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Abstract—Loosely Synchronized codes, which have gained
considerable interest in CDMA-based wireless communications
and sensory systems, can be constructed from a set of mutually
orthogonal complementary sets of sequences. In this paper a
new architecture is provided for the correlation of such codes. It
demands less memory and number of operations than previous
ones based on efficient correlators for complementary set of
sequences, and can be easily implemented in programmable
devices due to its regular structure.

Index Terms—Code division multi-access, correlators, pulse
compression methods, sequences.

I. INTRODUCTION

THE aperiodic correlation functions of Loosely Synchro-
nized (LS) codes exhibit zero values around the in-phase

shift. Thus, the inter-symbol and multiple-access interferences
can be significantly mitigated, provided that the relative delays
between the receptions do not exceed the size of this zero
correlation zone (ZCZ). These codes can be obtained from
Complementary Sets of Sequences (CSSs) as is indicated in
[1], and then be correlated by using efficient methods that
reduce the number of operations to be carried out in compar-
ison with straightforward implementations. Hence, real-time
operation can be more feasible for quasi-synchronous CDMA
applications, such as space communications or local position-
ing systems, that demand long sequence pulse compression
to mitigate the noise or the multiple-access interference [2].
A previous technique, called Efficient LS Correlator (ELSC),
was proposed in [3] and it achieves this reduction in the
number of operations at the expense of a significant increase
of the memory requirements. In this paper, the architecture of
the ELSC is modified to obtain a new filter that minimizes the
number of multiplications and additions without penalizing
the memory requirements (the memory needs of both the
straightforward and the proposed implementation grow with
𝑁𝑀+2, whereas in the ELSC grow with 𝑁𝑀+4, where 𝑁 is
the number of orthogonal CSSs of length 𝑁𝑀 ,𝑀 ∈ �+, used
to construct the LS codes).
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II. LS CODES

A set of 𝐾 LS codes with length 𝐿 {𝐺 = 𝑔𝑘[𝑙]; 0 ≤ 𝑘 ≤
𝐾 − 1; 0 ≤ 𝑙 ≤ 𝐿 − 1} is a set of ternary sequences which
have the property that their aperiodic correlation functions
equal zero in a zone 𝑊 around the origin and whose elements
𝑔𝑘[𝑙] ∈ {−1, 0,+1}. In [1] a general method for constructing
LS codes from 𝑁 orthogonal CSSs is given. This method is
more general than previous ones [4] based on Golay pairs,
and can be expressed as follows:

𝐺𝑛,𝑚(𝑧) =

𝑁−1∑
𝑖=0

ℎ𝑚,𝑖 ⋅ 𝑧−𝑖𝐿0 ⋅
⎡
⎣
𝑁−1∑
𝑗=0

𝑧−𝑗(𝑁𝐿0+𝑊 )𝑆𝜋𝑛,𝑖,𝑗(𝑧)

⎤
⎦

(1)
where 𝐺𝑛,𝑚(𝑧) represent the Z transforms of {𝑔𝑛,𝑚(𝜏); 0 ≤
𝑛,𝑚 ≤ 𝑁 − 1}; 𝑆𝑖,𝑗(𝑧) are the Z transforms of the 𝑁
sequences {𝑠𝑖,𝑗[𝑙]; 0 ≤ 𝑗 ≤ 𝑁 − 1; 0 ≤ 𝑙 ≤ 𝐿0 − 1} of
length 𝐿0 = 𝑁𝑀 that compose each set of 𝑁 orthogonal
CSSs {𝑆𝑖; 0 ≤ 𝑖 ≤ 𝑁 − 1}, where 𝑠𝑖,𝑗 ∈ {−1,+1},
𝑁 = 2𝑃 and 𝑃 , 𝑀 ∈ �

+; ℎ𝑚,𝑖 ∈ {+1,−1} are the
elements of a 𝑁 × 𝑁 Hadamard matrix; 𝜋𝑛,𝑖 = (𝑛 + 𝑖)
mod 𝑁 ; and 𝑊 ≤ 𝐿0 − 1. From equation (1) it can be
seen that every code of a LS family with size 𝐾 = 𝑁2

and length 𝐿 = 𝑁2𝐿0 + (𝑁 − 1)𝑊 is composed by 𝑠𝑖,𝑗
complementary sequences arranged according to 𝜋𝑛,𝑖, with
the polarity indicated by the coefficients ℎ𝑚,𝑖 of a Hadamard
matrix and with a set of 𝑊 zeros between each change of 𝑗.

III. OPTIMIZED EFFICIENT LS CORRELATOR (O-ELSC)

The ELSC proposed in [3] is based on the Efficient Com-
plementary Set of Sequences Correlator (ESSC) described in
[5]. It uses 𝑁 ESSCs to obtain the correlation of the input
signal 𝑟(𝜏) with every sequence 𝑠𝑖,𝑗 , 0 ≤ 𝑗 ≤ 𝑁 − 1, of
the 𝑁 orthogonal CSSs 𝑆𝑖, 0 ≤ 𝑖 ≤ 𝑁 − 1 (see Step 1
in Fig. 1.a). Afterwards, in agreement with (1), the outputs
of each ESSC are added with different time shifts (Step 2,
Fig. 1.a). Then, the results obtained are delayed according to
𝜋𝑛,𝑖 and added with the polarity specified by the components
ℎ𝑚,𝑖 of the Hadamard matrix (Steps 3 and 4, respectively,
of Fig 2). Although the ELSC requires less operations than
the straightforward implementation, it approximately demands
𝑁2

2 times the memory needed by the straightforward one. The
optimization proposed in this letter requires less operations
than the former ELSC and, at most, less than twice the
memory used by the straightforward implementation. It has
been called Optimized Efficient LS Correlator (O-ELSC) and
differs from the ELSC in the Steps 1 and 2 as follows (see
Fig. 1.b):

Step 1: In the proposed filter the delays
𝑧−(𝑁−1−𝑗)⋅(𝑁𝐿0+𝑊 ), 0 ≤ 𝑗 ≤ 𝑁 − 1 that appear in
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Fig. 1. (a) Block diagram of the first two steps of the Efficient LS code
Correlator (ELSC); (b) block diagram of the first two steps of the proposed
Optimized Efficient LS Correlator (O-ELSC).
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Step 2 of the ELSC are applied to the input signal 𝑟(𝜏)
(see Step 1 in Fig. 1.b), thus obtaining 𝑁 different outputs
𝑅𝑗(𝑧) = 𝑧−(𝑁−1−𝑗)⋅(𝑁𝐿0+𝑊 )𝑅(𝑧), 0 ≤ 𝑗 ≤ 𝑁 − 1. Since
all the delays share the input of the system 𝑟(𝜏), it is enough
to implement the largest delay 𝑧−(𝑁−1)⋅(𝑁𝐿0+𝑊 ) and allow
the access to intermediate positions. This modification means
a save of (𝑁 − 1)(𝑁𝐿0 + 𝑊 )(𝑁

2

2 − 1) memory positions
with regard to the existing ELSC.

Step 2: The filter proposed here takes advantage of the
orthogonality of the CSSs from which LS codes are derived
and of the regular structure of the ESSC. Since the 𝑁 sets
𝑆𝑖, 0 ≤ 𝑖 ≤ 𝑁 − 1, are mutually orthogonal, the ESSC
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Fig. 3. Example of Step 2 in the O-ELSC when 𝑁 = 4.
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Fig. 4. Number of operations and memory resources required by correlators
straightforward, ELSC and O-ELSC, when 𝑁 = 4.

associated to each 𝑆𝑖 only differ from the others in the
coefficients (𝑢𝑖

𝑃,1, 𝑢
𝑖
𝑃−1,1, ⋅ ⋅ ⋅ , 𝑢𝑖

1,1) of the generation seed at
the first stage (see [5] for further details regarding the ESSC).
Then, the architecture of each ESSC can be transposed as is
indicated in Fig. 1.b, where the delays {𝐷1, 𝐷2, ⋅ ⋅ ⋅ , 𝐷𝑀} =
{𝑁0, 𝑁1, ⋅ ⋅ ⋅ , 𝑁𝑀−1} and the coefficients
(𝑢𝑖

𝑃,1, 𝑢
𝑖
𝑃−1,1, ⋅ ⋅ ⋅ , 𝑢𝑖

1,1, 𝑢
𝑖
𝑃,2, ⋅ ⋅ ⋅ , 𝑢𝑖

1,2, ⋅ ⋅ ⋅ , 𝑢𝑖
𝑃,𝑀 , ⋅ ⋅ ⋅ , 𝑢𝑖

1,𝑀 )
appear reverted. The sum 𝐶𝑟,𝑠′

𝑖
(𝜏) of correlation functions

with each sequence of the set 𝑆𝑖 is obtained by adding the
𝑁 outputs of each reverted ESSC. The 𝑁 transposed ESSCs
can share the first 𝑀 − 1 stages, since they only differ in the
coefficients (𝑢𝑖

𝑃,1, 𝑢
𝑖
𝑃−1,1, ⋅ ⋅ ⋅ , 𝑢𝑖

1,1) of the last one (stage 𝑀 ).
Thus, in Fig. 1.b the superscript 𝑖, which indicates the CSS 𝑆𝑖

to be detected, only appears in stage 𝑀 . This new algorithm
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TABLE I
NUMBER OF OPERATIONS AND MEMORY REQUIREMENTS IN THE STRAIGHTFORWARD CORRELATOR, THE ELSC AND THE PROPOSED O-ELSC, AS A

FUNCTION OF 𝑁 , 𝑀 AND 𝑊 (𝑁𝑀 IS THE LENGTH OF THE INITIAL CSS; 𝑊 ≤ 𝐿0 − 1 IS THE LENGTH OF THE SET OF ZEROS THAT APPEAR IN THE LS
CODE; AND 𝐿 = 𝑁𝑀+2 + (𝑁 − 1)𝑊 IS THE LENGTH OF THE LS CODE).

Straightforward ELSC OELSC

Products 𝑁(𝑀+2)

Step 1 𝑀⋅𝑁2

2 𝑙𝑜𝑔2(𝑁) Step 2 𝑁
2 ⋅ (𝑁 + 𝑀 − 1) ⋅ 𝑙𝑜𝑔2(𝑁)

Step 4 𝑁 Step 4 𝑁

TOTAL 𝑁(1 + 𝑀⋅𝑁
2 ⋅ 𝑙𝑜𝑔2(𝑁)) TOTAL 𝑁 ⋅ (1 + 𝑁+𝑀−1

2 ⋅ 𝑙𝑜𝑔2(𝑁))

Additions 𝑁(𝑀+2) − 1

Step 1 𝑀 ⋅𝑁2 ⋅ 𝑙𝑜𝑔2(𝑁)
Step 2 𝑁 ⋅ (𝑁 + 𝑀 − 1) ⋅ 𝑙𝑜𝑔2(𝑁) + 𝑁2 − 𝑁

Step 2 𝑁(𝑁 − 1)

Step 4 𝑁 − 1 Step 4 𝑁 − 1

TOTAL 𝑀 ⋅ 𝑁2 ⋅ 𝑙𝑜𝑔2(𝑁) + 𝑁2 − 1 TOTAL 𝑁 ⋅ (𝑁 + 𝑀 − 1) ⋅ 𝑙𝑜𝑔2(𝑁) + 𝑁2 − 1

Memory

𝑁𝑀+2 + (𝑁 − 1)𝑊

Step 1 3𝑁𝑀+1−2𝑁𝑀−𝑁2

2
Step 1 (𝑁 − 1) ⋅ (𝑁𝑀+1 + 𝑊 )

Positions Step 2 (𝑁𝑀+1+𝑊 )(𝑁3−𝑁2)
2 Step 2 𝑁2−𝑁

2

(
𝑁𝑀+𝑁2−2𝑁

𝑁−1

)

Step 3 𝑁𝑀 (𝑁2−𝑁)
2 Step 3 𝑁𝑀 (𝑁2−𝑁)

2

TOTAL 𝑁𝑀+4−𝑁𝑀+3+𝑁𝑀+2+2𝑁𝑀+1−2𝑁𝑀+𝑊𝑁3−𝑁2(1+𝑊 )
2 TOTAL 3𝑁𝑀+2−2𝑁𝑀+1+𝑁3−2𝑁2+2𝑁𝑊−2𝑊

2

allows to directly obtain the 𝑁 sum of correlation functions
𝐶𝑅,𝑆′

𝑖
(𝑧) =

∑𝑁−1
𝑗=0 𝑧−(𝑁−1−𝑗)(𝑁𝐿0+𝑊 )𝐶𝑅,𝑆𝑖,𝑗 (𝑧), 0 ≤ 𝑖 ≤

𝑁 − 1, with the 𝑁 sequences of each set 𝑆𝑖, where 𝐶𝑅,𝑆𝑖,𝑗 is
the Z transform of the aperiodic correlation between 𝑟(𝜏) and
the sequence 𝑠𝑖,𝑗(𝜏). This modification means a significant
save of memory and operations in comparison with the
use of 𝑁 ESSCs, as the 𝑀 − 1 first stages are shared.
For a better understanding, Fig. 3 represents an example
of the modification proposed to perform the simultaneous
correlation with each orthogonal 𝑆𝑖 when 𝑁 = 4.

Later, as can be seen in Fig. 2, a set of 𝑁 multiplexers
governed by 𝜋𝑛,𝑖 determines the delays to be applied to
every partial correlation result 𝐶𝑅,𝑆′

𝑖
(𝑧) (Step 3). The obtained

outputs are multiplied in Step 4 by the corresponding element
ℎ𝑚,𝑖 of the Hadamard matrix and then added to get the final
correlation result (2).

𝐶𝑅,𝐺𝑛,𝑚(𝑧) =
∑𝑁−1

𝑖=0 ℎ𝑚,𝑖 ⋅ 𝑧−(𝑁−1−𝑖)𝐿0 ⋅
⋅[∑𝑁−1

𝑗=0 𝑧−(𝑁−1−𝑗)(𝑁𝐿0+𝑊 )𝐶𝑅,𝑆𝜋𝑛,𝑖,𝑗
(𝑧)]
(2)

The total number of operations and memory positions’ re-
quirements of the O-ELSC, the ELSC and the straightforward
implementation can be observed in Table I. If only binary
values are employed in the complementary sequences used to
construct the LS codes, the three implementations can be per-
formed without any multiplication. Anyway, multiplications
have been included in the table to consider a general case
where multilevel or polyphase LS codes could be involved.
For an easy comparison, Fig. 4 shows the computational
requirements for the correlation of LS codes of different

lengths when 𝑁 = 4. As can be observed in Table I and
Fig. 4, the O-ELSC demands less operations than the previous
proposals and its memory requirements are comparable with
those of the straightforward correlator.

IV. CONCLUSION

A fast algorithm for the correlation of LS codes derived
from CSSs is presented. The proposed method is much
more efficient than previous ones based on straightforward
implementations or efficient CSS correlators. It minimizes the
number of operations needed and do not penalize the memory
requirements. The proposed correlator is suitable in all those
CDMA systems that work under a low signal-to-noise ratio
and demand a real-time detection of very long LS codes.
Additionally, it can be modified to detect other codes derived
from orthogonal CSSs, as some types of ZCZ codes.
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