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Abstract

A new approach to automatically regulate the glucose level in type 1 diabetes is presented in this work. This is the so-called Au-
tomatic Regulation of Glucose (ARG) algorithm, which is based on a switched Linear Quadratic Gaussian (LQG) inner controller,
combined with an outer sliding mode safety loop with Insulin on Board (IOB) constraints. In silico and in vivo results without feed-
forward insulin boluses delivered at meal times indicate that safe blood glucose control can be achieved by the proposed controller.
This controller is simple to migrate to well-known hardware platforms, and intuitive to tune using a priori clinical information.
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1. Introduction

Type 1 Diabetes Mellitus (T1DM) is a disease characterized
by the inability to produce insulin, due to the destruction of the
pancreatic β-cells. Insulin deficiency generates chronic hyper-
glycemia that can be related to several health complications,
like the acceleration of atherosclerosis (Chait & Bornfeldt
(2009)). In order to regulate their glucose levels, patients have
to be continuously measuring their glycemia, and calculating
how much insulin they need, making T1DM an extremely
demanding disease. On the other hand, Insulin Intensive
Treatment (IIT) is also associated with an increase risk of
hypoglycemia (The Diabetes Control and Complications Trial
Research Group (1997)).

An Artificial Pancreas (AP) is a system that automatically
modulates patient’s insulin infusion rate in order to maintain
his/her blood glucose within safe limits. Although intravenous
AP is possible (Renard (2008)), both measurement and infu-
sion are, in general, performed subcutaneously via a Continu-
ous Glucose Monitoring (CGM) sensor, and a Continuous Sub-
cutaneous Insulin Infusion (CSII) pump, respectively. This rep-
resents a minimally invasive AP scheme that allows ambulatory
use, but unfortunately, makes the control problem much harder.
Amongst other difficulties, lag-times and errors in glucose mea-
surement and insulin action, nonlinearities, large dynamic un-
certainties and technical difficulties (sensor dropouts and in-
sulin set failure) have to be coped with (see Bequette (2012) and
Steil et al. (2004) for a complete review of the challenges in the
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development of an AP system). It is worth remarking that even
rapid-acting insulin introduces a significant delay that affects
the performance of a glucose controller (Steil et al. (2004)).
Actually, this is the main limitation for AP systems, considering
that according to pharmacodynamics profiles the peak of insulin
action occurs about 70 min after infusion (Walsh et al. (2014)).

The AP development has been accelerated by the use of elab-
orated simulators, such as the UVA/Padova metabolic simulator
which was accepted by the US Food and Drug Administration
(FDA) in lieu of animal trials (Kovatchev et al. (2008, 2009)).
Recently, clinical trials were performed in different countries
of the EU, USA, Israel and Australia (de Bock et al. (2015);
Gondhalekar et al. (2016); Hovorka et al. (2014); Phillip et al.
(2013)). The great majority of the control algorithms that
have been clinically tested are based on Proportional-Integral-
Derivative (PID), Model Predictive Control (MPC) or fuzzy
logic controllers. Generally, they are hybrid (semi-automatic)
control loops, where the controller action is complemented
with premeal insulin boluses in both the single-hormone (Bally
et al. (2017); Forlenza et al. (2017); Kovatchev et al. (2017);
Ly et al. (2015); Messori et al. (2017)) and the dual-hormone
(El-Khatib et al. (2017); Haidar et al. (2017)) AP. Although
the injection of an open-loop bolus based on the carbohydrate
intake facilitates the reduction of postprandial glucose values
(Weinzimer et al. (2008)), inaccurate carbohydrate counting
is frequent (Brazeau et al. (2013)). In El-Khatib et al. (2017)
meal announcement is not required, but it is suggested in
order to trigger a meal-priming bolus based on a meal size
classification akin to the proposal of Gingras et al. (2016a,b).

Studies involving fully closed-loop AP systems can be found
in Dassau et al. (2013); Steil et al. (2006) and more recently
in Blauw et al. (2016); Cameron et al. (2017); Reddy et al.
(2015); Turksoy et al. (2017). Despite promising results, there
is still a strong compromise between the aggressiveness of the
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control action and the postprandial glucose excursion. This
compromise exists even when meals can be anticipated based
on a probabilistic approach like the one presented in Cameron
et al. (2012). If the controller is not aggressive enough to a
meal perturbation, then prolonged hyperglycemia may occur
(Reddy et al. (2015); Weinzimer et al. (2008)). On the other
hand, if the controller is too aggressive, there is a higher
risk of insulin overdosing, and consequently, postprandial
hypoglycemia (Cameron et al. (2017)). The latter is partially
because the effect of the meal on the CGM signal is not
immediate, and therefore, the insulin response generated by
the controller to cope with the meal is delayed several minutes.
It should also be considered that in the standard open-loop
basal-bolus treatment, a unique insulin bolus is applied at
meal times. Instead, in a feedback control scheme, multiple
insulin boluses are generated in response to the change in the
CGM signal. Furthermore, because the counter-regulatory
response in people with T1DM is often compromised, the
response of an AP control algorithm should be less aggressive
than the β-cell’s secretory response (Steil et al. (2004)). As a
consequence, fully closed-loop systems have an increased risk
of initial hyperglycemia and late hypoglycemia during meals in
comparison with semi-automated hybrid strategies. In Turksoy
et al. (2017), this problem is reduced, because the insulin bolus
to cover the meal is not generated by the multivariable adaptive
controller per se, but by an additional module that infuses an
insulin bolus when a meal is detected.

In this paper, relatively unexplored control techniques in
the field are proposed to address the glucose control paradigm,
and take a step forward towards a fully automatic control loop.
In particular, a couple of Linear Quadratic Gaussian (LQG)
controllers are employed as main feedback controllers in
combination with a sliding-mode safety layer to include Insulin
on Board (IOB) constraints. Both LQG controllers are arranged
into a switched structure to cope with the trade-off between
prandial and fasting periods by triggering the controller into
an aggressive mode during meals. The combination of the
switched LQG controller with the safety mechanism allows to
compensate for delays associated with subcutaneous insulin
infusion. When the aggressive mode is triggered, an insulin
spike is generated. This mimics the first-phase insulin secretion
of the β-cell response (Steil et al. (2004)). On the other hand,
the purpose of the safety layer is to reduce the insulin infusion
commanded by the switched LQG controller when a predefined
IOB limit is going to be violated. This latter characteristic can
be associated with the suppression of the β-cell in proportion
to plasma insulin levels (Steil et al. (2004)). In this way, an
initial “under-damped” insulin response can be generated to
compensate for insulin delays, without increasing the risk of
postprandial hypoglycemia. It is worth remarking that here it is
the first time the safety layer is employed to adapt a closed-loop
control without premeal insulin boluses.

The proposed control structure also intends to simplify both
controller tuning and implementation. This facilitated its in vivo
validation in a clinical trial, where it was tested on five T1DM
adults during 36 hours without carbohydrate counting. This was
the second phase of the first AP clinical trial campaign in Latin

America. In the first phase a hybrid controller was tested in the
same site and by the same team (Sánchez-Peña et al. (2017)).

2. Control algorithm

Automatic feedback control of the blood glucose levels has
several opposing requirements, e.g., CGM noise immunity
and fast response for meal perturbations. These are difficult
to achieve with a single Linear Time Invariant (LTI) con-
troller, and motivates the design of a multicontroller structure
(Colmegna et al. (2016b); Gondhalekar et al. (2014)). In
this work, the main controller is defined as a multicontroller
structure that switches between two LQG controllers. A
conservative controller performs slight changes on the patient’s
basal insulin infusion rate, and an aggressive one is selected at
the time of meal ingestion to rapidly generate an insulin spike,
and as a consequence, reduce postprandial hyperglycemia
risks. In order to obtain a simple controller structure that
provides stability guarantees, the multicontroller is arranged
into the framework presented in Hespanha & Morse (2002).

A schematic of the closed-loop system with the Automatic
Regulation of Glucose (ARG) algorithm is presented in Fig. 1.
As shown in that figure, the ARG algorithm is also composed
of a Safety Auxiliary Feedback Element (SAFE) layer that
adds a second degree-of-freedom to the switched LQG, as it
quickly adapts (reduces) the insulin infusion when a given
constraint on the residual insulin (or IOB) is reached. Thus, the
response of the multicontroller can be shaped with the SAFE
mechanism in order to obtain a closed-loop insulin infusion
rate akin to a basal-bolus strategy. That is, no feedforward
action such as meal boluses is required, which significantly
increases the autonomy of the glucose control system, and
of the patient. In addition, the activation of the SAFE layer
can also be employed to switch amongst the aggressive and
conservative LQG controllers.

In the following subsections the analysis and design of the
control algorithm are detailed.

2.1. Switched LQG control
The multicontroller is synthesized using a control-oriented

model recently developed by our group that is based on the
adult cohort of the distribution version of the UVA/Padova sim-
ulator (Colmegna et al. (2018)).

Patient design model
The idea behind this model is simple, and can be sum-

marized as follows. First, a general LTI low-order model
from the subcutaneous-insulin delivery input (pmol/min) to the
subcutaneous-glucose concentration deviation (mg/dl) is pro-
posed:

G(s) = k
s+ z

(s+ p1)(s+ p2)(s+ p3)
e−15s, (1)

This model is inspired on previous control-oriented ones that
have shown effectiveness to synthesize diverse control strate-
gies (Colmegna et al. (2016b); Lee et al. (2013); van Heus-
den et al. (2012)). Then, an average Linear Parameter-Varying
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Figure 1: Closed-loop system with the ARG algorithm, where ib,j is the patient-specific basal rate, and r is the reference glucose concentration.

(LPV) model is constructed by making the parameter p1 of
model (1) be a function of the glucose level g, which can be
measured in real time. The procedure to compute p1 as a func-
tion of g is detailed in Colmegna et al. (2018). Basically, the
dependence of p1 on g allows representing the time-varying na-
ture of the insulin-glucose system. In this simple manner of
replicating the T1DM dynamics, model parameters are fixed
and equal to z = 0.1501, p2 = 0.0138 and p3 = 0.0143 for
all patients. Finally, the last step consists in tuning the model’s
gain k using the patient’s Total Daily Insulin (TDI) by means
of the so-called 1800 rule (1800/TDI), which is an insulin sen-
sitivity factor. Therefore, for each patient #j a personalized
kj is obtained. In this way, the interpatient variability can be
represented using a priori clinical information that is easily ob-
tainable and extensively used in clinical care. In addition, it is
worth mentioning that the proposed personalized LPV model
can lead to straightforward LPV controller design, because it is
affine in the time-varying parameter p1.

Although successful results in T1DM control were obtained
with LPV controllers (Colmegna et al. (2016a,b); Szalay et al.
(2014)), a simpler LQG control strategy is proposed in this
work. From the implementation point of view, an LQG ap-
proach is more intuitive to tune and easier to migrate into a
portable platform like the Diabetes Assistant (DiAs) system
(Keith-Hynes et al. (2014)), which is the AP research platform
selected for these trials. Hence, in order to synthesize LQG
controllers, the LTI model resulting by holding the glucose-
varying parameter p1(g) of the personalized LPV model fixed
at p∗1 = p1(120) is considered. The glucose concentration
g =120 mg/dl is the closed-loop reference, and therefore, the
glucose level approximately reached at closed-loop without ex-
ternal perturbations (Dalla Man et al. (2014)). Thus, the follow-
ing control-oriented LTI model:

Gj(s) = kj
s+ z

(s+ p∗1)(s+ p2)(s+ p3)
e−15s (2)

is assigned for each T1DM adult #j. In this case, the time-
varying nature of the system is considered through the switched
LQG controller.

In order to present model validation results, the compari-
son procedure presented in Colmegna et al. (2018) is repeated
here, considering model (2) and the control-oriented LTI mod-
els presented in Lee et al. (2013); van Heusden et al. (2012),
and Colmegna et al. (2016b). The procedure is as follows. For

each adult patient of the distribution version of the UVA/Padova
metabolic simulator at each particular steady-state glucose
concentration (operating point), the Root Mean Square Error
(RMSE) between the time-response of each control-oriented
model (yp) and the nonlinear UVA/Padova model (y) to a 1 U
insulin bolus is calculated as:

RMSE =
‖yp − y‖√

n
(3)

where ‖.‖ indicates the 2-norm, and n is the number of samples.
Because the simulator has a sampling time of 1 min, n has been
defined as 2880 to capture the complete glucose variation from
the operating point. It is worth remarking that steady-state glu-
cose concentrations are achieved by only accommodating the
insulin infusion rate. Consequently, the applied method to reach
any initial state cannot influence subsequent glucose drops. Fi-
nally, the normalized RMSE (NRMSE) is computed as:

NRMSE =
RMSE

RMSEmax
(4)

with RMSEmax being the maximum RMSE obtained for all
cases. The results for the complete CGM range of [40, 400]
mg/dl, and for a normal glucose target range of [70, 180] mg/dl
are shown in Table 1.

As presented in Colmegna et al. (2018), a complete compari-
son includes the computation of the ν-gap metric that considers
the distance between two models according to their achievable
closed-loop performance (Vinnicombe (1993, 2001)). How-
ever, that analysis is out of the scope of this work.

LQG synthesis
A CGM sensor usually provides glucose readings every 5

min. Because the AP control system operates in discrete-
time, the continuous-time plant model Gj(s) is converted to the
discrete-time plant model Gj(z) at this stage. To this end, model
(2), without considering the 15-min delay, is discretized using
a Zero Order Hold (ZOH) method with a sampling time Ts = 5
min. Let:

Gj(z) ≡
[

Aj Bj

Cj 0

]
(5)

be a third-order (minimal) realization of the resulting discrete-
time model, where matrices Aj ∈ R3×3, Bj ∈ R3×1, and Cj
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Table 1: Model comparison in terms of the NRMSE. Increase is over the proposed personalized LTI control-oriented model.

Model [70-180] mg/dl [40-400] mg/dl
Average NRMSE Increase (%) Average NRMSE Increase (%)

Proposed Personalized LTI model 0.1067 0 0.2128 0
Model presented in van Heusden et al. (2012) 0.2055 92.6 0.2283 7.3
Model presented in Colmegna et al. (2016) 0.3447 223.1 0.3256 53.0
Model presented in Lee et al. (2013) 0.1919 79.9 0.3266 53.5
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Figure 2: Frequency responses of G1(s) (blue line), G1(z) (red line), and
Gr,1(z) (green line).

∈ R1×3. Then, the discrete representation of (2) is obtained by
adding the three-sample delay as follows:

Gj(z) ≡
[

Aj Bj

Cj 0

]
(6)

with

Aj =

 Aj 03×2 Bj

01×3 01×2 0
02×3 I2×2 02×1

 , (7)

Bj =
[
03×1 1 02×1

]T
and Cj =

[
Cj 01×3

]
,

where 0i×j represents the zero matrix of order i× j, and I2×2

represents the identity matrix of order 2. Finally, model Gj(z) is
reduced to a third-order model defined as Gr,j(z) via the square
root balance truncation algorithm (Safonov & Chiang (1989)).
In Fig. 2, the result of this procedure is illustrated for adult #1
of the distribution version of the UVA/Padova simulator. In
that figure, the frequency responses of G1(s), G1(z) and Gr,1(z)
are depicted, showing that the three models agree well over the
frequency range of interest [0, 0.1] rad/min associated with the
blood glucose control problem.

For a given T1DM adult patient #j, two LQG controllers
Ki,j(z) with i ∈ I = {1, 2} are synthesized based on the fol-
lowing realization of Gr,j(z):

x(k + 1) = Ar,jx(k) + Br,ju∆(k) (8)
y∆(k) = Cr,jx(k)

with u∆(k) = u(k) − ib,j , and y∆(k) = y(k) − 120 mg/dl,
and ib,j is the patient-specific time-dependent basal input rate
[pmol/min]. Then, a state-feedback control:

u∆(k) = −Ki,jx(k) (9)

that minimizes the following quadratic cost function:

Ji(u∆, y∆) =

∞∑
k=0

(
Riu

2
∆ +Qy2

∆

)
(10)

with R1 = 1, R2 = 0.5, and Q = 5×103 is designed. Parame-
terR2 is purposefully defined smaller thanR1 forK2,j(z) to be
more aggressive than K1,j(z). In addition, states are estimated
by a Kalman filter of the form:

x̂(k + 1|k) = Ar,jx̂(k|k − 1) + Br,ju∆(k) + . . .

· · ·+ Li,j [y∆(k)−Cr,jx̂(k|k − 1)]
(11)

where Li,j is obtained assuming that process w(k) and mea-
surement v(k) noises are uncorrelated white processes that sat-
isfy

E[w(k)w(k)T ] = W, E[v(k)v(k)T ] = Vi (12)

with W = V1 = 3, and V2 = 45 × 10−4. Note that V2 is
intentionally smaller than V1 in order to make K2,j(z) be much
faster than K1,j(z).

Finally, since both LQG controllers have the structure of an
observer with state-feedback, they have realizations {Ar,j −
Li,jCr,j −Br,jKi,j ,Li,j ,Ki,j} according to the previous de-
sign procedure.

Building the multicontroller
As mentioned above, two LQG controllers Ki,j with i ∈ I

are synthesized for each T1DM adult #j. Here, a switched
controller Cj(σ) that switches amongst both Ki,j is built with
a convenient structure based on the Youla parameterization ap-
proach (Youla et al. (1976)). Multicontroller Cj(σ) is designed
with three inputs: the switching signal σ, the quantized and
saturated control signal uC,qsat1, and the error signal e, and
one output: the control signal uC . The input σ : [0,∞) → I
is piecewise constant. While σ remains constant and equal to
some i ∈ I, Cj(σ) is required to behave as an LTI system with
transfer function Ki,j , and in that case, uC corresponds to u∆.
The procedure to define Cj(σ) can be described as follows (see
Hespanha & Morse (2002) for details).

First, according to Lemma 8 of Hespanha & Morse (2002),
because the control-oriented model Gr,j is strictly proper

1The quantized and saturated control signal uC,qsat is included as an input
to Cj(σ) in order to consider the insulin pump constraints in the controller
structure.
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and K1,j , which is also strictly proper, stabilizes Gr,j , there
exist matrices AE,j , BE,j , CE,j , DE,j , FE,j , and GE,j

(with appropriate dimensions) such that AE,j is a stability
matrix, and {AE,j + DE,jCE,j ,BE,j ,CE,j} and {AE,j −
BE,jFE,j ,DE,j−BE,jGE,j ,FE,j ,GE,j} are stabilizable and
detectable realizations of Gr,j and K1,j , respectively. A way to
define those matrices is stated in the proof of Lemma 8. Let
{Ar,j ,Br,j ,Cr,j} and {Fj ,Gj ,Hj} be minimal realizations
of Gr,j and K1,j , respectively, and Xj , Yj matrices such that
Ar,j+XjCr,j and Fj+YjHj are asymptotically stable, then:

AE,j =

[
Ar,j + XjCr,j 0

0 Fj + YjHj

]
, BE,j =

[
Br,j

−Yj

]
CE,j =

[
Cr,j 0

]
, DE,j =

[
−Xj

−Gj

]
FE,j =

[
0 −Hj

]
, GE,j = 0. (13)

Next:

Si,j = (YC,j +XC,jKi,j) (XP,j + YP,jKi,j)−1 (14)

is defined as the Youla parameter with:[
XC,j −YC,j
YP,j XP,j

]
=

[
FE,j
CE,j

]
(sI−Ar,j)

−1 [BE,j −DE,j

]
+ . . .

· · ·+
[
I 0
0 I

]
. (15)

being a simultaneous coprime factorization of K1,j and Gr,j .
Note that if Eqn. (14) is solved for Ki,j , then:

Ki,j = (XC,j − Si,jYP,j)−1
(YC,j + Si,jXP,j) . (16)

From Eqn. (16), it is straightforward to see that if K1,j is se-
lected as the central controller, i.e., K1,j = X−1

C,jYC,j , there-
fore, S1,j = 0 by construction. In addition, the poles of
S2,j must have magnitudes less than 1, because K2,j stabi-
lizes Gr,j (see Remark 10 in Appendix A of Hespanha &
Morse (2002)). As a result, given a minimal stable realiza-
tion {AS,2,j ,BS,2,j ,CS,2,j} for S2,j , the trivial realization
{AS,1,j ,BS,1,j ,CS,1,j} = {AS,2,j ,BS,2,j ,0} can be picked
for S1,j . Thus, there exists a symmetric, positive definite ma-
trix Qj , such that:

AT
S,i,jQjAS,i,j −Qj < 0 (17)

for i ∈ I. This allows to select reset matrices as simply the
identity. As stated in Lemma 1 of Hespanha & Morse (2002),
the switched system that switches amongst both Si,j according
to the value of the switching signal σ : [0,∞) → I, i.e., Sσ,j ,
is exponentially stable, uniformly over I.

Finally, the switched LQG controller Cj(σ) can be described
by the following dynamical system:

xC(k + 1) = AC,jxC(k) + BC,j

[
uC,qsat(k)
e(k)

]
(18)

uC(k) = CC,σ,jxC(k)

with

AC,j =

[
AE,j 0

BS,2,jCE,j AS,2,j

]
, (19)

BC,j =

[
BE,j −DE,j

0 BS,2,j

]
, CC,σ,j =

[
−FE,j CS,σ,j

]
.

According to Theorem 5 of Hespanha & Morse (2002), the
feedback connection between Cj(σ) and the process model
Gr,j is exponentially stable, uniformly over I. Although this
could be considered a secondary result in this particular appli-
cation, note that the resulting controller structure allows arbi-
trary switching amongst both LQG controllers Ki,j , switching
solely matrix CS,i,j . In addition, because reset matrices are
simple the identity, the controller’s state is not reset at switch-
ing times. As a consequence, the state of the switched controller
is always consistent with the state of the “plant”.

2.2. SAFE layer for IOB constraints
In this section the SAFE method presented in Revert et al.

(2013) is reformulated in a simplified version and added to the
switched LQG control scheme. This mechanism is based on
sliding mode conditioning concepts (Garelli et al. (2011)) as a
way to reduce hypoglycemic events, which could be induced
by the main closed-loop controller. To this end, it adapts the
controller’s gain to avoid (or to try to avoid in case of external
boluses) violating a patient-specific constraint on the IOB de-
noted by IOBj(t). In this way, it provides a safety layer that
can be adjusted according to medical criteria, and improves ro-
bustness against over-estimated insulin doses.

In Fig. 3 the subsystems composing the SAFE block of the
ARG algorithm are depicted. The switching logic w(t) is:

w(t) =

{
1 if σSM(t) > 0

0 otherwise
(20)

with the sliding function σSM(t) for this version of SAFE being
the trivial function:

σSM(t) = IOBj(t)− IOB(t). (21)

In this work, piecewise constant IOBj(t) profiles are considered
as discussed below.

Because the IOB cannot be measured in real-time, it must
be estimated. To this end, the dynamical model presented in
Willinska et al. (2005) that can be personalized based solely on
a priori clinical information is considered:

İsc1(t) = −KDIAIsc1(t) + uw(t) (22)

İsc2(t) = KDIA [Isc1(t)− Isc2(t)]

IOB(t) = Isc1(t) + Isc2(t).

Figure 3: Block diagram associated with the SAFE mechanism.
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where Isc1 and Isc2 are, respectively, the amount of non-
monomeric and monomeric insulin in the subcutaneous space,
uw is the exogenous insulin infusion rate in [pmol/min/kg], and
KDIA [min−1] is a constant that has to be tuned for each pa-
tient so as to replicate its corresponding Duration of Insulin Ac-
tion (DIA). A method to calculate the patient’s DIA is detailed
in Walsh & Roberts (2006). Here, a 5 hour DIA is selected,
hence KDIA is set to 16.3 × 10−3[min−1] according to León-
Vargas et al. (2015). A unique KDIA is defined for all cases in
order to reduce the number of parameters needed to initialize
the control strategy. In any case, if it results unsuitable for a
particular patient because of repeated hypo- or hyperglycemic
events, it can be personalized, e.g., by a run-to-run method. It
is worth mentioning that any other proposals to estimate the
IOB could also be employed (Bequette (2009); Ellingsen et al.
(2009); Patek et al. (2012)), including those based on CGM
measurements (de Pereda et al. (2016)).

When the given IOBj(t) constraint is reached, a transient
sliding regime is established on the sliding surface σSM(t) = 0.
During this mode, according to (20), w(t) switches at very fast
frequency between 0 and 1 in order to fulfill the constraint and
force system (22) to remain in the invariance set

Σ = {x(t) | σSM(t) ≥ 0} (23)

where x(t) ∈ R2 is the state of system (22). In order to avoid
the chattering phenomena in the pump command signal, a low-
pass first-order filter is implemented to smooth out the switch-
ing signalw(t), yielding γ(t). Note that this filter could be sim-
ply the average of w(t) in the interval between insulin infusion
times.
Remark: Re-writing model (22) as:

ẋ(t) = f(x) + g(x)uw(t) = · · ·

· · · =
[

−KDIAIsc1(t)
KDIA [Isc1(t)− Isc2(t)]

]
+

[
1
0

]
uw(t)

(24)

where f(x) : R2 → R2 and g(x) : R1 → R2 are vec-
tor fields, the necessary condition that must be fulfilled for
the sliding mode to exist is the transversality condition, that

is LgσSM(t) =
∂σSM(t)

∂x
(t)g(x) 6= 0. Here,

LgσSM(t) =
[
−1 −1

] [1
0

]
= −1 6= 0, (25)

i.e., the transversality condition always holds.
Clearly, the SAFE mechanism is implemented as a discrete

version of (22), as follows:

x(k + 1) =

[
1−KDIATr 0
KDIATr 1−KDIATr

]
x(k) +

[
1
0

]
uw(k)

IOB(k) =
[
1 1

]
x(k) (26)

with Tr = 0.1 min being the selected sampling time. Note that
Tr is much lower than Ts = 5 min. The main reason for this is
that the whole SAFE algorithm is completely software based,
and thus its switching frequency is physically limited only by
the microprocessor speed.

IOB constraint definition
The standard IOB limit IOBj(t) for meals is defined as:

IOBj(t) = IOBm,j(t) = IOBss,j(t) + 55gCHO/CRj(t) (27)

where IOBss,j(t) is the steady-state response of model (26),
considering the patient-specific current basal input rate ib,j(t),
and 55 gCHO/CRj(t) is the insulin bolus related to a 55 grams
of carbohydrates (gCHO) using the current patient’s Carbohy-
drate Ratio (CR) in [g/U]. Naturally, this definition is a starting-
point. Then, IOBj(t) should be tuned in terms of postprandial
hypo- or hyperglycemia frequency.

It is worth remarking that IOBj(t) implies simply a limit,
and not the exact amount of insulin to be injected. For exam-
ple, the constraint IOBj(t) is likely to be high enough to not be
violated by the switched LQG controller when the patient in-
gests a small meal, but that situation does not necessarily imply
an excessive amount of insulin to be commanded by the con-
troller. On the other hand, when the patient ingests a large meal,
it does not necessarily involve postprandial hyperglycemia, be-
cause the controller will react according to the CGM signal,
and in such a case the sliding regime will be established for a
longer duration. This means that IOBj(t) does not only guar-
antee safety for a 55 gCHO meal, but for a meal size interval
also. However, in order to add another degree of freedom to
the controller structure, an IOBj(t) that depends on a meal size
classification could be defined as follows:

• Small meals < 35 gCHO. IOBs,j(t) = IOBss,j(t) +
40 gCHO/CRj(t).

• Medium meals [35, 65) gCHO. IOBm,j(t) = IOBss,j(t) +
55 gCHO/CRj(t).

• Large meals ≥ 65 gCHO. IOBl,j(t) = IOBss,j(t) +
70 gCHO/CRj(t).

The use of a meal size classification can also be found in El-
Khatib et al. (2017); Gingras et al. (2016a,b), where it is used
to apply premeal insulin boluses. Both approaches, with and
without meal size classification, will be simulated later. When
the system is not coping with a meal-related situation, the IOB
limit is set by default to IOBs,j(t) so as to let the controller
command slight changes on the basal infusion rate.

2.3. Multicontroller switching mechanism

As mentioned before, K2,j is applied only at meal times to
generate an insulin spike akin to the standard open-loop basal-
bolus treatment. The problem at this point is how a meal-related
situation is detected and, consequently, how the IOB limit is
changed according to that. There are two strategies: manual
announcement, which is the strategy selected in this work, and
automatic detection. Next, both will be discussed.

Meal time announcement
In this simple approach the patient has to announce the meal

time, for example by simply pushing a button. The use of qual-
itative meal announcement was discussed in Steil et al. (2006)

6



as a way to adjust the aggressiveness of the control algorithm in
certain situations, in this case after a meal intake. If a meal size
classification scheme is followed, then the user has to select also
the meal size (small, medium or large). This signal triggers the
ARG algorithm to a listening mode that will remain active for
90 min at most. In the algorithm, the listening mode state is rep-
resented by a boolean variable ` that is zero by default and is set
to unity when the listening mode is active. During this mode,
the aggressive LQG controller is selected when rising glucose
values are inferred from the CGM trend. In that case, IOBj(t)
is changed from IOBs,j(t) to the corresponding IOB limit. Its
value depends whether or not a meal size classification is being
used. Then, the aggressive controller will command the insulin
infusion during an hour. After that the conservative controller
will automatically take over the insulin delivery, and 30 min
later, the IOBj(t) will be set to IOBs,j(t) again.

Automatic meal detection
The ARG algorithm is independent of the way on which

meals are detected. Therefore, any pre-existing meal detection
algorithm (Colmegna et al. (2016b); Dassau et al. (2008); Har-
vey et al. (2008); Hughes et al. (2011); Samadi et al. (2017);
Turksoy et al. (2016)) can be employed for the generation of
the switching signal σ that commands which LQG controller is
selected.

In general, if the detection depends on the CGM signal, some
unrealistic hyperglycemic conditions may be detected because
of the high measurement noise. Consequently, there is a com-
promise between a fast response and CGM noise immunity. For
that reason, and due to the fact that the ARG algorithm was
intended to be applied in a clinical trial for the first time, an
automatic detection is not considered in this work.

2.4. Auxiliary modules

In order to minimize the risks of hypo- and hyperglycemia,
two auxiliary modules, which are discussed below, have been
added to the ARG algorithm to make it more robust against the
time-varying nature and high uncertainty of the insulin-glucose
dynamics.

Hypoglycemia-related module (Hypo-RM)
Here, an algorithm to lower the IOB limit when low glucose

values are detected or predicted is defined as follows.
1: At every sampling time:
2: The glucose measured by the CGM sensor (g) in mg/dl is

received, and a linear extrapolation strategy is used to es-
timate the glucose rate of change (ˆ̇g30) in mg/dl/min. Be-
sides, the future glucose concentration is predicted with a
forecasting horizon of 15 min (ĝ15), considering the last
six glucose measurements, i.e., the CGM samples received
during the last 30 min.

3: The IOB limit is set according to previous sections.
4: if g < 60 then
5: IOBj(t) = 0
6: else if g < 70 then
7: IOBj(t) = 0.5IOBss,j(t)

8: else if i = 1 and ` = 0 then
9: if ˆ̇g30 < −0.5 or [ˆ̇g30 < 0.5 and IOB(t) ≥ IOBss,j(t)]

then
10: if ĝ15<70 then
11: IOBj(t) = 0.5IOBss,j(t)
12: else if ĝ15<100 then
13: IOBj(t) = 0.75IOBss,j(t)
14: else if ĝ15<120 then
15: IOBj(t) = IOBss,j(t)
16: end if
17: end if
18: end if
In this way, the Hypo-RM module has the following levels of
action:

• Level A: IOB(t) = 0.

• Level B: IOB(t) = 0.5IOBss(t).

• Level C: IOB(t) = 0.75IOBss(t).

• Level D: IOB(t) = IOBss(t).

In addition, note that the code below Line 8 is executed only
if the controller is in conservative mode (i = 1) and in non-
listening mode (` = 0).

Hyperglycemia-related module (Hyper-RM)
This module generates a Correction Bolus (CB) in [U] based

on the patient’s Correction Factor (CF) in [U/mg/dl] when a
persistent hyperglycemic excursion cannot be mitigated by the
conservative mode of the ARG algorithm.

1: At every sampling time:
2: A boolean variable HYPOFLAG is set to unity if the Hypo-

RM was activated, and to zero otherwise.
3: The glucose rate of change (ˆ̇g30) and the future glucose

concentration (ĝ15) determined in the Hypo-RM are con-
sidered here, together with the glucose rate of change esti-
mated from the last three CGM samples (ˆ̇g15).

4: The mean value of the last six CGM samples (g30) is cal-
culated.

5: A boolean variable G160FLAG, which is zero by default, is
set to unity if the last six CGM samples are higher than 160
mg/dl.

6: Timers CCBOLUS and CAGGCON that count the minutes
elapsed from the last CB and from the last aggressive-
conservative commutation are updated.

7: if i = 1 and ` = 0 then
8: if HYPOFLAG=0 and CCBOLUS≥ 120 and CAGGCON≥

180 then
9: if (G160FLAG=1 and ˆ̇g30 ≥ 0 and ˆ̇g15 ≥ −0.5) or
g30 >200 then

10: CB = 0.8[min(g30,ĝ15)-120]/CF
11: end if
12: end if
13: end if
Note that according to the conditions that have to be fulfilled
for the generation of a CB, this module is likely to be activated
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Figure 4: Closed-loop response for adult #1 of the UVA/Padova simulator to
a 50 gCHO meal. Above: Blood glucose concentration (red), and CGM signal
(orange). Middle: IOB estimation. The red dashed line indicates the IOB limit
IOBm,1. Below: Insulin infusion.

only during fasting periods of persistent hyperglycemia. The
minimum between g30 and ĝ15, and the 0.8 factor are consid-
ered to be conservative, because the measurement noise could
lead to overestimate the value of the CB. In addition, for safety,
the CB is not directly infused to the patient, but it is added to the
insulin bolus proposed by the ARG algorithm to avoid violating
the IOB limit by means of the SAFE layer.

3. Results

In this section the closed-loop results from the simulation
and experimental studies with the ARG control structure are
presented.

3.1. In silico studies
Before the clinical trial, the ARG algorithm was rigorously

tested in silico. Here, some results are presented considering
the following:

• the complete in silico adult cohort of the 300 subject FDA-
accepted UVA/Padova simulator, a CGM as sensor, and a
CSII pump;

• the fasting state of each in silico subject at the start of the
simulation;

• a constant reference of 120 mg/dl;

• no carbohydrate treatments;

• no meal size classification unless stated otherwise; and

• the 5 hour time interval following the start of meal as a
Postprandial Period (PP) defined for performance analysis.

In order to illustrate how the ARG algorithm works, the
closed-loop response for adult #1 to a meal of 50 gCHO in-
gested five hours after the start of the simulation is depicted
in Fig. 4. As shown in that figure, when K2,j is selected
(σ = 2), insulin delivery experiences spikes, reducing post-
prandial glucose levels. Immediately after the IOB reaches
its limit, a fast switching sequence occurs on the constraint
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Figure 5: Average closed-loop response for all the in silico adults of the 300
subject UVA/Padova simulator (left) and the CVGA plot (right) to a 50 gCHO
meal. Upper-left: The thick lines are the mean blood glucose values, and the
boundaries of the filled areas are the mean±1 STD values. Dashed lines (green
and orange) represent the limits of the 70-180 mg/dl and 70-250 mg/dl ranges.
Bottom-left: Average insulin infusion.
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Figure 6: Average closed-loop responses for all the in silico adults of the 300
subject UVA/Padova simulator to different sized meals. Left: 25 gCHO meal
(blue) and 75 gCHO meal (red). Right: Two 50 gCHO meals. Above: The
thick lines are the mean blood glucose values, and the boundaries of the filled
areas are the mean ±1 STD values. Dashed lines (green and orange) repre-
sent the limits of the 70-180 mg/dl and 70-250 mg/dl ranges. Below: Average
insulin infusions.

σSM(t) = IOB1(t)− IOB(t) = 0, establishing a transient slid-
ing regime. Finally, the filtered signal γ is used to modulate
the control signal proposed by the switched LQG controller in
order to command the CSII pump.

In Fig. 5, the Control Variability Grid Analysis (CVGA) plot
(Magni et al. (2008)) and the average time response to a 50
gCHO meal ingested five hours after the start of the simulation
are presented. As shown in that figure, insulin spikes occur after
the meal time is announced, and the aggressive LQG controller
is selected. However, because of the time delay associated with
the CGM technology, the increase in the glucose level due to the
meal ingestion cannot be inferred immediately from the CGM
signal when the listening mode is active. Consequently, the
insulin spikes needed to mitigate the glucose increase during
the postprandial period have a delay of a few minutes. Thus,
glucose peaks after meals are difficult to prevent (Atlas et al.
(2010); Reddy et al. (2015); Weinzimer et al. (2008)), and most
CVGA plots are in the upper B-zone. Average results for the
overall (O) and the PP time intervals are presented in Table
2, showing a safe hypo- and hyperglycemic control. This is
reflected, for example, in the values of Low Blood Glucose
Index (LBGI) and High Blood Glucose Index (HBGI), which
indicate a minimal risk of hypoglycemia (LBGI≤ 1.1) and a
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Table 2: In silico closed-loop results with the ARG algorithm. The overall (O), and the PP time interval defined previously are analyzed separately.

50 gCHO meal 25 gCHO meal 75 gCHO meal Two 50 gCHO meals
Mean Median IQR Mean Median IQR Mean Median IQR Mean Median IQR

Blood Glucose [mg/dl]
O 134 133 [128, 137] 127 126 [121, 131] 143 142 [136, 148] 140 139 [133, 145]
PP 160 159 [150, 167] 135 133 [126, 141] 188 186 [175, 196] 155 155 [146, 163]

% time in [70, 250] mg/dl
O 99.6 100 [100, 100] 99.7 100 [100, 100] 96.7 100 [94.8, 100] 99.4 100 [100, 100]
PP 99.0 100 [100, 100] 99.4 100 [100, 100] 89.7 100 [83.3, 100] 99.2 100 [100, 100]

% time in [70, 180] mg/dl
O 89.8 90.9 [88.1, 92.2] 98.7 100 [100, 100] 83.0 83.8 [80.6, 86.8] 84.4 85.5 [80.9, 88.5]
PP 67.7 71.0 [62.0, 75.0] 96.3 100 [100, 100] 46.4 48.0 [38.0, 57.8] 72.2 74.0 [65.7, 79.4]

% time < 70 mg/dl
O 0.1 0.0 [0.0, 0.0] 0.3 0.0 [0.0, 0.0] 0.1 0.0 [0.0, 0.0] 0.3 0.0 [0.0, 0.0]
PP 0.1 0.0 [0.0, 0.0] 0.6 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0] 0.2 0.0 [0.0, 0.0]

% time < 50 mg/dl
O 0.0 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0]
PP 0.0 0.0 [0.0, 0.0] 0.1 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0]

LBGI 0.1 0.0 [0.0, 0.0] 0.1 0.0 [0.0, 0.1] 0.0 0.0 [0.0, 0.1] 0.1 0.0 [0.0, 0.1]
HBGI 2.0 1.8 [1.5, 2.3] 0.9 0.8 [0.6, 1.2] 3.6 3.3 [2.7, 4.0] 2.9 2.6 [2.1, 3.4]
Amount of insulin injected [U] 21.0 20.0 [17.0, 24.0] 20.0 19.0 [17.0, 24.0] 22.0 21.0 [19.0, 25.0] 27.0 25.0 [23.0, 31.0]

IQR, interquartile range.
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Figure 7: Closed-loop response for adult #90 to a 50 gCHO meal with the stan-
dard IOB limit IOBm,90 (red curve) and with a lower IOB limit: 0.7IOBm,90

(blue curve) for meals. Dashed lines (green and orange) represent the limits of
the 70-180 mg/dl and 70-250 mg/dl ranges.

low risk of hyperglycemia (HBGI≤4.5) (Clarke & Kovatchev
(2009)).

In order to analyze the closed-loop performance with differ-
ently sized meals, the average time responses to a 25 gCHO, 75
gCHO and two 50 gCHO meals are illustrated in Fig. 6, and the
results are included in Table 2. In the first two cases, the meal
time is seven hours after the simulation starts. In the last case,
the first 50 gCHO meal is ingested five hours after the simu-
lation starts, whereas the other 50 gCHO meal is ingested six
hours later. Although the ARG algorithm provides safe blood
glucose control in these cases as well, its performance could
be improved if a meal size classification approach is followed.
For example, when an IOB limit for small meals (<35 gCHO)
is considered at meal time in the simulations with a 25 gCHO
meal, the percentage of time in the range [70, 180] mg/dl is still
96.3% in average during the PP time interval, but the mean
percentage of time below 70 mg/dl is reduced from 0.6% to
0.2%. On the other hand, when an IOB limit for large meals
(≥ 65 gCHO) is applied at meal time in the simulations with
a 75 gCHO meal, the percentage of time in the range [70, 180]
mg/dl is increased from 46.4% to 52.3% in average during the
PP time interval, while the mean percentage of time below 70

mg/dl scarcely increased from 0.0% to 0.2%.
Finally, note that according to the CVGA plot presented in

Fig. 5, one of the adults (adult #90) is in the Lower D-zone.
Although the in silico database should not be evaluated as in-
dividuals, but as a whole population (Visentin et al. (2014)),
this situation allows us to illustrate that the IOB limit can be
tuned based on the postprandial behavior as stated before. In
this case, if a new lower IOB limit is defined for adult #90, then
postprandial hypoglycemia is avoided as depicted in Fig. 7.

3.2. Clinical trial

The first AP clinical trials in Latin America were divided
in two stages. First, the UVA algorithm (Patek et al. (2012))
was tested following a hybrid closed-loop strategy in Novem-
ber 2016 (Sánchez-Peña et al. (2017)). Then, the ARG algo-
rithm was validated during the second clinical stage in June
2017 without premeal insulin boluses. In both stages:

• the control algorithm was migrated into the DiAs platform;

• five (two male, three female) T1DM adult patients were
considered;

• the inpatient studies were performed at the Hospital Ital-
iano de Buenos Aires during 36 hours;

• Roche’s Accu-Check Combo R© insulin pumps and Dex-
com G4 Share R© sensors were used; and

• 15 g of rescue carbohydrates were given when patients’
blood glucose levels dropped below 70 mg/dl.

Here, a summary of the results obtained in the second clini-
cal stage is presented to show the effectiveness of the proposed
control strategy in regulating the glucose level in T1DM pa-
tients (a complete analysis of the results is an ongoing work in
collaboration with the medical staff).

The five patients in the second clinical stage had an average
age of 43± 6 years, a mean TDI of 38± 14 U, a mean HbA1c
of 7.4±0.7%, a mean weight of 65.3±15.8 kg, and an average
diabetes duration of 19±5 years. The closed-loop study started
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Table 3: Average clinical results in open-loop (OL) and in closed-loop (CL).
The 36 h and the 15 h periods, and the nights (N1 and N2) are analyzed sepa-
rately. Statistically significant at p < 0.05.

36 h OL CL

Mean Median IQR Mean Median IQR p-value

Glucose [mg/dl] 153 157 [143, 165] 138 138 [127, 151] 0.121

% time in [70, 250] mg/dl 82.9 83.1 [77.0, 93.0] 88.6 88.2 [84.4, 93.2] 0.315

% time in [70, 180] mg/dl 59.1 55.5 [52.5, 62.9] 74.7 75.0 [69.7, 78.3] 0.036

% time < 70 mg/dl 7.6 6.3 [4.5, 11.1] 5.8 6.3 [3.1, 8.8] 0.290

% time < 50 mg/dl 1.7 1.4 [0.9, 2.8] 0.8 0.7 [0.0, 1.2] 0.189

LBGIa 2.8 2.5 [2.2, 3.3] 2.3 2.1 [1.8, 2.9] 0.215

HBGI 7.2 7.7 [5.6, 9.3] 4.9 4.3 [3.9, 5.9] 0.182

Amount of injected insulin [U]b 63.7 57.7 [43.4, 84.0 ] 50.7 45.2 [36.6, 64.9] 0.049

15 h

Glucose [mg/dl] 156 157 [145, 177] 129 128 [112, 148] 0.057

% time in [70, 250] mg/dl 73.5 83.3 [54.2, 88.8] 94.7 92.8 [90.7, 100] 0.083

% time in [70, 180] mg/dl 49.8 42.2 [39.3, 55.6] 82.6 85.0 [72.9, 91.5] 0.014

% time < 70 mg/dl 13.6 10.6 [8.6, 20.8] 4.1 1.1 [0.0, 9.3] 0.049

% time < 50 mg/dl 5.4 3.9 [2.5, 8.1] 0.2 0.0 [0.0, 0.3] 0.083

LBGIa 4.2 4.0 [2.9, 5.2] 1.8 1.6 [1.1, 2.8] 0.038

HBGI 8.7 9.4 [6.5, 11.0] 2.8 2.1 [1.2, 5.0] 0.047

Amount of injected insulin [U]b 23.5 21.1 [15.7, 31.4] 18.4 16.0 [13.1, 23.7] 0.130

N1

Glucose [mg/dl] 196 198 [169, 222] 155 145 [125, 185] 0.336

% time in [70, 250] mg/dl 66.8 69.8 [48.1, 85.4] 84.4 87.5 [69.3, 99.5] 0.176

% time in [70, 180] mg/dl 26.4 22.0 [16.1, 36.6] 71.1 72.4 [56.3, 85.9] 0.072

% time < 70 mg/dl 12.0 12.6 [6.3, 17.8] 1.0 0.0 [0.0, 2.1] 0.105

% time < 50 mg/dl 3.4 2.1 [0.0, 6.8] 0.0 0.0 [0.0, 0.0] 0.226

LBGIa 3.1 3.7 [1.4, 4.8] 1.6 1.8 [1.2, 2.1] 0.337

HBGI 14.8 13.0 [10.0, 19.5] 8.1 6.2 [2.7, 13.6] 0.347

Amount of injected insulin [U]b 8.5 9.0 [5.7, 11.4] 5.9 3.5 [2.9, 9.0] 0.261

N2

Glucose [mg/dl] 169 183 [137, 196] 125 118 [106, 141] 0.033

% time in [70, 250] mg/dl 78.1 94.9 [55.7, 100] 95.0 100 [91.1, 100] 0.341

% time in [70, 180] mg/dl 50.3 44.8 [35.9, 70.7] 87.7 82.3 [81.0, 96.1] 0.035

% time < 70 mg/dl 3.6 0.0 [0.0, 5.8] 5.0 0.0 [0.0, 8.9] 0.821

% time < 50 mg/dl 0.0 0.0 [0.0, 0.0] 0.0 0.0 [0.0, 0.0] -

LBGIa 2.0 1.9 [1.0, 2.8] 1.5 1.1 [0.4, 2.6] 0.471

HBGI 9.8 10.6 [4.4, 14.3] 1.9 1.4 [0.1, 3.3] 0.031

Amount of injected insulin [U]b 8.2 9.0 [5.6, 10.8] 5.4 5.2 [3.3, 7.5] 0.069

a Modified according to Fabris et al. (2016).
b Patient with pump occlusion during the trial has been excluded from this analysis.

on June 23 at 19:00 h and ended on June 25 at 07:00 h, involv-
ing two dinners, one breakfast, one lunch and one afternoon
snack. Before each meal, the patients had to announce if the
meal was small, medium or large by pushing a button through
the DiAs system, which triggered the ARG algorithm to the lis-
tening mode. The meal size classification defined previously
was adopted at this stage in order to minimize the IOB limit
uncertainty, as it was the first time that this control strategy was
going to be clinically tested.

The closed-loop response for one of the patients (patient
#54112) after a 55 gCHO meal (pasta + chicken breast + fruit)
is illustrated in Fig. 8. It is noteworthy the similarity between
this figure and Fig. 4. Although nearly at 06:00 h the glucose
level increased rapidly, the ARG algorithm could mitigate that
excursion without using the Hyper-RM module.

In Table 3 the average clinical results are presented, consid-
ering that:

• CGM readings during the first night and the following
morning for one of the patients (patient #54115) were dis-
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Figure 8: Clinical closed-loop response for patient #54112 to a 55 gCHO meal.
Above: CGM signal. The upward-pointing triangle indicates the meal time
announcement. Middle: IOB estimation. The red dashed line indicates the
IOB limit. Below: Insulin infusion.

carded due to an occlusion within the insulin pump during
the trial.

• A mean number of 2 rescue doses of carbohydrates per pa-
tient was given. It is worth remarking that roughly the 50%
of the carbohydrate treatments were given after the lunch.
This is because the IOB limit for each patient was inten-
tionally significantly increased before that meal to test the
controller’s aggressiveness.

The objective of this clinical study was not to compare
the proposed closed-loop strategy with the standard open-loop
basal-bolus treatment, because not all conditions were identical
in both cases. Nevertheless, open-loop results that were ob-
tained before carrying out the closed-loop test are also included
in order to illustrate how the glucose control is improved with
the ARG algorithm. Both the open- and closed-loop results
consider the same hours during the day. Furthermore, because
a better comparison is obtained during the night (N) when the
patient is resting (from 23:00 h to 07:00 h), two nights (N1 and
N2) are also analyzed separately in Table 3. Finally, the results
from the last 15 hours of the clinical trial are also presented. As
shown in that table, there is an improvement in the control per-
formance during that period of time where the initial transient
is not included.

In Bequette (2012), the dawn phenomena is mentioned as
a physiological event at roughly 04:00 h that causes the blood
glucose concentration to rise, because of a reduction in patient’s
insulin sensitivity. In order to show the performance of the con-
trol algorithm in regulating the glucose level, in Fig. 9, it is
illustrated how this phenomenon was mitigated in closed-loop
for one of the patients (patient #54116).

Finally, concerning how often the safety mechanisms pre-
sented in Section 2.4 were activated during this trial, it is found
that the number of times the Hyper-RM was activated per pa-
tient has median 1 and IQR [0, 2]. On the other hand, the Hypo-
RM module was activated as follows:

• Level A: Median 1.7% of time and IQR: [1.1, 4.4]%.

• Level B: Median 6.5% of time and IQR: [5.5, 7.9]%.
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• Level C: Median 7.0% of time and IQR: [6.2, 11.4]%.

• Level D: Median 5.0% of time and IQR: [4.5, 9.8]%.

It is worth remarking that the activation of the Hypo-RM
does not necessarily mean that the insulin infusion commanded
by the switched LQG controller will be reduced. If the amount
of insulin commanded by the switched LQG is not going to vio-
late the IOB limit, then that amount of insulin is directly infused
to the patient without being attenuated.

4. Discussion

A new control strategy for the AP problem was presented:
the ARG algorithm. It consists of a two-degree-of-freedom
control structure that includes a switched LQG inner controller
together with an outer sliding mode safety loop, the SAFE
mechanism for IOB constraints. The SAFE layer quickly adapts
the controller gain to automatically obtain insulin spikes simi-
lar to the open-loop boluses during meal times. It also reduces
or suspends the insulin infusion when a risk of hypoglycemia is
inferred from the CGM signal. The overall control strategy is
simple to migrate to a portable platform, and it was validated in
a clinical trial. However, this is an ongoing procedure that can
be extended as follows:

• The switched nature of the inner controller enables differ-
ent tunings for dealing with prandial and fasting periods,
and can be extended to other situations, e.g., physical ac-
tivity.

• A more general switched-LPV procedure could be con-
sidered (Colmegna et al. (2016a)). In this work, an LQG
strategy was adopted, because it simplified the implemen-
tation into a portable platform.

• Unannounced meals, not only carbohydrate counting, can
be attempted with an adequate meal detection filter (Turk-
soy et al. (2016)).

• New and more complex scenarios could be potentially ad-
dressed by redesigning the switching policy and/or the

IOB constraints. For example, the IOB limit could be auto-
matically set based on a carbohydrate estimation algorithm
(Samadi et al. (2017)).

5. Conclusions

Promising in silico and in vivo results were obtained using
the ARG algorithm without carbohydrate counting, which rep-
resent a step forward towards a fully automated AP system.
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et al. (2009). Safety constraints in an artificial pancreatic β cell: An imple-
mentation of model predictive control with insulin on board. J. Diabetes Sci.
Technol., 3, 536–44.

Fabris, C., Patek, S. D., & Breton, M. D. (2016). Are risk indices derived from
CGM interchangeable with SMBG-based indices? J. Diabetes Sci. Technol.,
10, 50–9.

Forlenza, G. P., Deshpande, S., Ly, T. T., Howsmon, D. P., Cameron, F., Baysal,
N. et al. (2017). Application of zone model predictive control artificial
pancreas during extended use of infusion set and sensor: A randomized
crossover-controlled home-use trial. Diabetes Care, 40, 1096–102.

Garelli, F., Mantz, R., & De Battista, H. (2011). Advanced Control for Con-
strained Processes and Systems. London, United Kingdom: IET Institution
of Engineering and Technology.

Gingras, V., Haidar, A., Messier, V., Legault, L., Ladouceur, M., & Rabasa-
Lhoret, R. (2016a). A simplified semiquantitative meal bolus strategy com-
bined with single- and dual-hormone closed-loop delivery in patients with
type 1 diabetes: A pilot study. Diabetes Technol. Ther., 18, 464–71.

Gingras, V., Rabasa-Lhoret, R., Messier, V., Ladouceur, M., Legault, L., &
Haidar, A. (2016b). Efficacy of dual-hormone artificial pancreas to alle-
viate the carbohydrate-counting burden of type 1 diabetes: A randomized
crossover trial. Diabetes Metab., 42, 47–54.

Gondhalekar, R., Dassau, E., & Doyle III, F. J. (2014). MPC design for rapid
pump-attenuation and expedited hyperglycemia response to treat T1DM
with an artificial pancreas. In AACC American Control Conference (pp.
4224–30). Portland, OR, USA.

Gondhalekar, R., Dassau, E., & Doyle III, F. J. (2016). Periodic zone-MPC
with asymmetric costs for outpatient-ready safety of an artificial pancreas to
treat type 1 diabetes. Automatica, 71, 237–46.

Haidar, A., Messier, V., Legault, L., Ladouceur, M., & Rabasa-Lhoret, R.
(2017). Outpatient 60-hour day-and-night glucose control with dual-
hormone artificial pancreas, single-hormone artificial pancreas, or sensor-
augmented pump therapy in adults with type 1 diabetes: An open-label,
randomised, crossover, controlled trial. Diabetes Obes. Metab., 19, 713–20.

Harvey, R., Dassau, E., Zisser, H., Seborg, D. E., & Doyle III, F. J. (2008).
Design of the glucose rate increase detector: A meal detection module for
the health monitoring system. J. Diabetes Sci. Technol., 8, 307–20.

Hespanha, J. P., & Morse, A. S. (2002). Switching between stabilizing con-
trollers. Automatica, 38, 1905–17.

Hovorka, R., Elleri, D., Thabit, H., Allen, J., Leelarathna, L., El-Khairi, R.
et al. (2014). Overnight closed-loop insulin delivery in young people with
type 1 diabetes: A free-living, randomized clinical trial. Diabetes Care, 37,
1204–11.

Hughes, C. S., Patek, S. D., Breton, M., & Kovatchev, B. P. (2011). Antici-
pating the next meal using meal behavioral profiles: A hybrid model-based
stochastic predictive control algorithm for T1DM. Comput. Methods Pro-
grams Biomed., 102, 138–48.

Keith-Hynes, P., Mize, B., Robert, A., & Place, J. (2014). The diabetes as-
sistant: A smartphone-based system for real-time control of blood glucose.
Electronics, 3, 609–23.

Kovatchev, B. P., Breton, M., Dalla Man, C., & Cobelli, C. (2008). In silico
model and computer simulation environment approximating the human glu-
cose/insulin utilization. Food and Drug Administration Master File MAF
1521, .

Kovatchev, B. P., Breton, M., Dalla Man, C., & Cobelli, C. (2009). In silico pre-
clinical trials: A proof of concept in closed-loop control of type 1 diabetes.

J. Diabetes Sci. Technol., 3, 44–55.
Kovatchev, B. P., Cheng, P., Anderson, S. M., Pinsker, J. E., Boscari, F., Buck-

ingham, B. A. et al. (2017). Feasibility of long-term closed-loop control:
A multicenter 6-month trial of 24/7 automated insulin delivery. Diabetes
Technol. Ther., 19, 18–24.

Lee, J., Dassau, E., Seborg, D., & F. J. Doyle III (2013). Model-based person-
alization scheme of an artificial pancreas for type 1 diabetes applications. In
American Control Conference (ACC) (pp. 2911–6). Washington, DC, USA.

León-Vargas, F., Garelli, F., De Battista, H., & Vehi, J. (2015). Postprandial
response improvement via safety layer in closed-loop blood glucose con-
trollers. Biomed. Signal Process Control, 16, 80–87.

Ly, T., Roy, A., Grosman, B., Shin, J., Campbell, A., Monirabbasi, S. et al.
(2015). Day and night closed-loop control using the integrated Medtronic
hybrid closed-loop system in type 1 diabetes at diabetes camp. Diabetes
Care, 38, 1205–11.

Magni, L., Raimondo, D. M., Dalla Man, C., Breton, M., Patek, S., De Nicolao,
G. et al. (2008). Evaluating the efficacy of closed-loop glucose regulation
via control-variability grid analysis. J. Diabetes Sci. Technol., 2, 630–5.

Messori, M., Kropff, J., Del Favero, S., Place, J., Visentin, R., Calore, R. et al.
(2017). Individually adaptive artificial pancreas in subjects with type 1 di-
abetes: A one-month proof-of-concept trial in free-living conditions. Dia-
betes Technol. Ther., 19, 560–71.

Patek, S. D., Magni, L., Dassau, E., Hughes-Karvetski, C., Toffanin, C., De
Nicolao, G. et al. (2012). Modular closed-loop control of diabetes. IEEE
Trans. Biomed. Eng, 59, 2986–99.

de Pereda, D., Romero-Vivo, S., Ricarte, B., Rossetti, P., Ampudia-Blasco,
F. J., & Bondia, J. (2016). Real-time estimation of plasma insulin concen-
tration from continuous glucose monitor measurements. Comput. Methods
Programs Biomed., 19, 934–42.

Phillip, M., Battelino, T., Atlas, E., Kordonouri, O., Bratina, N., Miller, S. et al.
(2013). Nocturnal glucose control with an artificial pancreas at a diabetes
camp. N. Engl. J. Med., 368, 824–33.

Reddy, M., Herrero, P., Sharkawy, M. E., Pesl, P., Jugnee, N., Pavitt, D. et al.
(2015). Metabolic control with the bio-inspired artificial pancreas in adults
with type 1 diabetes: A 24-hour randomized controlled crossover study. J.
Diabetes Sci. Technol., 10, 405–13.

Renard, E. (2008). Insulin delivery route for the artificial pancreas: Subcu-
taneous, intraperitoneal, or intravenous? Pros and cons. J. Diabetes Sci.
Technol., 2, 735–8.

Revert, A., Garelli, F., Picó, J., De Battista, H., Rossetti, P., Vehi, J. et al.
(2013). Safety auxiliary feedback element for the artificial pancreas in type
1 diabetes. IEEE Trans. Biomed. Eng., 60, 2113–22.

Safonov, M. G., & Chiang, R. Y. (1989). A Schur method for balanced-
truncation model reduction. IEEE Trans. Autom. Control, 34, 729–33.

Samadi, S., Turksoy, K., Hajizadeh, I., Feng, J., Sevil, M., & A, C. (2017). Meal
detection and carbohydrate estimation using continuous glucose sensor data.
IEEE J. Biomed. Health Inform., 21, 619–27.

Sánchez-Peña, R. S., Colmegna, P., Grosembacher, L., Breton, M., De Battista,
H., Garelli, F. et al. (2017). Artificial Pancreas: First clinical trials in Ar-
gentina. In 20th IFAC World Congress (pp. 7997–8002). Toulouse, France.

Steil, G. M., Panteleon, A. E., & Rebrin, K. (2004). Closed-loop insulin
delivery-the path to physiological glucose control. Adv. Drug Deliv. Rev.,
56, 125–44.

Steil, G. M., Rebrin, K., Darwin, C., Hariri, F., & Saad, M. F. (2006). Feasibility
of automating insulin delivery for the treatment of type 1 diabetes. Diabetes,
55, 3344–50.

Szalay, P., Eigner, G., & Kovács, L. A. (2014). Linear matrix inequality-based
robust controller design for type-1 diabetes model. In 19th IFAC World
Congress (pp. 9247–52). Cape Town, South Africa.

The Diabetes Control and Complications Trial Research Group (1997). Hy-
poglycemia in the diabetes control and complications trial. Diabetes, 46,
271–86.

Turksoy, K., Hajizadeh, I., Samadi, S., Feng, J., Sevil, M., Park, M. et al.
(2017). Real-time insulin bolusing for unannounced meals with artificial
pancreas. Control Eng. Pract., 59, 159–64.

Turksoy, K., Samadi, S., Feng, J., Littlejohn, E., Quinn, L., & Cinar, A. (2016).
Meal detection in patients with type 1 diabetes: A new module for the multi-
variable adaptive artificial pancreas control system. IEEE J. Biomed. Health
Inform., 20, 47–54.

van Heusden, K., Dassau, E., Zisser, H. C., Seborg, D. E., & Doyle III, F. J.
(2012). Control-relevant models for glucose control using a priori patient

12



characteristics. IEEE Trans. Biomed. Eng., 59, 1839–49.
Vinnicombe, G. (1993). Frequency domain uncertainty and the graph topology.

IEEE Trans. Autom. Control, 38, 1371–83.
Vinnicombe, G. (2001). Uncertainty and Feedback: H∞ Loop-shaping and

the ν-gap metric. London: Imperial College Press.
Visentin, R., Dalla Man, C., Kovatchev, B. P., & Cobelli, C. (2014). The Uni-

versity of Virginia/Padova type 1 diabetes simulator matches the glucose
traces of a clinical trial. Diabetes Technol. Ther., 16, 428–34.

Walsh, J., & Roberts, R. (2006). Pumping Insulin. (4th ed.). Torrey Pines Press,
San Diego, CA.

Walsh, J., Roberts, R., & Heinemann, L. (2014). Confusion regarding duration
of insulin action: A potential source for major insulin dose errors by bolus

calculators. J. Diabetes Sci. Technol., 8, 170–8.
Weinzimer, S. A., Steil, G. M., Swan, K. L., Dziura, J., Kurtz, N., & Tam-

borlane, W. V. (2008). Fully automated closed-loop insulin delivery versus
semiautomated hybrid control in pediatric patients with type 1 diabetes us-
ing an artificial pancreas. Diabetes Care, 31, 934–9.

Willinska, M. E., Chassin, L. J., Schaller, H. C., Schaupp, L., Pieber, T. R.,
& Hovorka, R. (2005). Insulin kinetics in type 1 diabetes: Continuous and
bolus delivery of rapid acting insulin. IEEE Trans. Biomed. Eng., 52, 3–12.

Youla, D. C., Jabr, H. A., & Bongiorno, J. J. (1976). Modern wiener-hopf
design of optimal controllers–part ii: The multivariable case. IEEE Trans.
Automat. Contr., 21, 319–38.

13


