous metabolism and cell maintenance
are neglected.

Mass balance model (1) fulfils the dynamic restriction

Ż = D(S in(t) − Z) (2)

where Z = yX + S is the amount of CES per volume that was
supplied into the reactor and is currently part of the cells or diluted
in the liquid medium.

Assumption 2.1. Let µ(X, S, q) be a globally Lipschitz function
satisfying µ(X, 0, ·) ≡ 0, µ(X, S, ·) > 0 ∀S > 0. where q ∈ Q
gathers uncertain parameters and other variables (DO, tempera-
ture, pH , etc.) affecting the kinetics.

Note that Assumption 2.1 is not restrictive from the bioprocess
viewpoint since it is verified by most of the kinetic models used in
biotechnology. The extension to other kinetic functions modelling
complete inhibition is discussed in Section 5.

Assumption 2.2. Let S in(t) be positive and piece-wise constant.
That is, given a set of instants {tj} that partitions the process time
into intervals Ij = [tj, tj+1) and a set of positive constants {S inj }, then
S in(t) = S inj ∀ t ∈ Ij.

Recall that the metabolic steady-state is achieved some time
after the transient in the reactor media vanishes. Therefore, time
intervals Ij are supposed to be much longer than the settling time
of the closed-loop responses.
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Assumption 2.3. The dilution rate is nonnegative and bounded
0 ≤ D(t) ≤ D̄ ∀t .

In continuous mode, D(t) ≥ d ∀ t ≥ 0, for some sufficiently
small d > 0. Note however that this constraint can be conveniently
relaxed as follows:

Definition 2.1. We will say that a bioprocess operates in contin-
uous mode when, for each time interval Ij, there exists 0 ≤ TCj ≪

(tj+1 − tj) such that D(t) ≥ d ∀ t ≥ tj + TCj, for some sufficiently
small d > 0.

This definition includes processes inwhich the control saturates
at D = 0 during some time periods along the transient response.

Let us normalise the concentrations w.r.t. the piece-wise con-
stant inlet substrate concentration S in(t):

x :=
yX
S in

s :=
S
S in

z :=
Z
S in

(3)

After applying this normalisation and some abuse of notation, the
mass balance model is rewritten as:

ẋ = µ(x, s, q)x − D(t)x x ∈ ℜ+ (4a)
ṡ = −µ(x, s, q)x + D(t)(1 − s) s ∈ ℜ+ (4b)
ż = D(t)(1 − z) z ∈ ℜ+ (4c)

where the state jumps at the switching instants tj:

(x(tj), s(tj), z(tj)) =
S inj−1

S inj
lim
t→t−j

(x(t), s(t), z(t)) (5)

Note that (4) is a non-minimal realisation of (1) since the state
lives on the subspace L = {(x, s, z)|z = x + s}.

3. Invariance, equilibria and stability of continuous biopro-
cesses

3.1. Invariance

Under Assumption 2.3, the set [0,maxtS in(t)] is an invariant
set for Z . Furthermore, since both S and X satisfy (2) and are
nonnegative under Assumptions 2.1–2.3, then they are bounded
by (S, yX) ∈ [0,maxtS in(t)]2. Therefore,

IR =

⎧⎨⎩(x, s, z) ∈

[
0,

maxj S inj
minj S inj

]3

∩ L

⎫⎬⎭ (6)

in the normalised state space is positively invariant. Further-
more, concentrations evolve in such a way that z is piece-wise
monotonous in IR, i.e. it is either non-decreasing or non-increasing
for every time interval Ij.

Since the time-dependent switching is supposed to occur at low
frequency and the state jumps within the invariant region IR, it
suffices to study the response of (4) for an arbitrary time interval Ij
and an arbitrary initial condition in IR. Consequently, from now on
we will omit subscript j unless necessary.

Let us define the arbitrary initial state P0
:= (x0, s0, z0) ∈ IR.

Then, the following set of IR is also positively invariant:

IR0 = {(x, s, z) ∈ IR|z ∈ ⟨z0, 1⟩} (7)

where the notation ⟨z0, 1⟩ := [min{z0, 1},max{z0, 1}] was used.
By simple inspection of (4), invariant sets exist on IR0 indepen-
dently of the feeding law. They are:

X̄ = {(x, s, z) ∈ IR0|x = 0} (8a)
Z = {(x, s, z) ∈ IR0|z = 1} (8b)

X̄ means biomass wash-out, whereas Z is the reaction invariant
(Stamatelatou, Syrou, Kravaris, & Lyberatos, 2009). These invariant
sets are depicted in Fig. 1.

Fig. 1. Invariant region IR0 of (4) for initial conditions on z0 < 1 (left) and
z0 > 1 (right). Invariant wash-out subregion X̄ , equilibrium subregionZ and batch
subregion S̄.

3.2. Equilibria

Let us analyse first the equilibria of the autonomous system (4)
with D = 0, i.e. in batch operation mode. By simple inspection of (4)
we realise that z is constant in batch mode. Also, every point in X̄
is an unstable fixed point. Analogously, every point in

S̄ = {(x, s, z) ∈ IR0|s = 0} (9)

is amarginally stable fixed point. Furthermore, note all trajectories
initiated in IR0 with x0 > 0 converge towards S̄ at constant z.
Since z is constant during the batch, no closed orbit exists on IR0.
Consequently all orbits not originated in a (non-isolated) fixed
point of the autonomous system are straight lines pointing to S̄
at constant z. Note also that convergence to S̄ is asymptotic.

Let us see now possible equilibria of (4) in continuous operation
mode.

Assumption 3.1. Let the dilution rate be a globally Lipschitz time
invariant feedback law D(x, s) satisfying Assumption 2.3.

Result 3.1. There are no closed orbits nor fixed points of system (4)
in the interior of IR0.

IR0 is a closed positively invariant set. Since the system is planar
on L and z is monotonous, neither strange attractors nor limit
cycles can exist.

It is easy to see also that any fixed point is on the border of IR0.
On the one side, in continuous mode (D > 0), all orbits originated
in IR0, even those starting in X̄ and S̄ , will converge to Z . Since the
systemdynamics onZ can be described by a first-order differential
equation, then only fixed points can exist on it. On the other hand,
in batch mode (D = 0), all orbits originated in the interior of IR0
will converge to a point in S̄ while X̄ and S̄ are sets of non-isolated
equilibria. Therefore, also in batch mode, only fixed points on the
border of IR0 exist.

The desired operating point P∗
= (x∗, s∗, 1) of the process is,

of course, on Z , which can be written also as P∗
= (x∗, 1 − x∗) or

P∗
= (1 − s∗, s∗) with some abuse of notation.

3.3. Stability of a continuous bioreactor

Batch operation must be avoided, otherwise the state will not
converge to Z but to S̄ . In continuous mode, convergence to the
wash-out equilibrium Pw = (0, 1, 1) must be avoided. This point
will be a stable node or a saddle, depending on the feedback control
law. (Semi-)global stabilisation of P∗ requires Pw to be a saddle
point attracting only the orbits originated in the invariant set X̄ .
However, this design specification is not enough in practice since
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unmodelled factors such as mortality can result in biomass was-
out. Therefore biomass concentration should not fall below very
low concentrations in practice.

In the following,we derive conditions for X̄ and S̄ to repel orbits
originated in the interior of IR0.

It is quite obvious from (4a) that if D(x, s) ≤ µ(x, s, q)∀z ∈

⟨z0, 1⟩, ∀q ∈ Q, for some x < x∗, then

RX = {(x, s, z) ∈ IR0|x ≥ x} (10)

is positively invariant. If we accept x small enough, by continuity
we simply have to check that X̄ is locally non-attractive.

Wash-out avoidance condition (WAC)
If the dilution rate verifies

lim
x→0+

D(x, s) − µ(0, s, ·) < −ϵ ∀s ∈ ⟨z0, 1⟩ (11)

ϵ ≥ 0, then a positively invariant region RX exists for some
sufficiently small x. Note that a feeding law satisfying (11) avoids
also convergence to the wash-out operating point Pw , i.e.makes Pw

a saddle point.

Strong batch avoidance condition (sBAC)
There are no equilibrium points on S̄ iff

D(x, 0) > ϵ ∀x ∈ ⟨z0, 1⟩. (12)

This condition can be very restrictive and, indeed, is not satisfied
by some classical feeding laws. Assuming s0 > 0, we can relax it by
requiring S̄ to be repellent.

Weak batch avoidance condition (wBAC)
S̄ is locally non-attractive if D(x, s) verifies

lim
s→0+

D(x, s)
µ(x, s, ·)

− x > ϵ ∀x ∈ ⟨z0, 1⟩. (13)

By continuity, if D(x, s) fulfils (12) or (13), then there exists s
sufficiently small such that D(x, s) ≥

xµ(x,s,q)
1−s ∀z ∈ ⟨z0, 1⟩, ∀q ∈ Q

and consequently the region

RS = {(x, s, z) ∈ IR0|s ≥ s} (14)

is positively invariant. Let us call

IR∗
= RX ∩ RS ⊂ IR0. (15)

Obviously, if the wash-out and batch invariance conditions hold,
then IR∗ will be positively invariant.

Result 3.2. If D(x, s) satisfies conditions (11), (13) and

µ(x, s, q)|(x+s=1) − D(x, s)|(x+s=1) = 0 (16)

has a single solution (x∗, s∗) ∈ (0, 1)×(0, 1), then all orbits originated
in IR∗ globally converge to P∗

= (x∗, s∗, 1).
This result follows from the invariance of IR∗ and Result 3.1.

Since no equilibrium can exist in IR∗ outside Z , it suffices to verify
the existence of a single equilibrium on IR∗

∩ Z . In other words,
it suffices to verify the existence of a single equilibrium for the
first-order x−dynamics (4a) with D(x, 1 − x) or, analogously, for
the s−dynamics (4b) with D(1 − s, s). Note that all equilibria of
the first-order x− and s−dynamics on Z in IR∗

∩ Z are also roots
of (16). Recall that the wash-out equilibrium Pw = (0, 1, 1), that
is always solution of the first-order x− and s−dynamics on Z for
any bounded D, is outside IR∗. The same happens with the batch
equilibrium Pb = (1, 0, 1).

Remark:Result 3.2 applies to IR∗
= RX when the sBAC (12) holds

instead of the wBAC (13).
Note: whilst ϵ = 0 in (11)–(13) gives nominal conditions

for invariance of IR∗, ϵ > 0 provides robustness against model
uncertainties, delayed measurement and sampled control.

3.4. Control design procedure

Based on the previous results, we can summarise the procedure
to design a globally stabilising feedback control law as follows.

• Design D(x, s) satisfying Assumption 3.1 that locally sta-
bilises the desired operating point P∗

= (x∗, s∗).
• Shape D(x, s) so that:

- the WAC (11) holds,
- the BAC (13) or (12) holds,
- (16) has a single solution (x∗, s∗) ∈ (0, 1) × (0, 1).

Recall that saturation of the control action D does not affect
global stability.

4. (Semi-)global stability properties of locally stable feedback
laws

We will illustrate now how the previous results can be used
to determine the (semi-)global stability features of feeding laws,
and to design (semi-)globally stable ones as well. We start our
analysis with the classical open-loop control law to illustrate how
the invariance conditions are to be checked and their relationswith
stability.

4.1. Open-loop control (chemostats)

In chemostats, the dilution rate is fixed at the desired specific
growth rate:

D∗
= µ∗. (17)

Chemostat dynamics have been widely studied from different
approaches. Particularly, the Lyapunov-based results presented in
Sbarciog et al. (2005) for open-loop bioreactors are very useful
to check stability and domains of attraction in chemostats. The
stability problem is addressed here but using the invariant tools
developed in this paper. The purpose is not to find new results
about chemostats stability but to adopt it as a starting point to
investigate stability of closed-loop controlled bioreactors. Addi-
tionally, some mathematical insight into chemostat limitations is
given.

ForD∗
= µ∗, the nominal strong batch avoidance condition (12)

and the wash-out avoidance condition (11) become

sBAC : µ∗ > 0 ∀x ∈ ⟨z0, 1⟩ (18a)

WAC : µ∗ < µ(0, s, ·) ∀s ∈ ⟨z0, 1⟩ (18b)

It is immediate to see that (18a) is fulfilled, so there are not
equilibrium points on S̄. Conversely, (18b) is not always satisfied
even for the simplest kinetics. In fact, depending on µ∗ and the
kinetic function, the biomass may be washed out or not.

The first-order dynamics on the reaction invariant Z can be
obtained by evaluating the right hand side of (4a) or (4b) at z = 1
and replacing D(t) with D∗. For instance,

ṡ = −(µ(1 − s, s, q) − µ∗)(1 − s). (19)

As predicted in Result 3.2, the substrate equilibria are s = 1, that
corresponds to Pw and is outside IR∗, and the roots of (16).

The kinetics with inhibition depicted in Fig. 2a is very useful
to illustrate the different behaviours observed in chemostats and
how the developed tools apply. The state portraits for different set-
points µ∗ are showed in the remaining boxes of Fig. 2.

The most undesired situation occurs when the maximum spe-
cific growth rate is overestimated (as µ∗

1 in Fig. 2a). This happens
when neglecting some limiting effect such as substrate inhibition,
low DO concentration and pH out of range. In this case (Fig. 2b),
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(a) Kinetics. (b) µ∗

1 > µmax .

(c) µ∗

2 < µ(0, 1). (d) µ(0, 1) < µ∗

3 < µmax .

Fig. 2. Chemostat,D∗ in Eq. (17). (a) Specific growth rateµ(1−s, s, q) and equilibria
for different set-pointsµ∗ , (b–d) State portraits for different set-points;∗: set-point,
⋄: undesired stable equilibrium, □: unstable equilibrium.

the WAC (18b) is violated all along s ∈ ⟨z0, 1⟩. It can be seen
that (19) presents a globally stable equilibrium at Pw . On the other
hand, the most favourable situation is when (19) exhibits a single
equilibrium in the interior of Z (s∗2 for the set-point µ∗

2). Some
illustrative state trajectories from different z0 are plotted in Fig. 2c.
Now Pw is a saddle while P∗ is globally stable. It should be noted
that set-points s∗ > z0 violate (18b) all along [z0, s∗]. Although X̄ is
theoretically not reachable in finite time, practical wash-out may
occur for low initial conditions.

Finally, when the kinetics exhibits multiplicity as for µ∗

3, a new
fixed point at Pu

= (1− su3, s
u
3, 1) appears between P∗ and Pw . Pu is

locally unstable,whereas Pw is nowstable. This is closely connected
with the WAC. In fact, (18b) is violated for all s > su3 and biomass
wash-out occurs. As a result, P∗ is stable but not globally stable.
This situation is illustrated in Fig. 2d.

Often, continuous bioreactors are operated under high produc-
tivity conditions, i.e. the broth is fed with a high substrate concen-
tration (S in) flow while dilution D drives µ close to µmax in the
range of multiple equilibria. This analysis confirms that stability
is critical in chemostats operated under such conditions. In fact,
high inhibition is usually present, then the domain of attraction
of the set-point is constrained to its vicinity and biomass wash-
out is prone to occur. That is why in practice the dilution is slowly
increased from zero to its desired value. Contrarily, in those cases
in which productivity is not an issue, globally attractive operating
points are possible.

4.2. Reaction rate proportional control

Sometimes, the reaction rate (µx) can be indirectly known
by measuring on-line output gases or other chemical variables
(Mailleret et al., 2004). It can also be estimated using cell density
sensors, as briefly described in next subsection. In such cases, a
family of controllers of the form D(x, s) = γ (µx) can be imple-
mented, where γ can be constant or adapted along the transient
response. Let us consider γ = 1/x∗, with x∗ being the desired
biomass concentration set-point:

D0(x, s) =
1
x∗

(xµ). (20)

Fig. 3. Reaction rate proportional control, D0 in Eq. (20). State portrait; ∗: set-point,
⋄: invariant points.

Weak batch and wash-out avoidance conditions become

wBAC :
1
x∗

> 1 ∀x ∈ ⟨z0, 1⟩ (21a)

WAC : 0 < µ(0, s, ·) ∀s ∈ ⟨z0, 1⟩ (21b)

Clearly, the sBAC (12) is not fulfilled. Thus, an initial condition
s0 > 0, usual in practice, is required. Conversely, the wBAC (21a)
is always fulfilled since x∗ < 1. Similarly, (21b) is trivially satisfied
all along X̄ . This is the main advantage of this control structure:
both Pb and Pw are unstable equilibria on Z , whereas there exists
a unique stable equilibrium P∗

= (x∗, 1 − x∗, 1) for any growth
kinetic function. Hence, this controller semi-globally stabilises P∗

independently of its position on Z .
Replacing D(t) in (4a)–(4b) with (20) yields

ẋ = D0(x, s)(x∗
− x) (22a)

ṡ = D0(x, s)(s∗ − s). (22b)

The concentration dynamics are decoupled and converge to their
steady state values at the same rate, so the orbits starting in IR∗ are
straight lines (see Fig. 3). The main drawback of this controller is
that concentrations evolve slowly when any of the concentrations
is low because D also becomes very low.

4.3. Cell density proportional control

Several sensors have beendeveloped tomeasure cell concentra-
tion on-line. They are commonly based on optical density and cell
capacitance measurement (Bolic et al., 2016; Downey et al., 2014;
Picó-Marco, Picó, & De Battista, 2005). Many control strategies
can be implemented if biomass concentration is measured. The
simplest one is:

D1(x) =
µ∗

x∗
x (23)

Strong batch and wash-out avoidance conditions become

sBAC :
µ∗

x∗
x > 0 ∀x ∈ ⟨z0, 1⟩ (24a)

WAC : 0 < µ(0, s, ·) ∀s ∈ ⟨z0, 1⟩ (24b)

It is quite obvious that this controller fulfils both conditions for
any P∗. In contrast with the previous one, S̄ is not invariant, so
the control can start from s0 = 0. That is, now Pb is not a fixed
point, whereas Pw is again a saddle. These conditions, however,
do not suffice to guarantee P∗ is globally stable. In fact, substrate
inhibition often leads to multiple equilibria. According to (16), the
equilibria will be determined by the intersections and eventual
tangent points between µ(1− s, s, q) and line D1(1− s) =

1−s
1−s∗ µ∗.

There will be a single and globally stable equilibrium P∗ only in
the case of monotonous or slightly inhibited kinetics µ(1 − s, s, q)
on Z .
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(a) Dµ1(x, s) in Eq. (25). (b) Dµ2(x, s) in Eq. (27).

Fig. 4. Growth error feedback control (a) Eq. (25) and (b) Eq. (27). Top: kinetics and
equilibria for an arbitrary gain k. Bottom: State portrait; ∗: set-point, ⋄: undesired
stable equilibrium, □: unstable equilibrium.

4.4. Specific growth rate error feedback control

D1(x) in (23) can be rewritten as D1(x) = D0(x, s) +
x
x∗ (µ

∗
−

µ), making apparent the implicit feedback of the error in µ. This
feedback has a stabilising effect on the s−dynamics that makes its
convergence to s∗ faster.

Several specific growth rate observers based on on-line cell
density measurement have been developed in the literature and
tested experimentally (Bastin & Dochain, 1986; De Battista, Picó,
Garelli, & Vignoni, 2011). Therefore, if x is measured a wide family
of controllers feeding back the error in eitherµ or x can be designed
and implemented.

It is immediate to generalise the specific growth rate error
feedback as follows:

Dµ1(x, s) = D0(x, s) + k
x
x∗

(µ∗
− µ) (25)

Strong batch and wash-out avoidance conditions become

sBAC : kµ∗
x
x∗

> 0 ∀x ∈ ⟨z0, 1⟩ (26a)

WAC : 0 < µ(0, s, ·) ∀s ∈ ⟨z0, 1⟩ (26b)

It is quite obvious that (26a)–(26b) hold for any P∗ and any k.
Then, global stability is determined by the local behaviour on Z .
As for (23), multiple equilibria usually appear because of substrate
inhibition in µ(1 − s, s, q). Anyway, for monotonic and slightly
inhibited kinetics, a single and globally stable equilibrium P∗ is still
possible.

Fig. 4a repeats the kinetics of Fig. 2a. The equilibrium points in
IR∗

∩ Z are determined by the intersections and eventual tangent
points betweenµ(1−s, s, q) andDµ1(1−s, s) for a given gain k. Note
that the line labelled with k = 1 corresponds to the control law
(23) previously discussed. For this particular kinetics, (23) gives a
single equilibrium. Instead, control (25) gives three equilibria, two
stable (P∗ and Ph) and one unstable (Pu).

A drawback of feedback law (25) is that the s−dynamics is slow
when x0 is low. To overcome this shortcoming, the proportionality
of the feedback term to biomass concentration should be removed.
For instance,

Dµ2(x, s) = D0(x, s) + k(µ∗
− µ) (27)

Now, the batch and wash-out invariance conditions become

sBAC : kµ∗ > 0 ∀x ∈ ⟨z0, 1⟩ (28a)

WAC : kµ∗ < (k + 1)µ(0, s, ·) ∀s ∈ ⟨z0, 1⟩ (28b)

Whilst (28a) holds for any P∗ and any k, (28b) is fulfilled only for
small enough µ∗. In the limit, as k → ∞ , theWAC (28b) coincides
with that of the chemostat (18b).

The equilibria resulting from the intersection of µ(1 − s, s, q)
with Dµ2(1 − s, s) are shown in Fig. 4 for two cases: k = 1 and
k > 1. Control (27) gives two equilibria for these particular kinetics
and feedback gain k > 1, a stable node (P∗) and an unstable one
(Pu). Since Pw does not fulfil the WAC (28b), then it is a stable
equilibrium that will attract some orbits. This is observed in the
state portrait at the bottom of Fig. 4b. The lost of stability is the
cost paid for accelerating the response from low s0.

Note that specific growth rate error feedback is prone to
multiplicity and even instability. The risk of these undesirable
behaviours increases with the feedback gain and the set-point.
Although neither (25) nor (27) (semi-)globally stabilise the process
in the presence of strong inhibition, the former never washes out
biomass unlike the latter.

4.5. Turbidostats

Let us address now the problem of regulating biomass concen-
tration at a given set-point x∗. Consider

Dx1(x, s) = D0(x, s) + k
µ∗

x∗
(x − x∗). (29)

Strong batch and wash-out avoidance conditions become

sBAC : k
µ∗

x∗
(x − x∗) > 0 ∀x ∈ ⟨z0, 1⟩ (30a)

WAC : − kµ∗ < µ(0, s, ·) ∀s ∈ ⟨z0, 1⟩ (30b)

TheWAC holds trivially for k > 0. Dx1(x, 0) > 0 whenever x∗ < z0.
That is, x∗ should be lowenough to avoid falling in batchmode from
some P0. This is the main shortcoming of this feedback strategy. In
fact, a set of non-isolated stable equilibria [z0, x∗

] on S̄ that will
attract some orbits exists whenever z0 < x∗.

Replacing D(x, s) in (16) with (29) gives

x − x∗

x∗
(µ(x, 1 − x, q) + kµ∗) = 0 (31)

which has a single root x∗.
So, the process exhibits a single equilibrium P∗

= (x∗, 1−x∗, 1)
in IR∗

∩ Z , while Pw is unstable. Summarising, P∗ is globally stable
for those set-points satisfying x∗ < z0, whereas the process falls in
batch operation from some initial conditions in z0 < x∗.

Fig. 5a displays the state portrait for control (29). It is seen that
the control saturates at zero in all trajectories starting at x0 ≪ x∗.
Saturation is transitory for the initial conditions on z02 and z03 but is
permanent for an initial condition on z01 .

Keeping in mind (30a), the feedback law can be easily re-
designed to guarantee global convergence for any set-point includ-
ing x∗ > z0. For instance, if the dilution rate is computed as

Dx2(x, s) = D0(x, s) +
k

µ∗x∗
µ2(x − x∗) (32)

then

wBAC :
1
x∗

> 1 ∀x ∈ ⟨z0, 1⟩ (33a)

WAC : − kµ(0, s, ·) < µ∗
∀s ∈ ⟨z0, 1⟩ (33b)

Now, an initial condition s0 > 0 is required. However, (33a)-(33b)
are trivially satisfied for any P∗, independently of its position onZ .
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(a) Dx1(x, s) in Eq. (29). (b) Dx2(x, s) in Eq. (32).

Fig. 5. Turbidostat, (a) Eq. (29) and (b) Eq. (32). State portraits; ∗: set-point, ⋄:
undesired stable equilibrium.

(a) Ds1(x, s) in Eq. (34). (b) Ds2(x, s) in Eq. (37).

Fig. 6. Substrate concentration error feedback control (a) Eq. (34) and (b) Eq. (37)
(Nutristat). State portraits; o: initial state, ∗: set-point.

Therefore, both Pb and Pw are unstable equilibria on Z . As before,
Dx2(x, 1 − x) gives a single root for (16), so there exists a unique
stable equilibrium point P∗. Hence, this controller semi-globally
stabilises any P∗.

Fig. 5b depicts the state portrait for control (32) from the same
initial conditions used in Fig. 5a. It is seen that the control saturates
at zero in all trajectories starting at x0 ≪ x∗ but saturation is
transitory in all cases. In fact, all state trajectories finally converge
to P∗.

4.6. Nutristats

In some bioprocesses, substrate concentration can be reliably
measured on-line (Kleman et al., 1991; Rutgers et al., 1994).
Therefore, the process can be driven to a substrate concentration
set-point by feeding back the substrate concentration error. Like
turbidostats, nutristats have the advantage that a unique equilib-
rium on IR∗

∩ Z is achieved even in the presence of inhibition.
Note that substrate concentration measurement allows esti-

mating the substrate consumption rate (µx) bymeans of observers
(Farza, Busawon, &Hammouri, 1998). So, controllers similar to (25)
and (27) can also be implemented. Consider, as a starting point, a
substrate concentration error feedback strategy of the form

Ds1(x, s) = D0(x, s) + k
µ∗

s∗
(s∗ − s). (34)

Strong batch and wash-out avoidance conditions become

sBAC : kµ∗ > 0 ∀x ∈ ⟨z0, 1⟩ (35a)

WAC : kµ∗

(
1 −

s
s∗

)
< µ(0, s, ·) ∀s ∈ ⟨z0, 1⟩ (35b)

The sBAC holds trivially for any k > 0 and any set-point s∗.
Instead, theWAC is trivially satisfiedwhenever z0 > s∗. Otherwise,
it is satisfied only for a set of set-points determined by k and
the kinetics. Replacing D(x, s) in (16) with (34) and solving for s

yield

(s − s∗)
(

µ(x, 1 − x, q)
1 − s∗

+ k
µ∗

s∗

)
= 0. (36)

It is obvious from (36) that the process exhibits a single equi-
librium P∗

= (1 − s∗, s∗, 1) in Z , besides Pw . Note also that Pw is
always unstable and P∗ is always stable.

Fig. 6a shows a state portrait for control (34). Global conver-
gence to P∗ is observed. However, the risk of biomass wash-out is
clear. Particularly, observe how the trajectory starting on z01 ≪ s∗
approaches X̄ .

The feedback law can be redesigned to fulfil the WAC for any
set-point s∗. For instance, if D is

Ds2(x, s) = D0(x, s)
(
1 + k

1
s∗

(s∗ − s)
)

(37)

then

wBAC :
1
x∗

(1 + k) > 1 ∀x ∈ ⟨z0, 1⟩ (38a)

WAC : 0 < µ(0, s, ·) ∀s ∈ ⟨z0, 1⟩ (38b)

Now, an initial condition s0 > 0 is required. On the other hand,
conditions (38a)–(38b) are trivially satisfied for any P∗, indepen-
dently of its position on Z . Therefore, both Pb and Pw are unstable
equilibria on Z . The uniqueness of solution of (16) can be checked
as before, giving a single stable equilibrium point P∗. Hence, this
controller semi-globally stabilises any P∗.

Fig. 6b depicts the state portrait for control (37) from the same
initial conditions as in Fig. 6a. Now, the risk of biomass wash-out
from initial conditions on z0 ≪ s∗ is eliminated.

5. Discussion

Table 1 summarises the control laws analysed in the paper. The
feedback laws written in terms of the original concentrations are
found in the first column. (Semi-)global stability (GS), strong or
weak batch avoidance condition (s/wBAC) and wash-out avoid-
ance condition (WAC) fulfilment are indicated in the remaining
columns. Symbol ✓(×) should be read ‘‘holds for any’’ (respec-
tively, ‘‘fails for some’’) kinetics, set-point and/or initial condition.

Application to other control laws. The feedback laws treated in
this paper are designed using D0 :=

µX
X∗ =

yµX
Sin−S∗

as a basis. How-
ever, any other type of continuous feedback satisfying Assump-
tions 2.3–3.1 can be designed or analysed. For instance, the tools
developed here can be used to re-shape feedback linearisation
control laws in the vicinities of X̄ and S̄ in order to avoid biomass
washout and batch mode operation, respectively.

Application to adaptive control. The main source of uncertainty
in the mass balance model is the kinetics. This uncertainty can
produce appreciable state errors when the feedback law requires
complete characterisation of the operating point (for instance, X∗

and µ∗). The yield y is another source of error because it usually
varies with time and with the operating point. Also, the inlet
substrate concentration S in is not always well characterised. These
are the reasons of the well-known difficulties to globally stabilise
bioreactors by means of PI-like controllers (De Battista, Picó, &
Picó-Marco, 2012). Adaptive control, where some controller gain is
adapted between certain limits using integral action, is an attrac-
tive option (Mailleret et al., 2004). The results presented here are
also useful to shape the adaptation law, particularly the limits of
the adaptation span. For instance, recall the controlD(x, s) = γ (µx)
of Section 4.2. Suppose γ is continuously adapted instead of being
constant and equal to 1/x∗. It is immediate from (21a) that a lower
limit γ > 1 is required to fulfil the BAC and therefore required to
semi-globally stabilise the reactor.
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Table 1
Summary of feeding laws and properties.

Mode of operation Feeding law GS (s/w)BAC WAC

Chemostat D∗
= µ∗

× s ✓ ×

Reaction rate proportional D0 = µ X
X∗ ✓ w ✓ ✓

Cell density proportional D1 = µ∗ X
X∗ × s ✓ ✓

Specific growth rate error feedback Dµ1 = µ X
X∗ + k X

X∗ (µ∗
− µ) × s ✓ ✓

Dµ2 = µ X
X∗ + k(µ∗

− µ) × s ✓ ×

Turbidostat Dx1 = µ X
X∗ + k µ∗

X∗ (X − X∗) ✓ × ✓

Dx2 = µ X
X∗ + k µ2

µ∗X∗ (X − X∗) ✓ w ✓ ✓

Nutristat Ds1 =
(yµX)
Sinj −S∗

+ k µ∗

S∗ (S∗
− S) ✓ s ✓ ×

Ds2 =
(yµX)
Sinj −S∗

(
1 +

k
S∗ (S∗

− S)
)

✓ w ✓ ✓

Extension to other kinetic models. Some kinetic models do not
hold Assumption 2.1. For instance, there are kinetic functions sat-
isfyingµ(·, S, ·) = 0 ∀ S > Sm that fit well for very toxic substrates
when in excess (Hwang, Dochain, & Bastin, 1995). Biomass is
washed out if the control drives the process to such high substrate
concentration levels, so the problem is critical when S in(t) > Sm.
To avoid biomass wash-out, the control should verify an additional
condition, which essentially consists in the non-attractiveness of
the set Sm

= {(x, s, z) ∈ IR0|s = sm} from the left:

lim
s→sm−

D(x, s)
µ(x, s, ·)

(1 − sm) < x ∀x ∈ ⟨z0 − sm, 1 − sm⟩ (39)

Extension to other types of bioprocesses. The results of this paper
can be also applied to more complex bioreactions. For instance,
consider a dual substrate bioreaction with additive kinetics. Its
mass balance model can be written after suitable normalisation as

ẋ = µ(x, s1, s2)x − D(x, s1, s2)x (40a)
ṡ1 = −µ1(x, s1)x − D(x, s1, s2)s1 + a1D(x, s1, s2) (40b)
ṡ2 = −µ2(x, s2)x − D(x, s1, s2)s2 + a2D(x, s1, s2) (40c)
ż = D(x, s1, s2)(1 − z) (40d)

with µ(x, s1, s2) = µ1(x, s1) + µ2(x, s2), a1 + a2 = 1 and z =

x + s1 + s2.
The extension of the washout avoidance condition (8a) to the

dual substrate case is straightforward:

lim
x→0+

D(x, s1, s2) < µ(x, s1, s2) ∀s1 + s2 ∈ ⟨z0, 1⟩. (41)

The strong (12) and weak (13) batch avoidance conditions can also
be extended to the dual substrate case:

D(x, 0, 0) > 0∀x ∈ ⟨z0, 1⟩ (42)

lim
s1,s2→0+

D(x, s1, s2)
µ(x, s1, s2)

> x ∀x ∈ ⟨z0, 1⟩. (43)

Based on these results, the (semi-)global stabilisation of dual
substrate continuous processes can be investigated with a similar
procedure as before. Additional conditions should be established to
avoid biomass growing on only one of the substrates instead of on
both of them. Further, the dynamics on the reaction invariant z = 1
is now of order two, so more complex behaviour may appear.

6. Conclusions

It was proved that global stability features of the bioreaction
(4) can be determined by checking the invariance of the strictly
positive quadrant in the state space and finding the roots of a
nonlinear equation. This approach offers mathematical tools to
understand and re-think trade-offs and limitations of empirical

control laws common in biotechnology. More importantly, it pro-
vides a simple and systematic procedure to design and redesign
globally stabilising control laws without the need of searching for
Lyapunov functions and domains of attraction.

A distinctive property of the proposed approach is that feedback
law saturation does notmodify the stability results. In otherwords,
if the invariant conditions on the border of the operating region
are fulfilled, then stability is guaranteed no matter if the dilution
saturates or not.

Although the proposed approach was developed for state feed-
back control where a pure culture grows on a single substrate,
the results can be extended to more general bioreactions and con-
trollers. In fact, the invariant conditions can be exploited to shape
the adaptation law in adaptive control. Also, the control design
procedure can be extended to stabilise more complex bioreactions
such as those involving two substrateswith additive dynamics. The
development of similar design tools for fixed-bed (Mailleret et al.,
2004) and perfusion (Deschênes, Desbiens, Perrier, & Kamen, 2006)
bioprocesses in which the dynamic restriction (2) does not hold is
an interesting open problem.
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