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SUMMARY

The problem of robustification of interconnection and damping assignment passivity-based control for
underactuated mechanical system vis-à-vis matched, constant, and unknown disturbances is addressed in
the paper. This is achieved adding an outer-loop controller to the interconnection and damping assignment
passivity-based control. Three designs are proposed, with the first one being a simple nonlinear PI, while
the second and the third ones are nonlinear PIDs. While all controllers ensure stability of the desired equi-
librium in spite of the presence of the disturbances, the inclusion of the derivative term allows us to inject
further damping enlarging the class of systems for which asymptotic stability is ensured. Numerical simula-
tions of the Acrobot system and experimental results on the disk-on-disk system illustrate the performance
of the proposed controller. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Interconnection and damping assignment passivity-based control (IDA-PBC), first introduced in
[1], is a highly popular controller design technique applicable for equilibrium stabilization of a
wide class of physical systems (e.g., [2–6]). A comprehensive discussion of IDA-PBC may be
found in [7]. Its application for underactuated mechanical systems has been particularly success-
ful as reported, for instance, in [8–11]. It is widely recognized that IDA-PBC designs are robust
against parameter uncertainties and unmodelled dynamics, for example, passive effects like friction.
However, the (unavoidable) presence of external disturbances degrades its performance, shifting the
equilibrium of the closed loop and, possibly, inducing instability. For this reason, the problem of
robustification of IDA-PBC vis-à-vis external disturbances is of primary importance.

For fully actuated mechanical systems, this problem has been addressed in [12], where the key
idea of adding an integral action that preserves the port-Hamiltonian (pH) structure of the system,
first proposed in [13], is exploited. Proposition 5 of [12] presents a dynamic nonlinear controller,
including the essential integral action, that ensures global asymptotic stability of the desired equi-
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librium in spite of the presence of constant matched disturbances. The case of unmatched and/or
time-varying disturbances is also studied in that paper, where controllers that ensure input-state-
stability are proposed. In [14], the addition of integral action in velocities for the particular case
of constant mass matrix is considered. However, the integral action in velocities does not reject
matched disturbances and creates a manifold of equilibrium, as indicated in [12].

To the best of the authors’ knowledge, the first attempt to solve the constant, disturbance rejection
problem for underactuated mechanical systems was published in [15]. The authors consider the
simplest case of two DOF mechanical systems with constant mass matrix and underactuation degree
one. Although the main idea is interesting, there are several unfortunate errors that invalidate the
claims. Indeed, it is easy to show that the proposed control law, given in Equation (27) of [15],
does not satisfy the matching equations, which is a key step in the design. Moreover, because it is
not possible to inject damping in all the momentum coordinates, the closed-loop damping matrix is
not full rank, a critical assumption made in [15] to claim asymptotic stability.

In this paper, we complement the main idea of [15], that is adding an integral action on non-
passive outputs of underactuated systems, with the developments of [12] to propose an outer-loop
controller that solves the problem of (constant and matched) disturbance rejection for underactuated
n-DOF mechanical systems with arbitrary underactuation degree. An interesting feature of the pro-
posed outer loops is that they do not destroy the mechanical structure of the system, preserving in
closed loop its pH form. The design is applicable for systems where the mass matrix is independent
of the unactuated coordinates and the closed-loop mass matrix is constant. The first assumption is
instrumental for the results reported in [8, 9, 11], where it is imposed to simplify the kinetic energy
matching equation. In the present work, this assumption, as well as the requirement that the closed-
loop mass matrix is constant, are needed to construct a suitable change of coordinates under which
the integral action is added. It should be noted that these assumptions are verified by a large class of
underactuated mechanical systems, including those considered in [9].

The rest of the paper is organized as follows. Section 2 briefly recalls IDA-PBC and formulates
its robustification problem. The main result of the paper is presented in Section 3. The performance
of the controller is illustrated in Section 4 with numerical simulations of the Acrobot [9] and in
Section 5 with experimental results of the disk-on-disk system [21]. Future work is discussed in
Section 6.

Notation. For x 2 Rn, S 2 Rn�n, S D S> > 0, we denote jxj2 WD x>x and kxk2S WD x>Sx.

Given a function H W Rn ! R we define rH WD
�
@H
@x

�>
.

2. ROBUST INTERCONNECTION AND DAMPING ASSIGNMENT
PASSIVITY-BASED CONTROL

2.1. Standard interconnection and damping assignment passivity-based control

Interconnection and damping assignment passivity-based control was introduced in [10] to control
underactuated mechanical systems described in pH form

�
Pq
Pp

�
D

�
0n�n In
�In 0n�n

�
rH.q; p/C

�
0n�m
G.q/

�
u; (1)

where q; p 2 Rn are the generalized position and momenta, respectively, u 2 Rm is the control,
G W Rn ! Rn�m, with rank.G/ D m < n, the function H W Rn �Rn ! R;

H.q; p/ WD
1

2
p>M�1.q/ p C V.q/ (2)

is the total energy with M W Rn ! Rn�n, the positive definite mass matrix and V W Rn ! R the
potential energy.
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The control objective is to design a static, state feedback that assigns to the closed loop a desired
stable equilibrium .q; p/ D .q?; 0/, q? 2 Rn. This is achieved in IDA-PBC by matching the pH
target dynamics �

Pq
Pp

�
D

�
0n�n M�1.q/Md .q/

�Md .q/M
�1.q/ J2.q; p/ �Rd .q/

�
rHd ; (3)

with the new total energy function Hd W Rn �Rn ! R;

Hd .q; p/ WD
1

2
p>M�1d .q/ p C Vd .q/; (4)

where the desired mass matrix Md W R
n ! Rn�n is positive definite, the desired potential energy

Vd W R
n ! R verifies

q? D arg minVd .q/; (5)

and the desired damping matix is defined by

Rd .q/ WD G.q/KPG
>.q/ > 0;

with KP 2 Rm�m a free positive definite matrix. The matrix J2 W Rn � Rn ! Rn�n is free to the
designer and fulfills the skew-symmetry condition

J2.q; p/ D �J
>
2 .q; p/: (6)

The closed-loop system (3) has a stable equilibrium point at .q?; 0/ with Lyapunov function Hd ,
which verifies

PHd D �kG
>M�1d pk2KP 6 0:

The closed loop is asymptotically stable provided that the output

yd WD G
>M�1d p (7)

is detectable [16].
By equating the right-hand sides of (1) and (3), one obtains the so-called matching equations,

which are two partial differential equations (PDEs) that identify the assignable Md and Vd and
gives an explicit expression for the (static state feedback) control signal u D uIDA.q; p/, where
uIDA W Rn �Rn ! Rm.

2.2. Formulation of the robust interconnection and damping assignment passivity-based
control problem

In this paper, we consider the effect of constant, matched disturbances in the mechanical system (1)
that may represent external forces or an input measurement bias. We assume that the system (1) is
in closed loop with an IDA-PBC into which the disturbance propagates and must be rejected with a
dynamic outer-loop control. That is, we consider the system (1) perturbed by an input disturbance
in closed loop with the control u D uIDA.q; p/C v, leading to the following.

Problem formulation. Given the dynamics
�
Pq
Pp

�
D

�
0n�n M�1Md

�Md M
�1 J2 �GKPG

>

�
rHd C

�
0n�m
G

�
.v C d/; (8)

with Hd as in (4) and d 2 Rm. Find (if possible) a dynamic controller v D ˇ.q; p; �/, where
� 2 Rm is the state of the controller, that ensures asymptotic stability of the desired equilibrium
.q; p; �/ D .q?; 0; �?/, for some �? 2 Rm, even under the action of constant disturbances d .
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Remark 1
Notice that the dimension of the dynamic extension � coincides with the one of the input space, that
is, m. As will be shown later, this choice suffices to provide a solution to the problem.

3. MAIN RESULT

3.1. The class of mechanical systems

In this section, we present the main result of the paper, which requires the following assumption
imposed throughout the rest of the paper.

Assumption A
The input matrix G and the desired mass matrix Md are constant, and the mass matrix M.q/ is
independent of the non-actuated coordinates. Consequently,

G?rq.p
>M�1p/ D 0;

where G? 2 R.n�m/�n is a full-rank left-annihilator of G.

Remark 2
The term G?rq.p

>M�1p/ appears in the kinetic energy matching equation as a forcing term that
makes the PDE inhomogeneous and introduces a quadratic term in the unknownMd , rendering very
difficult its solution. In [8], it is also assumed to be zero to provide an explicit solution to the PDE.
In [11], changes of coordinates are introduced to eliminate, or simplify, this term. In Proposition 2
of [11], it is shown that a sufficient condition to eliminate this term is that the Coriolis and centrifugal
forces of the mechanical system enter into the kernel of G.

Remark 3
Assumption A, which is satisfied by some of the classical benchmark examples, identifies the class
of systems for which we provide a solution to the problem formulated in Section 2.2. The relaxation
of this assumption is left as an open problem for future research. Some of the classical test beds for
which this assumption is not satisfied are, for example, the ball and beam [17], the cart-pole system
and the pendubot [18].

3.2. Nonlinear PI controller

Proposition 1
Consider the dynamics (8) with J2 D 0 in closed loop with the PI controller v D ˇ.q; �/, with

ˇ.q; �/ D D �K2KIK
>
2 G
>M�1rVd �KPKI � (9)

and

P� D K>2 G
>M�1rVd ; (10)

with constant matrices KP > 0, KI > 0 and

K2 WD
�
G>M�1d G

��1
:

P1.1 Introduce the globally defined change of coordinates ´ D  .q; p; �/ given by

´1 D q; (11)

´2 D p CGK2KI .� � ˛/; (12)

´3 D �: (13)
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The closed-loop dynamics can be written in pH form as follows:

2
4 Ṕ1Ṕ2
Ṕ3

3
5 D

2
4 0n�n M�1Md �M

�1GK2
�Md M

�1 �GKPG
> 0n�m

K>2 G
>M�1 0m�n 0m�m

3
5rH´; (14)

with Hamiltonian

H´.´/ D
1

2
´>2M

�1
d ´2 C Vd .´1/C

1

2
k´3 � ˛k

2
KI

(15)

and

˛ WD .KPKI /
�1d:

P1.2. The equilibrium .q; p; �/ D .q?; 0; ˛/ is stable.
P1.3. If the output

yD1 D G
>M�1d ´2

is a detectable output of the dynamics (14), then .q?; 0; ˛/ is an asymptotically stable equilibrium.

Proof
First, to prove P1.1, we differentiate (11) to obtain

Ṕ1 � Pq

DM�1´2 �M
�1GK2KI .´3 � ˛/;

which allows us to write the first state equation of (14). We proceed in a similar fashion with (12)

Ṕ2 D Pp CGK2KI P�

D �MdM
�1rVd .q/ �GKPG

>M�1d p CG.v C d/CGK2KI P�

D �MdM
�1rVd .q/ �GKPG

>M�1d p CGd

CG
�
�K2KIK

>
2 G
>M�1rVd �KPG

>M�1d GK2KI �
	

CGK2KIK
>
2 G
>M�1rVd

ˇ̌
.q;p;�/D �1.´/

� �MdM
�1rVd .´1/ �GKPG

>M�1d ´2;

which is the second row of the closed-loop dynamics (14). Finally, we note that the dynamics of �
and ´3 are equivalent. Indeed, from the last row of (14), we obtain

Ṕ3 D K>2 G
>M�1rVd .´1/

ˇ̌
´D .q;p;�/

� P�:

To prove the stability property P1.2, we consider H´ as Lyapunov candidate function for the closed
loop (14). Its time derivative is as follows:

PH´ D �kG
>M�1d ´2k

2
KP
6 0; (16)

which ensures stability of the desired equilibrium. The assumption that yD1 is a detectable out-
put of the system (14) ensures asymptotic stability of the equilibrium .q?; 0; ˛/ [16], proving
property P1.3. �
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Remark 4
The controller (9) is a nonlinear PI (around rVd ) of the form

v D �KP .q/rVd �KI .q/�;
P� D rVd ;

with nonlinear gains

KP .q/ WD K2KIK>2 G>M�1.q/;
KI .q/ WD KPKIK>2 G>M�1.q/:

Remark 5
Notice that in the simplest case when Vd is quadratic, that is,

Vd .q/ D kq � q
?k2S ;

with S > 0, then v is a standard PI around the position error q � q?. This is the case if the system
(1) is linear; hence, the gains KP and KI are constant.

3.3. First nonlinear PID controller

Now, we extend the previous proposition by adding damping in the coordinates ´1 to relax the
detectability condition needed to ensure asymptotic stability and simplify its analysis.

Proposition 2
Consider the dynamics (8) with J2 D 0 in closed loop with the PID controller v D ˇ.q; �; p/, with‡

ˇ.q; �; p/ D �
�
KPG

>M�1d GK1G
>M�1 CK1G

> PM�1
�
rVd

�K1G
>M�1r2VdM

�1p �KI �
(17)

and

P� D G>M�1d GK1G
>M�1rVd CG

>M�1d p; (18)

with constant matrices KP > 0, KI > 0 and K1 > 0.

P2.1. The closed-loop dynamics can be written in pH form as follows:

2
4 Ṕ1Ṕ2
Ṕ3

3
5 D

2
64

��1 M�1Md 0n�m

�Md M
�1 �GKPG

> �G

0m�n G> 0m�m

3
75rH´; (19)

with

�1 WDM
�1GK1G

>M�1 > 0;

Hamiltonian as in (15) and ˛ WD K�1I d . The states of (8) and (19) are related by the state
transformation ´ D  .q; p; �/ as follows:

´1 D q; (20)

´2 D p CGK1G
>M�1rVd ; (21)

´3 D �: (22)

P2.2. The equilibrium .q; p; �/ D .q?; 0; ˛/ is stable.

‡To simplify the notation we use PM�1 to denote d.M
�1/

dt
.
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P2.3. If the output

yD2 D

�
G>M�1rVd
G>M�1

d
´2

�

is a detectable output of the dynamics (19), then .q?; 0; ˛/ is an asymptotically stable equilibrium
of the closed loop.

Proof
First, to prove P2.1, we take the state transformation (20), and we differentiate it with respect to
time to obtain

Ṕ1 D ��1rVd CM
�1´2

D ��1rVd CM
�1 Œp CM�1rVd �

� Pq;

which allows us to write the first state equation of (14). We proceed in a similar fashion with the
state transformation (21). By differentiating with respect to time, we obtain

Ṕ2 D Pp CGK1G
>M�1r2Vd Pq CGK1G

> PM�1rVd

D �MdM
�1rVd .q/ �GKPG

>M�1d p CG.v C d/CGK1G
>M�1r2VdM

�1p

CGK1G
> PM�1rVd

D �MdM
�1rVd .q/ �GKPG

>M�1d p CGd CG
�
�KPG

>M�1d GK1G
>M�1rVd

�KI � �K1G
>M�1r2VdM

�1p �K1G
> PM�1rVd

	
CGK1G

>M�1r2VdM
�1p

CGK1G
> PM�1rVd

D �MdM
�1rVd .q/ �GKPG

>M�1d
�
p CGK1G

>M�1rVd
	

�GKI .� � ˛/j.q;p;�/D �1.´/

� �MdM
�1rVd .´1/ �GKPG

>M�1d ´2 �GKI .´3 � ˛/;

which is the second row of the closed-loop dynamics (19). Finally, we note that the dynamics of �
and ´3 are equivalent. Indeed, from the last row of (19), we obtain

Ṕ3 D G>M�1d ´2
ˇ̌
´D .q;p;�/

� P�:

The proof of P2.2 and P2.3 mimics the proof of Proposition 1, noting that

PH´ D �kG
>M�1rVdk

2
K1
� jjG>M�1d ´2k

2
KP
:

�

Remark 6
The controller (17) differs from the nonlinear PI (9) in two respects. First, it contains a derivative
term with respect to the signal rVd—hence, the addition of the letter D to the PI name. Second,
besides the integral action (around rVd ), there is another one around Pq. Indeed, (17) can be written
in the form

v D �KP .q; Pq/rVd � �1 � �2 � KD.q/
drVd

dt
;

P�1 D KI1.q/rVd ;
P�2 D KI2.q/ Pq;

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2016)
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with some suitable nonlinear gains KP .q; Pq/, KD.q/ and KI i .q/; i D 1; 2, defined as follows:

KP .q; Pq/ D KPG>M�1d GK1G
>M�1 CK1G

> PM�1;

KD.q/ D K1G>M�1;
KI1.q/ D K�1I G>M�1d GK1G

>M�1;

KI2.q/ D K�1I G>M�1d M:

Remark 7
It is important to underscore the presence of the positive semidefinite matrix �1 in the .1; 1/ block
of the system matrix in (19). This additional damping term allows—via the addition of the term
G>M�1rVd in yD2—to relax the condition P1.3 for asymptotic stability.

3.4. Second nonlinear PID controller

We present now a more elaborated nonlinear PID controller with the following features:

� To simplify the asymptotic stability analysis, it adds damping in coordinates ´3, as well as in
´1 and ´2.
� The assumption of J2 D 0 is obviated, enlarging the class of closed-loop systems (8) to

be considered.

Proposition 3
Consider the dynamics (8) in closed-loop with the PID controller v D ˇ.q; �; p/, with

ˇ.q; �; p/ D �
�
KpG

>M�1d GK1G
>M�1 CK1G

> PM�1 CK2KI

�
�
K>2 CK

>
3 G
>M�1d GK1

�
G>M�1

	
rVd

�
�
K1G

>M�1r2VdM
�1 C .G>G/�1G>J2M

�1
d CK2KIK

>
3 G
>M�1d

	
p

�
�
KPG

>M�1d GK2 CK3
�
KI �

(23)

and

P� D
�
K>2 G

>M�1 CK>3 G
>M�1d GK1G

>M�1
�
rVd CK

>
3 G
>M�1d p; (24)

where K1 > 0, KP > 0, and KI > 0, K3 > 0 and

K2 WD
�
G>M�1d G

��1
:

P3.1. The closed-loop dynamics can be written in pH form as follows:
2
4 Ṕ1Ṕ2
Ṕ3

3
5 D

2
4 ��1 M�1Md ��2
�Md M

�1 �GKPG
> �GK3

�>2 K>3 G
> �K>3

3
5rH´ (25)

with Hamiltonian as in (15), and the constant gains

�1 WDM
�1GK1G

>M�1;

�2 WDM
�1GK2;

˛ WD K�1I .KP CK3/
�1 d:

The states of (8) and (25) are related by the state transformation ´ D  .q; p; �/ as follows:

´1 D q; (26)

´2 D p CGK1G
>M�1rVd .q/CGK2KI .� � ˛/; (27)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2016)
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´3 D �: (28)

P3.2. The equilibrium .q; p; �/ D .q?; 0; ˛/ is stable.
P3.3. If the output

yD3 D

2
4G

>M�1rVd
G>M�1

d
´2

KI .´3 � ˛/

3
5

is a detectable output of the dynamics (25), then .q?; 0; ˛/ is an asymptotically stable equilibrium
of the closed loop.

Proof
We proceed as in the proof of previous propositions, to prove P3.1, we take the state transformation
(26), and we differentiate it with respect to time to obtain

Ṕ1 D ��1r´1Vd .´1/CM
�1´2 � �2KI .´3 � ˛/

D ��1r´1Vd .´1/CM
�1
�
p CGK1G

>M�1rVd CGK2KI .� � ˛/
	

��2KI .´3 � ˛/j´1Dq

� Pq;

(29)

which allows us to write state first state equation of (25). Similarly, we take the state transformation
(27), and we differentiate it with respect to time to obtain

Ṕ2 D Pp CGK1G
> PM�1rVd CGK1G

>M�1r2Vd Pq CGK2KI P�

D �MdM
�1rVd .q/C

�
J2 �GKPG

>
�
M�1d p CG v CG d

C GK1G
> PM�1rVd CGK1G

>M�1r2VdM
�1p CGK2KI P�

D �MdM
�1rVd C

�
J2 �GKPG

>
�
M�1d p CGd

C G
�
�KPG

>M�1d GK1G
>M�1rVd �K1G

> PM�1rVd

�
�
K1G

>M�1r2VdM
�1
�
p � .G>G/�1G>J2M

�1
d p �K2KI P�

�
�
KPG

>M�1d GK2 CK3
�
KI �

	
CGK1G

>M�1r2VdM
�1p

C GK1G
> PM�1rVd CGK2KI P�

ˇ̌̌
.q;p;�/D �1.´/

� �MdM
�1rVd .´1/ �GKPG

>M�1d ´2 �GK3KI .´3 � ˛/;

(30)

which is the second row of the closed-loop dynamics (25). Finally, from the last row of (25), we
note that the dynamics of � and ´3 are equivalent, that is,

Ṕ3 D �>2 rVd .´1/CK
>
3 G
>M�1d ´2 �K

>
3 KI .´3 � ˛/

ˇ̌
´D .q;p;�/

D K>2 G
>M�1rVd CK

>
3 G
>M�1d

�
p CGK1G

>M�1rVd

C GK2KI .� � ˛/� �K
>
3 KI .� � ˛/

� P�:

(31)

The stability property P3.2 follows from

PH´ D �kG
>M�1rVd .´1/k

2
K1
� kG>M�1d ´2k

2
KP
� kKI .´3 � ˛/k

2
K3
6 0: (32)

The assumption that yD3 is a detectable output of the system (25) ensures asymptotic stability of
the equilibrium .q?; 0; ˛/ [16], proving property P3.3. �

Remark 8
Note that the controller in Proposition 1 can be derived from the one in Proposition 3 settingK1 D 0
and K3 D 0. An extra term needs to be added to deal with the case when J2 ¤ 0. Similarly, the
controller in Proposition 2 can be derived from the one in Proposition 3 by setting K2 D 0 and
K3 D Im, and including a term to handle J2 ¤ 0.
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4. THE ACROBOT EXAMPLE

In this section, we consider the example of the Acrobot studied in [19]. The IDA-PBC controller
used in this section was borrowed from [9]. It is interesting to note that all the mechanical systems
studied in [9], including the Acrobot, belong to the class of systems we consider in our work.

4.1. Dynamic model and interconnection and damping assignment passivity-based control

The equations of motion of the Acrobot are given by (1) with n D 1, m D 1,

M.q2/ D

�
c1 C c2 C 2c3 cos.q2/ c2 C c3 cos.q2/
c2 C c3 cos.q2/ c2

�
;

V .q/ D g Œc4 cos.q1/C c5 cos.q1 C q2/� ;

G D

�
0

1

�
;

where g is the gravitational constant, and c1, c2, c3 and c4 are constant parameters of the system
with c1 ¤ c2.

The upright equilibrium q? D .0; 0/ of the Acrobot can be stabilized asymptotically with the
IDA-PBC controller

uIDA.q; p/ D
1

2
rq2.p

>M�1p/Crq2V �
�
k2 k3

	
M�1rVd

C
kv

k1k3 � k
2
2

.k2p1 � k1p2/ ;

where kv > 0 is the damping injection gain, and the controller gains k1, k2, and k3 with

k1 WD
�
1 �

p
c1=c2

�
k2 > 0;

and

k3 >
k2

1 �
p
c1=c2

:

The desired mass matrix is

Md D

�
k1 k2
k2 k3

�
> 0;

and the desired potential energy is such that

rq1Vd D �k0 sin.q1 � �q2/ � b1 sin.q1/ � b2 sin.q1 C q2/ � b3 sin.q1 C 2q2/

� b4 sin.q1 � q2/C ku.q1 � �q2/;

rq2Vd D k0� sin.q1 � �q2/ � b2 sin.q1 C q2/ � 2b3 sin.q1 C 2q2/C b4 sin.q1 � q2/�

� ku�.q1 � �q2/;

with the constants

b1 WD
g

2k2

�
c3c5 ˙ 2

p
c1c2c4

�
; b2 WD

g�

2k2.�C 1/

�
c3c4 ˙ 2

p
c1c2c5

�

b3 WD
g�c3c5

2k2.�C 2/
; b4 WD

g�c3c4

2k2.� � 1/
; � WD

�1

1C
q
c1
c2

; ku > k0 C g
2.c4 C c5/

2�;

and arbitrary constant k0.
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Remark 9
It is important to underscore that the IDA-PBC given earlier ensures asymptotic stability of the
upward Acrobot position with a domain of attraction including a region in the lower half plane,
that is, jq1j > �

2
. That is, the IDA-PBC can swing up the Acrobot without switching. To the best

of the authors’ knowledge, this is the first such result for any pendular system. See [9] for further
details of the controller design and the stability proof.

4.2. Simulations of the perturbed system with interconnection and damping assignment
passivity-based control only

To assess the effect of the external disturbance, some simulations were carried out. For the simu-
lations, we use the values of the model parameters provided in [9], that is, g D 9:8, c1 D 2:3333,
c2 D 5:3333, c3 D 2, c4 D 3, c5 D 2. The gains of the IDA-PBC without the PID were selected as
follows: k1 D 0:3386, k2 D 1, k3 D 5:9073, � D �0:6019, k0 D �350, ku D 10, and kv D 70.

The simulations are performed under the following extreme scenario: the system starts with the
Acrobot in closed loop with the IDA-PBC hanging down with zero velocity, that is with initial
conditions q1.0/ D �� , q2.0/ D 0, p1.0/ D 0 and p2.0/ D 0 and without any disturbance.
Then, a matched constant disturbance d D 10 Nm is added to actuated link of the system at time
t D 25 s (Figure 5). Figures 1 and 2 show the time histories of the angles and angular veloci-
ties of the Acrobot when only the IDA-PBC is used. As expected, the presence of the disturbance

Figure 1. Time histories of the Acrobot angles q1 and q2 with IDA-PBC only.

Figure 2. Time histories of the Acrobot angular velocities Pq1 and Pq2 with the IDA-PBC only.
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produces an error on the regulation task by shifting the equilibrium of the closed loop from the
desired equilibrium.

4.3. Simulations of the perturbed system with interconnection and damping assignment
passivity-based control and nonlinear PID outer-loop

First, we observe that G and the desired mass matrix are constant and G?rq.p>M�1p/ D 0,
thus Assumption A is verified. To reject the disturbances, we add to the IDA-PBC the outer-loop
controller (23), (24) of Proposition 3 with the parameters K1, K3, KI and KP to be chosen.

To achieve better performance when we add the nonlinear PID controller (23), (24) in the loop, the
gains of the IDA-PBC were retuned. In this case, the gains were selected as follows: k1 D 0:3386,
k2 D 1, k3 D 5:9073,� D �0:6019, k0 D �260, ku D 60, kv D 70,K1 D 0:005,K3 D 25,KI D
0:02, and KP D kv . The controller parameters were selected by simulating the closed loop and
choosing those that achieve good performance. Clearly, it is also possible to use the more systematic
and classical technique of evaluation of the eigenvalues of the linearized closed-loop system, but
this turned out to be unnecessary. It should be mentioned that there are some advanced techniques
to carry out the IDA-PBC design ensuring that the linearisation of the closed-loop dynamics has,
indeed, the desired eigenvalues [20].

In a second test, we simulate, under the same scenario as before, the Acrobot in closed loop
with the IDA-PBC augmented with the nonlinear PID controller (23), (24). Figures 3 and 4

Figure 3. Time histories of the Acrobot angles q1 and q2 with the IDA-PBC plus the nonlinear PID.

Figure 4. Time histories of the Acrobot angular velocities Pq1 and Pq2 with the IDA-PBC plus the
lnonlinear PID.
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Figure 5. Time history of the matched disturbance d , and the controller state � multiplied by the constant
a D .KP CK3/KI .

Figure 6. Time history of the control signal u for IDA-PBC with and without the PID.

show the time histories of the Acrobot’s angles and angular velocities. It is clear, from the plots, that
the angles converge to the desired position, while the velocities converge to zero. Figure 5 shows
the time history of the controller state �, which provides the disturbance rejection. Note that the plot
of � in Figure 5 has been multiplied by the constant a D .KP CK3/KI , such that a � converges
to a ˛ D d . The time history of the control input u is shown in Figure 6 for the IDA-PBC with and
without the nonlinear PID controller.

A video animation of the Acrobot in closed loop with both IDA-PBC and IDA-PBC plus the
PID controller can be watched on https://youtu.be/JWqGukrjs44. The simulations and
animations were performed under the same scenario, which was previously described in this section.

5. EXPERIMENTS ON THE DISK-ON-DISK

5.1. Dynamic model and interconnection and damping assignment passivity-based control

In this section, we show experiments of an IDA-PBC with and without the nonlinear PID outer-loop
controller for the disk-on-disk system shown in Figure 7. This system consist of a non-actuated disk
that rolls without slipping on another disk, which is actuated (see [21] for details of the model). The
coordinates of the systems are q D Œq1; q2�, where q1 is the angle of the actuated disk, and q2 is the
deviation angle of the non-actuated disk respect to the upright position. The mass matrix, the input
matrix and the potential energy of the system are as follows:
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Figure 7. Idealized scheme of the disk-on-disk system and real setup.

M D

�
m11 m12
m21 m22

�
; G D

�
1

0

�
; V D m2g.r1 C r2/ cos.q2/; (33)

withm11 D r21 .m1Cm2/,m12 D �m2r1.r1C r2/, andm22 D 2m2.r1C r2/2. The parametersmi
and ri are the mass and radius of the disk i , respectively, for i D 1; 2. The constant g is the gravity.

The control objective is to stabilize the desired equilibrium q? D .0; 0/, which is open-loop
unstable. Using the classical IDA-PBC method, we obtain the controller

uIDA.q; p/ D ˛1m1g.r1 C r2/ sin.q2/ � ˛2 .q1 � ˛3q2/ �
kv

k1k2 � k
2
3

.k3p1 � k2p2/ ; (34)

where

˛1 WD
k2m11 � k1m12

k3m11 � k2m12
; ˛2 WD k4



k1k3 � k

2
2

k3m11 � k2m12

�
; ˛3 WD

k2m22 � k3m12

k3m11 � k2m12
;

the damping injection gain kv > 0, and the controller parameters k1, k2, k3, and k4 that satisfy

k1 > 0; k1k3 � k
2
2 > 0; k4 > 0; k2m12 � k3m11 > 0: (35)

The desired mass matrix is

Md D

�
k1 k2
k2 k3

�
> 0;

and the desired potential energy is

Vd .q/ D �˛4m2g.r1 C r2/ cos.q2/C
k4

2
.q1 � ˛3q2/

2 ; (36)

with ˛4 D
k3m11�k2m12
m11m22�m

2
12

.

5.2. Nonlinear PID outer loop: experiments

We first notice that the disk-on-disk verifies Assumption A. Thus, to reject the disturbances, we add
to the IDA-PBC the outer-loop controller (23), (24) of Proposition 3 with the parameters K1, K3,
KI , and KP to be chosen.
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Figure 8. Time history of coordinate q1 with the IDA-PBC controller only and the IDA-PBC plus the
nonlinear PID. The initial condition is set to q1.0/ D 0 deg.

Figure 9. Time history of the coordinate q2 with the IDA-PBC controller only and the IDA-PBC plus the
nonlinear PID. The initial condition is set to q2.0/ D 7 deg.

We carry out some experiments to evaluate the performance of the IDA-PBC controller and the
IDA-PBC plus the nonlinear PID (23)–(24) in the real setup shown in Figure 7. The model param-
eters are m1 D 0:235 kg, m2 D 0:0216 kg, r1 D 0:15 m, and r2 D 0:075 m. The parameters of
the IDA-PBC controller without PID were selected as follows: k1 D 0:4, k2 D �0:03, k3 D 0:003,
k4 D 0:00005, and kv D 0:8. The parameters of the IDA-PBC controller with the PID were chosen
as follows: k1 D 0:4, k2 D �0:03, k3 D 0:003, k4 D 0:00025, kv D 0:3, K1 D 0:012, K3 D 0:06,
KI D 2:2, and KP D kv .

In the experiment, we add a matched constant disturbance to the system of value d D 0:01 Nm.
Figures 8 and 9 show the time history of the angle of the disk q1 and the balancing angle q2,
respectively. The plot in Figure 8 evidences that both controllers are able to balance the non-actuated
disk at the upright position, which is confirmed by the fact that q2 converges to zero. However, the
action of the disturbance deteriorate the performance of the IDA-PBC controller and produces a shift
of the desired equilibrium angle of the actuated disk, which does not converge to zero as desired as
shown in Figure 9. This figure also shows that the outer nonlinear PID compensate the disturbance
and clearly improve the performance of the IDA-PBC controller. The state of the controller � is
shown in Figure 10 together with the disturbance, which shows that effectively the nonlinear PID
compensates the action of the disturbance. Finally, the time history of the control input is depicted
in Figure 11, which shows that the controller produces a physically reasonable torque.
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Figure 10. Time history of the matched disturbance d and the controller state � multiplied by the constant
a D .KP CK3/KI .

Figure 11. Time history of the control input for the IDA-PBC with and without the nonlinear PID and the
disturbance with the sign changed.

A video of the experiments of the disk-on-disk system in closed loop with IDA-PBC with and
without the nonlinear PID controller can be watched on https://youtu.be/JWqGukrjs44.

6. CONCLUSIONS

In this paper we presented an outer-loop control design to improve the robustness of IDA-PBC for
underactuated mechanical system subject to matched constant disturbances. First, it is shown that
a nonlinear PI ensures stability of the desired equilibrium and, under some additional assumption,
also asymptotic stability. To relax the latter assumption, enlarging the class of systems for which
convergence is ensured, additional damping terms are added to the closed loop. This leads to the
inclusion of a derivative term in the control law, yielding a nonlinear PID.

In future work, we attempt to relax Assumption A, that imposes serious constraints on the class of
systems for which IDA-PBC is applicable. Also, in the spirit of [12], we are considering the presence
of matched and unmatched disturbances simultaneously, which might be possibly time-varying.
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