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a  b  s  t  r  a  c  t

In  animal  behaviour  studies,  association  indices  estimate  the  proportion  of  time  two  individuals  (i.e. a
dyad)  spend  in  association.  In  terms  of  dyads,  all association  indices  can  be interpreted  as  estimators
of  the  probability  that  a dyad  is  associated.  However,  traditional  indices  rely  on  the  assumptions  that
the  probability  to detect  a particular  individual  (p) is  either  approximately  one  and/or  homogeneous
between  associated  and  not  associated  individuals.  Based  on  marked  individuals  we  develop  a  likelihood
based  model  to  estimate  the probability  a dyad  is  associated  ( )  accounting  for  p <  1  and  possibly  varying
between  associated  and  not  associated  individuals.  The  proposed  likelihood  based  model  allows  for  both
individual  and  dyadic  missing  observations.  In  addition,  the  model  can  easily  be  extended  to incorporate
covariate  information  for modeling  p and   . A  simulation  study  showed  that  the  likelihood  based  model
approach  yield  reasonably  unbiased  estimates,  even  for low  and  heterogeneous  individual  detection
probabilities,  while,  in  contrast,  traditional  indices  showed  moderate  to  strong  biases.  The  application
of  the  proposed  approach  is  illustrated  using  a real  data  set  collected  from  a population  of  Commerson’s
dolphin  (Cephalorhynchus  commersonii)  in  Patagonia  Argentina.  Finally,  we discuss  possible  extensions
of  the  proposed  model  and  its  applicability  in  animal  behaviour  and ecological  studies.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

When an individual identification process is involved in ani-
mal  social studies, it is difficult to assure the perfect detection of
each individual in the population. For instance, for species like tree-
dwelling monkeys (Jack and Fedigan, 2004) or cetaceans (Williams
and Thomas, 2009) the individual detection and identification is
sometimes a difficult and complex task. Under these conditions,
behavioural interactions, the foundation of the conceptual frame-
work of Hinde (1976) for social analysis cannot be always observed.
A common way around this difficulty is to use associations instead
of interactions or in addition to interactions as the fundamen-
tal elements of social analysis. Association usually defined based
on spatial or temporal proximity plus, perhaps, some behavioural
state measure (Whitehead, 2008a).  In this sense, the necessary
conditions for considering two individuals in association must be
established by the researcher prior the analysis and for the partic-
ular study (Michener, 1980).
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Chubut, Argentina. Tel.: +54 02965 451024; fax: +54 02965 451024.
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The proportion of time two  individuals spend in association
is estimated by the so called association indices (AI) (Cairns and
Schwager, 1987; Ginsberg and Young, 1992). In terms of dyads, all
AI can be interpreted as estimators of the probability that a dyad is
associated at a given time t (Cairns and Schwager, 1987; Whitehead,
2008b). Despite the existence of several types of AI, the estimation
of any of these always requires that the individuals involved are
individually identified by either artificial (e.g. via tags) (Glander
et al., 1991) or natural (e.g. via photoidentification) (Wursig and
Jefferson, 1990) marks. When the individual detection, defined as
the probability to detect a particular individual (p) is perfect (i.e.
p = 1), the Simple Index (SI) is the unbiased estimator of the proba-
bility that a dyad is associated and therefore, the unbiased estimator
of the proportion of time two individuals spend together in asso-
ciation (Cairns and Schwager, 1987; Ginsberg and Young, 1992).
Considering the potential sources of bias on SI, two  issues have to
be mentioned. In first place, when p < 1 (i.e. imperfect individual
detection), two  types of missing data can occur, when only one
individual of the dyad is detected vs. when both individuals of the
dyad are not detected. Thus, if only one or both individuals were
not detected from a dyad, an uncertainty exists of whether the dyad
was  associated or not. When missing data is present, it is recom-
mended the application of the Half Weight Index (HWI) instead of
the SI due to the HWI  lowers the effect of low detection (Cairns and
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Schwager, 1987; Whitehead, 2008a).  The second issue is related
to the presence of heterogeneity in individual detection. Heteroge-
neous individual detection is defined when the individual detection
parameter (p) varies by individual (Link, 2003). For instance, in a
population with size N, it is assumed N different p values. Another
case of heterogeneity in individual detection is when there are g
homogeneous groups (e.g. sex, ages) in the population, each with a
different probability p (Norris et al., 1996; Pledger, 2000). The later
represents the case when associated individuals show a different
individual detectability than not associated individuals. The Twice
Weight Index (TWI) was proposed to account for individuals having
a higher individual detection probability when they are in associa-
tion (Cairns and Schwager, 1987; Whitehead, 2008a).  However, the
presence of heterogeneity in individual detection is not necessarily
confined to differences between associated and not associated indi-
viduals. For instance, young calves of cetacean species like Tursiops
truncatus are often less identifiable than older animals and in some
cases the presence of the mother is necessary to positively identify
a calf (Gibson and Mann, 2008a,b). This represents another type of
heterogeneity and so far no methodology have been proposed for
dealing with such phenomenon in animal behaviour studies.

Under an inferential framework, Cairns and Schwager (1987)
developed two different likelihood based estimators for estimat-
ing the AI as the probability that a dyad is associated at given
sampling occasion when (a) all individuals in the population are
equally detectable and (b) when a given group has a higher individ-
ual detectability than the others. Despite a clear improvement on
the accuracy of these two different estimators, they are rarely used;
the simplicity in calculating SI and HWI  may  explain its enduring
preference over the likelihood based approach in the most ani-
mal  behaviour studies. However, despite the extensive use and
good performance in animal behaviour studies, the AI remains very
much descriptive, without a possibility to either model or quantify
a measure of uncertainty due to an imperfect individual detection.

Lusseau et al. (2008) pointed out the importance of sampling
effects on AI and included that uncertainty in the estimation of
weighted network measures; and Gibson and Mann (2009) con-
cluded that when sociality patterns are studied, the results differ
depending on the sampling method. Accounting for imperfect
species detection, Chao et al. (2006) proposed a modification of
the Dice’s similarity index. Association indices like SI and HWI  are
derived from these methods for studying the co-occurrence of two
or more species. Then, the proposed modification of Chao et al.
(2006) would have straightforward adaptations to the indices used
in the animal behavioural studies. In addition, several authors dis-
cuss the importance of accounting for and dealing with imperfect
and heterogeneous individual detection (MacKenzie et al., 2002;
Jennelle et al., 2007; MacNeil et al., 2008; Corkrey et al., 2008;
Garamszegi et al., 2009; Cubaynes et al., 2010). Yet the explicit
modelling of the imperfect and heterogeneous individual detec-
tion remains as a pending issue in quantitative animal behaviour
analyses.

Here, we develop a new likelihood based model (LBM) for esti-
mating the probability that a dyad is associated while accounting
for individual detection probability less than one and heteroge-
neous individual detection probability. Our approach provides a
flexible framework allowing for detected and not detected indi-
viduals, time-specific parameters and the inclusion of covariate
information (e.g. biotic and abiotic factors) at individual, dyadic and
group levels. Because we rely on a model-based inference approach,
we test under the information theory competing sociobiological
hypotheses by selecting the model best supported by the data
(Burnham and Anderson, 2002). In addition, based on the proposed
LBM, the model can be readily extended to a Bayesian framework
in which a priori information could be included into the estimation
of parameters and hypothesis testing (Link and Barker, 2010).

First, we explain how to build an encounter history for a
dyad. This type of encounter history is analogous to an individ-
ual encounter history used in mark-recapture models (Williams
et al., 2002) and the detection history for sites in occupancy models
(MacKenzie et al., 2002). Second, we introduce the LBM for esti-
mating the probability that a dyad is associated and an estimation
procedure is proposed via the maximum likelihood approach. A
simulation study is carried out to investigate the performance of
the proposed method. In particular, we compare the performance
of our approach with two traditional AI (SI and HWI). Third, we
illustrate our method using a real data set from a population of
Commerson’s dolphin (Cephalorhynchus commersonii) in Patagonia
Argentina. Finally, we  discuss possible extensions of the LBM and
its applicability in animal behaviour and ecological studies.

2. Methods

2.1. The association history

In this section, we provide a description for building an
encounter history for a dyad when in an animal behaviour study
individually marked animals are used for estimating either the
probability that a dyad is associated or the proportion of time two
individuals spend in association. We  explain how the encounter
history for a dyad can be used for describing dyadic data across
time when both imperfect and heterogeneous individual detection
are present.

Suppose a population closed to birth, immigration, mortality
and emigration; and for which a given number of individuals can
be individually identified by either artificial (e.g. via tags) or nat-
ural marks (e.g. via photoidentification). Then, either a recapture
or a resight experiment is conducted with 4 sampling occasions in
which an individual named “i” was  detected at occasions 1, 3 and 4
and an individual named “j” was  detected at occasions 1 and 4. This
implies that both individuals were detected on occasions 1 and 4,
at occasion 2 neither individual i nor individual j were detected and
at occasion 3 only individual i was  detected. In animal behaviour
studies, additionally to the individual capture–recapture data, a
definition for association is necessary under which two individuals
are considered in association. In this case, we consider that individ-
uals i and j are in association when they are detected in the same
group and at the same sampling occasion. This is one among several
definitions for association (see Whitehead, 2008a)  and is known as
“the gambit of the group” (Whitehead and Dufault, 1999). Suppose
now, that individuals i and j were detected in the same group (i.e. in
association) at occasion 1 and were detected in different groups (i.e.
not in association) at occasion 4. Note that given the detection of
both individuals is a necessary condition for considering two indi-
viduals either in association or not in association, it is not possible
to define the association state for individuals i and j at occasions 2
and 3. The information related with both association and detection
events across the 4 sampling occasions for individuals i and j can
be expressed in a single encounter history in terms of dyads as:

Sampling occasion: 1 2 3 4
Encounter history: A(i,j) 0(i,j) I(i) B(i,j)

Where at occasion 1, A(i,j) indicates that the dyad composed
of the individuals i and j was  observed as associated; at occa-
sion 2, 0(i,j) indicates that neither individual i nor individual j were
detected; at occasion 3, I(i) indicates that only individual i of the
dyad was  detected and at occasion 4, B(i,j) indicates that the dyad
composed of the individuals i and j was observed as not associ-
ated. Note that notations A(i,j) and B(i,j) imply that both individuals
from the dyad were detected being in association and not in asso-
ciation respectively; and that notations 0(i,j) and I(i) imply that
given both individuals were not detected or only one individual
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Fig. 1. The possible event probability statements when the association history (ah) A(i,j)0(i,j)I(i)B(i,j) is observed. Between brackets are either the observed or the potential
association state for the dyad composed of individuals i and j. Above of each of those, are the probability expressions given the events in the observed ah.  The dyad composed
of  individuals i and i is observed as associated and both individuals are detected at occasion 1 (column t1). Neither individual i nor individual j are detected at occasion 2 and
the  actual association state remains unknown; thus the dyad may  be either associated or not associated (column t2). At occasion 3 only individual i is detected; again the
actual  association state remains unknown and the dyad may  be either associated or not associated (column t3). At occasion 4 both individuals are detected and the dyad is
observed as not associated (column t4). Then, given the observed ah,  four alternatives ah were generated.

was detected respectively, the actual association state of the dyad
remains unknown. To distinguish from other types of encounter
histories, we named this encounter history as the association his-
tory (ah) for a particular dyad.

2.2. The likelihood based model formulation

In this section, we describe the LBM formulation for dyadic data
by using a series of probabilistic arguments for modelling an ah
for a particular dyad. To achieve this, we based the LBM formu-
lation on the fundamentals of mark-recapture models (Williams
et al., 2002) and occupancy models (MacKenzie et al., 2006). In this
sense, the dyad is considered as the equivalent of an individual
in mark-recapture analyses or as a site in occupancy analyses. In
our case, modelling an ah involves the combination of informa-
tion at both, dyadic and individual levels. This is achieved by using
the association parameter  (i,j)k; defined as the probability that
the dyad composed of the ith and jth individual (with ith /= jth)
is associated at sampling occasion k; and the individual detection
parameter ps(i)k; defined as the probability to detect the ith individ-
ual (with ith /= jth) at sampling occasion k given that it belongs to
an associated dyad (s = A) or to a not associated dyad (s = B). Assum-
ing time and individual specific parameters, the contribution to the
whole data likelihood of the dyad composed of individuals i and j
with association history A(i,j)0(i,j)I(i)B(i,j) is:

 (i,j)1p
A
(i)1p

A
(j)1

[
 (i,j)2q

A
(i)2q

A
(j)2 + (1 −  (i,j)2)qB(i)2q
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A
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B
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... × (1 −  (i,j)4)pB(i)4p

B
(j)4

(1)

where qs(i)k = (1 − ps(i)k). The product of terms with subscript 1 is the
probability that the dyad is associated and to detect both individu-
als given they are in association at sampling occasion 1 (t1 column
in Fig. 1). The expression with subscript 2 indicates the probability
for the two possible situations when both individuals in the dyad
are not detected. Then, the first term is the probability that the
dyad is associated and both individuals are not detected given they
are in association at sampling occasion 2. The second term is the
probability the dyad is not associated and both individuals are not
detected given they are not in association at sampling occasion 2
(t2 column in Fig. 1). The next expression showing terms with sub-

script 3 represents the probability for all possible situations when
only individual i is detected. The first term is the probability that
the dyad is associated and individual i is detected while individual
j is not given that both individuals are in association at sampling
occasion 3; the second term is the probability that the dyad is not
associated and individual i is detected while individual j is not given
that both individuals are not in association at sampling occasion 3
(t3 column in Fig. 1). The last product of terms with subscript 4 rep-
resents the probability that the dyad is not associated and to detect
both individuals of the dyad given they are not in association at
sampling occasion 4 (t4 column in the Fig. 1).

Assuming the individuals are detected independently and
parameters are time and individual specific, the likelihood of the
data is:

L(�, pA, pB) =
N∏
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N∏
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(
 (i,j)kp

A
(i)kp
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A
(j),k
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B
(j),k

)In[0](i,j)k

(2)

where N is the total number of detected individuals, t is the num-
ber of sampling occasions, In[A](i,j)k, In[B](i,j)k, In[I](i)k, In[I] (j)k and
In[0](i,j)k are the usual indicator functions for the ith and jth indi-
vidual at occasion k for the observational events A(i,j), B(i,j), I(i), I(j)
and 0(i,j) respectively. For instance, if the dyad composed of the
ith and jth individuals are detected in association at occasion k
the indicator function In[A](i,j)k will take value 1 and In[A](i,j)k = 0
otherwise.

Note that the formulated likelihood in (2) contains
t[N(N − 1)/2 + 2N] parameters. For instance, if N = 40 and t = 4,
the total number of parameters to be estimated from the model
in (2) will be 3440. In practice, this model could not be fitted
to the data because the likelihood model is over-parameterized.
However, the model is formulated in general terms in order to
allow for detection and/or association parameters modelling by
means of either discrete (e.g. sex, age) or continuous (e.g. weight,
length) individual covariates (Pollock et al., 1984; Lebreton et al.,
1992).
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If the association parameter is assumed to be time-specific
but homogeneous across individuals and the individual detec-
tion parameter is assumed to be time-specific and heterogeneous
between associated and not associated individuals, then a reduced
model containing 3t parameters is:

L(�, pA, pB) =
N∏
i=1

N∏
j=(i+1)

t∏
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(3)

A simpler model is obtained when the association parameters
are assumed homogeneous across individuals and constant across
time; and individual detection parameter vary only between asso-
ciated and not associated individuals. Then, a likelihood containing
only 3 parameters is:

L( , pA, pB) =
N∏
i=1

N∏
j=(i+1)

[
 

(
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×
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(
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)  (
qB

)2
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(4)

where xA(i,j) is the number of times the dyad composed of the ith
and jth individuals was observed as associated (k = 1,. . .t); xB(i,j) is
the number of times the dyad composed of the ith and jth individ-
uals was observed as not associated (k = 1,. . .t); yI(i) is the number
of times only individual i was observed from the dyad composed
of the ith and jth individuals (k = 1,. . .t); yI(j) is the number of times
only individual j was observed from the dyad composed of the ith
and jth individuals (k = 1,. . .t); and z0(i,j) is number of times nei-
ther the ith nor jth individual were observed from the dyad they
composed (k = 1,. . .t). Applying an optimization algorithm on Eq.
(4) along with [xA(i,j), xB(i,j), (yI(i) + yI(j)), z0(i,j)] as known data sum-
maries, it is possible to estimate the association parameter   and
detection parameters pA and pB.

By using different likelihood formulations as the examples pre-
sented in Eqs. (3) and (4),  it is possible under the information theory
to investigate the data support (Burnham and Anderson, 2002)
for models containing for instance, either time-specific or con-
stant across time parameters; or individual detection parameters
being either heterogeneous between associated and not associated
individuals or homogeneous across the individuals. In this way,
hypotheses concerning the time variation of parameters and/or
the parameters heterogeneity between associated and not asso-
ciated individuals could be tested. Moreover, if either discrete or
continuous covariates were available, then the individual hetero-
geneity could be investigated; and the homogeneity assumption
could be tested by comparison the data support from models where
parameters were or were not modeled using individual covari-
ates.

3. Simulation study

3.1. Simulation methods

A simulation study was undertaken for evaluating the perfor-
mance of the proposed LBM for estimating   and p under several
scenarios. Specifically, we were interested to investigate the effects
of five factors: the association probability in the population ( ), the

association state specific individual detection probabilities (pA and
pB), the number of sampling occasions (t) and the number of marked
individuals in the population (M).

We  investigated the effects of three levels of   by using 0.3, 0.5
or 0.7 in order to simulate populations showing different levels of
association intensity among them. To study the effect of the indi-
vidual detection for both individuals in association and individuals
not in association, we  used three levels, being 0.2, 0.4 or 0.6 for
both pA and pB. The combinations between pA and pB represent the
scenarios for which there is none, moderate and strong differences
between individual detections. Is not uncommon that the number
of sampling occasions (t) and/or the total number of marked indi-
viduals in the population (M)  are restricted due to either weather or
funds restrictions. Considering this situation, we  investigated the
performance of our method using values of 2, 5 or 10 for t and val-
ues of 20, 40 or 60 for M respectively. Note that when there are
M marked individuals in the population, D is defined as the max-
imum number of different dyads that can be found across the t
sampling occasions. In other words, D is the binomial coefficient of
picking 2 individuals (i.e. a dyad) from M marked individuals in the
population.

The datasets were simulated using a homogeneous association
probability across time occasions and dyads; and the individual
detection parameter remained constant across time and varied
between associated and not associated individuals. Following the
notation of Lebreton et al. (1992),  the model to be fitted is expressed
as [ (.), pA(.), pB(.)]. The sign (.) indicates that the parameter is
constant across time while (t) indicates a parameter is time spe-
cific.

The combination of parameters levels yielded 243 scenarios,
and for every one 1000 data sets were simulated. The data simula-
tion process was divided in two steps: (1) assign the association
state to each dyad across the sampling occasions and (2) apply
the effect of individual detection given the association state of the
dyad. For each sampling occasion and given M marked individuals
in the population, D independent Bernoulli trials with parameter
  were generated. If the generated number was 0, then the dyad
was  considered as not associated; if the generated number was 1
the dyad was considered as associated. Given the presence of an
imperfect individual detection, for each sampling occasion it was
simulated the number of individuals that were detected in each
dyad. The number of detected individuals in each dyad was  gen-
erated from a binomial distribution with parameters 2 and pA for
associated dyads or 2 and pB for not associated dyads. If the gener-
ated number was  0, both individuals of the dyad were not detected,
1 indicated that only one individual was  detected of the dyad
and 2 indicated that both individuals of the dyad were detected.
After t sampling occasions, the values of [xA(i,j), xB(i,j), (yI(i) + yI(j)),
z0(i,j)] were recorded for each dyad of the N observed dyads. Once
this information was  recorded, model [ (.), pA(.), pB(.)] was fit-
ted to the simulated data set. For each simulated data set, the
estimated values for  , pA and pB using model [ (.), pA(.), pB(.)]
were recorded and asymptotic variances were calculated using the
second partial derivative of the model likelihood (Lebreton et al.,
1992). We  developed an R script (R Development Core Team, 2010)
for the simulation study, made available in the Supplementary
file 1.

In order to compare the performances of the proposed LBM and
the SI and HWI  indices, the values for SI and HWI  for the each dyad
were calculated following Cairns and Schwager (1987) as:

SI(i,j) = xA(i,j)

xA(i,j) + xB(i,j) + (yI(i) + yI(j))
, and

HWI(i,j) = xA(i,j)

xA(i,j) + xB(i,j) + 0.5 ∗ (yI(i) + yI(j))
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As a measure of the accuracy for each estimator; the Mean
Square Error (MSE) was used for comparing the performance of the
proposed LBM with the traditional SI and HWI  indices across the
243 scenarios used. The MSE  for the mean of each estimator in the
rth scenario ( ˆ̨̄ r) was calculated as: MSE( ˆ̨̄ r) = var( ˆ̨̄ r) + (˛r − ˆ̨̄ r)

2
,

where var( ˆ̨̄ r) is the variance of ˆ̨̄ r and (˛r − ˆ̨̄ r)
2

is the square bias

of ˆ̨̄ r . The values of var( ˆ̨̄ r) and (˛r − ˆ̨̄ r)
2

were calculated across
the 1000 estimates of ˆ̨ r for the rth scenario where the real value
of the parameter is ˛r.

3.2. Simulation results

Fig. 2 shows the results for the means of LBM ( ˆ̄ ), SI (SI) and HWI
(HWI) as the estimates of   for scenarios where   = 0.3, 0.5, 0.7;
M = 40; t = 2, 10; pA = 0.2, 0.6 and pB = 0.2, 0.4, 0.6; but these are rep-
resentative of the general simulations results. The full simulation
results are included in the Supplementary file 2.

When individual detection was either homogeneous (pA = pB) or
heterogeneous (pA /= pB) the LBM provided reasonably unbiased
estimates of the probability that a dyad is associated ( ) in most

scenarios considered. However, the precision of ˆ̄ was  affected by
all factors except by the values of  . The higher t values, the higher

the precision of ˆ̄ . The higher the M values the higher precision

observed for ˆ̄ . In addition, a slightly improvement in the accuracy

for ˆ̄  was observed for higher values of M.  Concerning precision and

bias of ˆ̄ , interactions between M and pA, pB,   and t values were
not observed. For scenarios where homogeneous individual detec-
tion was present, the lower the p values, the lower the precision of
ˆ̄ . Fig. 2 shows that the lowest precisions of ˆ̄ were obtained for
scenarios where pA = pB = 0.2 and t ≤ 10; and where pA = 0.2, pB = 0.4
and t = 2. In general, the higher the difference between pA and pB

the higher the precision of ˆ̄ .
Concerning the performance of SI and HWI as  estimates of the

probability that a dyad is associated, these have shown to be biased
when either homogeneous (pA = pB) or heterogeneous (pA /= pB)
imperfect individual detection were present. In this sense, the num-
ber of sampling occasions and the individual detection probability
showed to be the most influential factors on the estimates of SI and
HWI. Fig. 2 shows that the higher the t and p values the lower the

estimates of SI and HWI. The same effects of M observed in ˆ̄ , were

observed for SI and HWI. As observed in ˆ̄ ,  precision of SI and HWI
was affected by all factors except by the values of   and was  clearly

higher than ˆ̄  (Fig. 2).

Fig. 3 shows the results for the MSE  calculated for ˆ̄ , SI and HWI
in scenarios where   = 0.3, 0.5, 0.7; M = 40; t = 2, 10; pA = 0.2, 0.6

and pB = 0.2, 0.4, 0.6. In general, ˆ̄ showed to be more accurate for
estimating   than SI and HWI. The calculated values of MSE  for
ˆ̄ showed to be smaller than MSE  of SI and HWI  in 162 of the 243
scenarios, which represent the % 66.6 of the total. This was observed
for scenarios where   ≤ 0.5 and t = 2;   ≥ 0.5, t = 10, pA ≥ 0.2 and

pB ≥ 0.4 (Fig. 3). For those scenarios where t = 5, ˆ̄ showed to be
more accurate than SI and HWI when   /= 0.5.

4. Example: Commerson’s dolphins in Patagonian Northern
Sea

In this section we illustrate the application of the proposed LBM
for studying: (1) the time effect on both the association parameter
( ) and the individual detection probability (p); and (2) the vari-
ation of p between associated and not associated individuals for
a coastal dolphin species. The coastal waters near to the Chubut

Table 1
Model selection for the Commerson’s dolphin data analysis. Eleven models were
considered combining time and association effects on association and individual
detection parameters. The notation used is: np: number of parameters, QAICc:
small sample correction for Quasi Akaike Information Criterion, �QAICc: difference
between the QAICc of the current model and the best model.

Model np QAICc �QAICc

 (.), pA(t) = pB(t) 6 20985.36 0.00
 (.),  pA(t), pB(t) 11 21191.44 206.08
 (.),  pA(t), pB(.) 7 21229.59 244.22
 (.), pA(.), pB(t) 7 21233.14 247.78
 (t), pA(t), pB(t) 15 21291.46 306.10
 (t), pA(t), pB(.) 11 21549.62 564.26
 (t), pA(.), pB(t) 11 21818.25 832.89
 (t), pA(.), pB(.) 7 21990.06 1004.70
 (t), pA(.) = pB(.) 6 22444.90 1459.53
 (.), pA(.), pB(.) 3 22467.15 1481.79
 (.), pA(.) = pB(.) 2 22489.83 1504.47

River mouth, at the Northern Sea of Patagonia Argentina (43◦20′S,
65◦00′W),  are frequently used by a local population of Com-
merson’s dolphin (C. commersonii) (Coscarella et al., 2003). Using
photo-identification techniques, 5 occasions of capture–recapture
were performed between October 2 and October 13 of 2007. Using a
5 m rigid hulled boat powered by a 40 hp outboard, two  researchers
took photographs of dolphin’s dorsal fins. The observed patterns of
notches on the contour of the dorsal fin were used to identify the
individuals (Wursig and Jefferson, 1990). Photographs were classi-
fied in four levels of quality: bad, regular, good and very good. For
this analysis, only good and very good quality photographs were
used. Following Coscarella et al. (2011),  for each day two individu-
als were considered in association (i.e. the dyad is associated) when
they were photo-identified at least once within a 44 min  interval.
Two  individuals were considered not in association when they were
never photo-identified at least once within a 44 min interval in a
day.

Across the five sampling occasions, a total of 71 well marked
dolphins were detected. This value for N detected dolphins yielded
a total of 2485 observed association histories. Note that the total
marked dolphins in the population (i.e. M)  is unknown, thus (M
choose 2 combinations minus 2485) association histories were not
observed in this study. Given that each association history describes
joint information from two  individuals, dependence among the
association histories could be present. In order to measure and
correct for such dependence, the inflation factor c was estimated
(Burnham and Anderson, 2002). Following White et al. (2002),  the
estimation of c was achieved by the ratio between the observed
Pearson chi-square statistic (X2

Obs) from the saturated model [ (t),
pA(t), pB(t)] and the bootstrap mean Pearson chi-square statistic
(X2
B ). The estimation of X2

B (B = 1000) was based on the paramet-
ric bootstrap routine described by MacKenzie and Bailey (2004).
In this case, the parametric bootstrap routine was  used for gen-
erating association histories instead of occupation histories. The
models were ranked according to the small sample correction of
the quasi-AIC (QAICc) (Burnham and Anderson, 2002) (Table 1).

Due to the estimate of c was less than 1 we set c = 1
according to Burnham and Anderson (2002).  According to the
�QAICc values, the first model has a large data supported
than the other models. The best supported model indicated
that the association probability was  constant across time [ (.)
]  while the individual detection probability was time specific
but homogeneous regarding the association state of the indi-
viduals [pA(t) = pB(t)]. The estimates obtained from the best
supported model indicated that the probability that any two
dolphins are associated in a day is 0.6356 (se = 0.01679); and
that the individual detection probability was less than one and
time-specific with values of p̂1 = 0.2676

(
se(p̂1) = 0.0063

)
, p̂2 =
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Fig. 2. Results of the simulation study for twelve scenarios. Each single plot shows the relation between the mean of the likelihood based model approach ( ˆ̄ ) (solid line),
the  mean Half Weight Index (dashed line) and the mean Simple Index (dotted line) vs. the real value of   = (0.3, 0.5, 0.7) in each scenario. Each row of plots shares the same
value  of pB . When pA = 0.2, first and second column shows the results for simulation using t = 2 and t = 10 respectively. When pA = 0.2, third and fourth column show the results
for  simulation using t = 2 and t = 10 respectively. Vertical lines represent the 95% confidence interval estimated at the 2.5 and the 97.5 percentiles using the 1000 values of  ̂
for  each scenario.

0.1125
(

se(p̂2) = 0.0045
)

, p̂3 = 0.4444
(

se(p̂3) = 0.0070
)

, p̂4 =
0.1808

(
se(p̂4) = 0.0055

)
and p̂5 = 0.1971

(
se(p̂5) = 0.0056

)
for

sampling occasions 1–5 respectively. The R code (R Development
Core Team, 2010) for the model fit, model selection procedure for
the fourteen models and the estimation of the inflation factor (c) is
available in the Supplementary file 3.

5. Discussion

In this paper, we propose a new LBM for estimating the prob-
ability that a dyad is associated under field situations when
an imperfect and heterogeneous individual detection is present.
Our simulations showed that the proposed LBM is highly accu-
rate for estimating   in several scenarios showing either low
or heterogeneous individual detection. Under theses same sce-
narios, moderate to strong bias were observed in SI and HWI
indices as estimators of the probability a dyad is associated. For
some scenarios, it was  observed a lower precision of the pro-
posed LBM in comparison to SI and HWI  indices. This could be
an undesirable feature for those quantitative behavioural analy-
ses in which the relative differences between AI’s are used and
therefore there is no concern about the actual value of the prob-
ability a dyad is associated. However, if these kinds of analyses
were performed, the proposed LBM could be used as a comple-
mentary tool for testing the data support for the homogenous
and almost perfect individual detection assumptions. Then, and
even in the presence of an imperfect and heterogeneous individ-
ual detection, the researcher would have the necessary information
for choosing the lowest possible biased AI. Often, the comparison

between two or more estimated social measures may  become a
difficult task because different methodologies and/or amount of
information may  yield different results (Gibson and Mann, 2009).
Our simulation study showed that the estimates of the associ-
ation probability from the proposed LBM showed a quite small
variation across scenarios showing different combination of sam-
pling condition variables like the number of sampling occasions,
number of marked animals in the population and an imperfect
and/or heterogeneous individual detection. These results may  indi-
cate that the proposed LBM would represent a robust tool for
comparing two or more association probability estimates from
populations where these were estimated under different sampling
conditions.

When individuals are identified by natural marks (e.g. pho-
toidentification or DNA fingerprints) misidentification may  lead
to a substantial bias in estimates from capture–recapture models
(Yoshizaki et al., 2009). The formulation of the LBM in this work
assumed that individuals are correctly identified across the whole
study; and if natural marks were used for estimating the associa-
tion probability, misidentification could be an issue. Therefore, we
acknowledge the importance to allow in future works for identifi-
cation error in the estimation of the association probability.

As it was  stated in the introduction, the necessary conditions
for considering two  individuals in association must be estab-
lished by the researcher prior the analysis and for each particular
study (Michener, 1980). Therefore, the estimate of   will be con-
ditional on the specific association definition currently used by
the researcher. However, even with a specific association defi-
nition, the condition of either associated or not associated for
a dyad can be erroneously assigned. This misclassification may
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Fig. 3. Mean square error for the estimates from the likelihood based model, the simple index and the half weight index for twelve scenarios. Each single plot shows the

relation  between the mean square error (MSE) of the likelihood based model approach ( ˆ̄ ) (solid line and diamond), the MSE  of the Half Weight Index (dashed line and
triangle)  and the MSE  of the Simple Index (dotted line and circle) vs. the real value of   = 0.3, 0.5, 0.7 in each scenario. Each row of plots shares the same value of pB (0.2, 0.4,
0.6)  and the number of marked individuals is constant (M = 40). When pA = 0.2, first and second column show the results for simulation using t = 2 and t = 10.

be due to either misidentification or incomplete information to
assign the correct association state. Pradel (2005) and Nichols et al.
(2007) proposed two general frameworks for incorporating state
uncertainty in capture-recapture multistate models and occupancy
multistate models respectively. Based on these general frame-
works, the estimates of   could be improved by taking association
state uncertainty into account. However, more work is necessary
to investigate this approach.

The LBM presented here assumes both geographic and demo-
graphic closure. However, association between two individuals
could be affected by demographic processes like survival or migra-
tion across years or seasons (Whitehead, 2008a). A more complex
model for estimating association probability could be developed
incorporating individual survival and individual temporary migra-
tion parameters (Kendall et al., 1997; Schaub et al., 2004). If survival
and migration are allowed, the activation or the deactivation of a
particular dyad needs to be accounted for. This is related to situ-
ations in which either one or both individuals die or permanently
emigrate, in which case the dyad is no longer active. However, a
dyad can be temporarily deactivated when some of the individuals
leave the study area and reactivated when those individuals return
to the study area. Then, the estimation of   would be made condi-
tionally on either the survival or the presence of the individuals in
the study area.

Bejder et al. (1998) developed a method to test if individuals are
associated in a nonrandom fashion or not. We  have not addressed

the nonrandom association testing although we  acknowledge the
importance to address this issue in future works. However, given
how an association history is built, it contains information about
the randomness of association dynamics in a given population. This
particular issue could be assessed by extending our model to con-
sider the event a dyad is associated as a first-order Markov chain
(see Schwarz and Schweigert (1993) for an application in the mark-
recapture modelling framework). This would allow the estimation
of the transition probability that a dyad is associated at occasion
k given it was  associated at occasion k − 1 ( AA

k
) and the transi-

tion probability that a dyad is associated at occasion k given it
was  not associated at occasion k − 1 ( BA

k
). The most important

feature of these probabilities is that they give to us information
about how an association state at the occasion k − 1 influences the
probability to be in a given association state at the next occasion
k. Then, a model with  AA

k
=  BA

k
would assume that the previous

association state does not influence the next association state and
therefore, the transitions between association states are random.
On the other hand, a model with  AA

k
/=  BA

k
would assume that the

previous association state does influence the next association state
and therefore, the transitions between association states are not
random (i.e. Markovian process).

Concerning the potential applications in other fields than
behavioural ecology, in disease ecology, the imperfect and hetero-
geneous individual detection of the infectious status of individuals
is an increasingly recognized problem (McClintock et al., 2010). For
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instance, the estimation of dyad association probabilities between
two specific diseases in a given individual or between individuals
would be useful information in studies addressing the poten-
tial relation between diseases and disease dynamics within social
groups. For community ecology studies, MacKenzie et al. (2006)
proposed a LBM for estimating the co-occurrence species proba-
bility when species are imperfectly detected for a given number
of inspected sites. Based on individually marked individuals of 2
or more species, the proposed LBM would allow the estimation of
the dyad association probability between individuals from differ-
ent species instead of different individuals from the same species. In
this way, it would be possible to study the data support for models
representing competing hypotheses concerning either behavioural
or community ecology processes.

6. Conclusion

The proposed LBM represents the first approach for dealing with
imperfect and heterogeneous individual detection in quantitative
studies of animal behaviour when marked individuals are involved.
When imperfect individual detection is not accounted for in the
estimation of the probability that a dyad is associated, such as is
the case for traditional association indices, biased estimates are
obtained. We  have shown that a LBM that explicitly models the
imperfections and heterogeneity of individual detection yields rea-
sonably unbiased estimates of the probability a dyad is associated.
In addition, the proposed LBM can be extended for including exter-
nal information and/or demographic parameters such as survival,
movement and migration rates. Finally, the application of the pro-
posed approach for testing ecological hypotheses in other fields
than behavioural ecology would be possible due to the general
formulation of the model.
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