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Abstract—This paper presents a SEU sensitivity characteri-
zation at ultra-low bias voltage of three generations of COTS
SRAMs manufactured in 130 nm, 90 nm and 65 nm CMOS
processes. For this purpose, radiation tests with 14.2 MeV
neutrons were performed for SRAM power supplies ranging from
0.5 V to 3.15 V. The experimental results yielded clear evidences
of the SEU sensitivity increase at very low bias voltages. These
results have been cross-checked with predictions issued from the
modeling tool MUlti-SCAles Single Event Phenomena Predictive
Platform (MUSCA-SEP3). Large-scale SELs and SEFIs, observed
in the 90-nm and 130-nm SRAMs respectively, are also presented
and discussed.

Index Terms—COTS, SRAM, neutron tests, radiation hard-
ness, reliability, soft error, low-bias voltage

I. INTRODUCTION

COMMERCIAL Off-The-Shelf (COTS) CMOS Static
Random Access Memories (SRAMs) have recently

arisen as an interesting alternative to space-qualified SRAMs,
which opens promising perspectives to democratize fields such
as avionics and aerospace. The reasons are their affordable cost
and that most modern devices implement error detection and
corrections mechanisms. For instance, the well-known Error
Correcting Codes (ECCs) make modern SRAMs very reliable
to Single Event Upsets (SEUs).

In such fields, not only reliability is a major concern, but
also keeping the required energy consumption constraints,
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which is critical in autonomous systems. Dynamic Voltage
Scaling (DVS) is an interesting technique that consists in in-
creasing or decreasing the bias voltage of certain components
of microelectronic devices [1] depending upon circumstances.
It can help to attain this objective since the switching energy
has a square dependence on the supply voltage [2]. In addition,
although SRAMs are volatile memories, it has been reported
that they can be kept idle at very low bias voltages without
losing information [3].

However, it is also a well-known issue that, as the bias
voltage lowers, the critical charge needed to modify the
information of a memory cell decreases as well [4], [5].
Consequently, in harsh environments, where the impact of a
high-energy particle can provoke a SEU, the sensitivity of
these devices needs to be specifically studied. Some stud-
ies in the literature have presented experimental evidences
of said voltage scaling effects, for different manufacturing
materials [6] and even for academic custom D Flip-Flops
[7] and SRAM cells [8]. However, little work was carried
out in COTS devices. In [9] and [10], the authors studied
the sensitivity of COTS Advanced Low Power SRAMs (A-
LPSRAMs) and CMOS SRAMs, manufactured in 150-nm and
90-nm technologies respectively, at 0.5 V - 3.3 V.

This paper presents an experimental study of the sensitivity
against 14 MeV neutrons of three successive generations of
COTS SRAMs, manufactured by Cypress Semiconductor in
130, 90 and 65-nm CMOS processes, when powered up at
bias voltages ranging from 0.5 V to 3.15 V. The sensitivity
trends of these SRAMs for this range of bias voltages are
presented and discussed. In addition, the Multiple Cell Upsets
(MCUs), which are multiple errors provoked by the impact of a
single particle, were extracted by using proprietary information
provided by the manufacturer. Accurate cross sections for
events with different multiplicities are presented as well.
This point is especially relevant since newer technologies are
increasingly more sensitive to MCUs [11]. The appearance of
other events, such as micro Single Event Latchups (micro-
SELs), occurring extremely often in the 90-nm memory, is
also discussed.

In a previous work [10], the authors presented a sensi-
tivity characterization of the same 90-nm memory as the
one presented in this paper. Unfortunately, the experimental
characterization was not complete due to a latchup occurred
at 1.4 V and due to technical and safety reasons. In that work,
we completed the experimental data with results obtained
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in another previous experiment at nominal voltage on other
sample from another batch. Quite high disagreements in the
sensitivities of both samples were observed in that work,
which were attributed to the fact of comparing samples from
two different batches, and to the typical margin errors of the
experimental setup of the facility. Therefore, in order to have
more accurate and consistent data, in this experiment another
sample of this SRAM was examined again under radiation
with the same experimental setup as the two other 130-nm
and 65-nm ones.

II. EXPERIMENTAL SETUP

The tests were carried out in May 2017 on three generations
of Cypress Semiconductor COTS SRAMs with a capacity of
16 Mbits and configured as 2M×8 bits. The tested samples are
summarized in Table I, which also presents the bias voltages
at which each one of them were tested.

According to the manufacturer, the nominal bias voltage of
these memories ranges from 2.7 V to 3.6 V. Thus, an average
value between these two values (3.15 V) was used as nominal
voltage supply. We experimentally verified that the memories
were fully operational even at 1.9 V. Below this value, the
readout system did not work but they still retained information.
In fact, we also verified that, for all the bias voltages in the
ranges of Table I, in an environment without radiation, the
information previously written in the memories was not lost.

The 130-nm and 90-nm SRAMs do not implement any error
correction and detection mechanism, but a bitcell interleaving
that prevents the occurrence of multiple events within the a
single word provoked by the impact of the same particle.
On the contrary, the 65-nm SRAM implements an ECC
mechanism that corrects single errors and detects multiple ones
in a single word. The latter was examined by keeping this
feature active (configuration by default) and by deactivating
it using a proprietary information provided by from Cypress.
Thus, it was possible to observe the sensitivity against neutrons
of this SRAM at the technological level. The efficiency of said
ECC was also assessed, and the results are discussed in Section
IV-C.

Static tests were carried out: the memories were initially
written with the checkerboard pattern (0×55), then they were
radiated in rounds ranging from 1 to 5 minutes each, and
examined afterwards. Tests were performed at the GENEPI2
(GEnérateur á NEutrons Pulsés Intenses) neutron facility,
which is located at the LPSC (Laboratoire de Physique Sub-
atomique et Cosmologie) in Grenoble, France [12]. Neutrons
were produced with an average energy of 14.2 MeV at fluxes
that ranged from 2.00×107 to 2.41×107 n ·cm−2 ·s−1. Each
round of reading had its particular flux and exposure time and
these data were taken into account in the analysis presented
in the next sections. In any case, the target memories were
always placed 32 mm away from the neutron source.

The test system comprised a motherboard with a
PIC18F85J90 microcontroller, which runs the test software.
An extension board with a TSOP48 socket for the SRAM
under test was attached to it. All the SRAMs tested were
pin-to-pin compatible, hence switching from one sample to

Table I
TESTED MEMORIES AND OPERATIONAL BIAS VOLTAGES

Memory Technology
process VCC range

CY 62167DV 30LL 55ZXI 130 nm 0.7V − 3.15V

CY 62167EV 30LL 45ZXI 90 nm 0.5V − 3.15V

CY 62167GE30-4 5ZXI 65 nm 0.8V − 3.15V

0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0 3 , 5
0
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Figure 1. Number of errors observed in the studied SRAMs, for different
voltage levels.

other one was extremely easy. Both the microcontroller and
the SRAM were biased by two independent power supplies,
which made possible to tune that of the SRAM from 0 to
3.15V. More details about the test infrastructure can be found
in [9] and [10].

III. EXPERIMENTAL RESULTS

First of all, the raw number of errors observed for different
voltage supplies is presented in Figure 1. In order to perform
fair comparisons, the data depicted in this figure were scaled
linearly to a fluence of 2.75 × 109 n · cm−2. It is important
to note that not all the reading rounds were performed after
exposing the SRAM to the same neutron fluence. The reason
is that, for a given DUT position, the neutron flux generated at
GENEPI2 can vary in a range of ±10% from a run to another
due to the variation of beam current on the neutron production
target. The objective of this figure is to provide a general idea
of the behavior under radiation of these SRAMs to a potential
user, whereas a finer analysis of these errors will be made in
Section IV.

In the figure, it can be observed that the sensitivity trend
of the 130-nm and 65-nm samples is very clear. On the one
hand, the errors observed in the 130-nm SRAM increase as
the voltage scales down, and the curve gets steeper for ultra-
low bias voltages. In fact, at 0.8 V the number of events is 8.5
times higher than at 3.15 V. On the other hand, the sensitivity
of the 65-nm sample is higher than the 130-nm one at nominal
voltage, but on the contrary, it barely increases below that
level. Only at 1.2 V, the curve starts to get steep, but at the
worse case (0.8 V) it does not even double the value obtained
at 3.15 V.

Figure 1 also shows a disagreement for the 130-nm SRAM
at 3.15 V: curiously, after the very first reading round carried
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out with this memory after 5 minutes of irradiation, a micro-
SEL was observed. It was easily identified due to a clear
reduction in the voltage level (from 3.15 V to 2.9 V) and the
fact that successive reading rounds yielded errors that were not
corrected after writing the correct data on the affected memory
positions. This situation could only be fixed by turning off
and on again the voltage supply and that was the reason why
subsequent reading rounds were limited to 3 minutes instead
of 5 minutes. No micro-SELs were observed on this sample
subsequently.

Finally, two sets of data are depicted for the 90-nm SRAM:
the data obtained in [10] (shown here again as reference) and
the new data regarding the more recent experiments. Both
sets of data seem to be quite consistent even though the
tested samples did not belong to the same batch. However,
the new data exhibits a different phenomenon: the existence of
unexpected and unpredictable highs and lows above 1.3 V. In
all the cases, they were attributed to micro-SELs. The exposure
times ranged from 5 minutes to only 1 minute, and in all the
cases except at 2.5 V, the CY62167EV30LL sample exhibited
that behavior. The observed phenomena are not consistent with
the typical damage caused by dose cumulation, since the very
first run at 3.15 V on this sample already yielded a micro-SEL.
However, for further runs at ultra-low bias voltages (lower than
1.40 V), this kind of errors was no longer observed. The reason
is that the parts are regulated, and below a certain voltage, the
regulator collapses. Hence it will be difficult to latch anymore.
Thus, there is no reason to think that this SRAM is specially
robust against this phenomena at 2.5 V. Instead, the fact that
no micro-SEL was observed at that bias voltage seems purely
fortuitous.

The previously depicted phenomena is consistent with the
behavior observed by Tsigiliannis et al. [14], [15], where large-
scale MCUs were found and analyzed. In fact, this extreme
sensitivity of 90-nm Cypress SRAMs is well known from
quite a long time ago [16]. It is interesting to observe that
this problem was a major issue in this technology, but it was
apparently solved in the subsequent one (65-nm).

IV. DISCUSSION

It is clear that the data depicted in Figure 1 "as is" cannot be
used to extract conclusions about the sensitivity of the tested
SRAMs. The reason is that, in the same plot, many types of
events are not distinguished: Single Bit Upsets (SBUs), where
one particle affects only one memory cell; Multiple Cell Up-
sets (MCUs), where the same particle affects simultaneously
several adjacent memory cells belonging to different words;
Multiple Bit Upsets (MBUs), where several bits in the same
word are affected; and even micro-SELs. This section makes
a deeper analysis of these types of events separately.

A. SBU/MCU Sensitivity

Figure 2 shows the SBU/MCU cross sections of the three
tested samples, once the MCUs were extracted from the set of
observed SEUs. For this purpose, proprietary unscrambling
information provided by Cypress Semiconductor was used
for the three SRAMs. In all the cases, MCU cross sections
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Figure 2. Cross sections of a) 130-nm, b) 90-nm and c) 65-nm SRAMs tested
under different bias voltage levels. Dashed lines correspond to predictions
issued from MUSCA-SEP3 [13].

are classified by multiplicity. Error bars have been obtained
with a 95% confidence as explained in [17] (from SBUs to
5-bit MCUs). Dots in Figure 2 represent experimental data,
whereas dashed lines correspond to predictions issued from
the MUSCA-SEP3 modeling approach.

By checking the experimental data of the three plots, it
can be observed that the SBU/MCU sensitivity significantly
increases at very low voltages, especially at near-threshold
ones. This is especially clear for the 130-nm and the 65-nm
SRAMs. However, for the 90-nm one, the existence of micro-
SELs above 1.4V makes more difficult to reach conclusions at
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Table II
EXPERIMENTAL ROUNDS WHERE LARGE MCUS (>5-BIT) WERE

OBSERVED. FOR SIMPLICITY, THE ROUNDS WHERE SUCH LARGE MCUS
WERE NOT OBSERVED ARE NOT DISPLAYED

SRAM VCC
(V) 6-bit 7-bit 8-bit 9-bit ≥10-bit

130 nm

0.70 1 5 0 1 0
0.80 4 0 1 0 0
0.90 6 0 1 0 0
1.00 2 1 1 1 1
1.10 6 0 1 0 2
1.20 5 1 1 0 0
1.30 7 1 2 1 1
1.40 3 2 1 0 0
1.50 3 0 0 0 0
1.70 1 1 0 0 0
2.00 2 1 0 0 0

90 nm
0.60 0 0 0 1 0
0.70 1 0 0 0 0
1.00 0 1 0 0 0

65 nm

1.10 0 1 0 0 0
1.30 1 0 1 2 1
2.00 0 0 0 1 0
2.50 2 1 0 0 0
3.15 1 1 0 0 0

near-nominal voltage levels. The charts display all the rounds
of reading that were made (in some cases, several rounds were
carried out at the same VCC). The experimental data observed
for the 90-nm SRAM is consistent with the results presented
by Pawlowski et al. [18], where it can be observed that the
sensitivity for all types of MCUs barely increased in the range
of 0.3V-1.0V. It is also consistent with the results obtained in
2015 in another sample of the same memory, presented in our
previous work [10].

The figure also shows that the MUSCA-SEP3 predictions
match the experimental data in a very accurate way. Even
those of ≥5 bit MCUs accurately match the experimental
data although, as mentioned above, they are not displayed
in Figure 2 for practical reasons. A few small disagreements
that can also be observed; for instance, for the 2-bit MCUs
in the 65-nm SRAM. The origins of these disagreements are
multiple and can be attributed to limitations of modeling,
such as topologies (elementary cell design, distance between
adjacent cells, symmetry rules), back-end descriptions (mainly
thickness) or bias voltage impact on the transport model.

A few MCUs with multiplicity ≥6 were also observed, but
the error margins of the experimental cross sections were so
high that it was impractical to plot them in Figure 2. They
have been presented in Table II instead. The table seems to
indicate that the 130-nm SRAM is more vulnerable to such
large MCUs than the 90-nm and the 65-nm ones.

The shape of the MCUs has also been analyzed. Different
types of 2-bit MCUs have been classified according to the
shapes in Figure 3, which is a physical representation of the
SRAM bitcell topology. Results are presented in Figure 4.
For each bar, percentages were calculated with respect to the
number of events observed in the involved experiment. It can

H1 H2 V1 V2 D45 D135

KJ1 KJ2

KJ4KJ3

Figure 3. Classification of the observed 2-bit MCUs, according to their shapes.

be observed that, for the 130-nm and 90-nm SRAMs, the
most frequent 2-bit MCUs are H1, followed by V1. However,
the H1 event is extremely rare in the 65-nm SRAM. The
reason of this curious phenomena is that the well stripes of
the CY62167GE SRAM are organized in columns, and it is
very difficult to cross them because the well doping is very
high. Hence, it is much more likely to observe MCUs going
North to South along the well stripes. The well doping of the
previous generations was weaker than that of the 65-nm one.

For the 130-nm SRAM (Figure 4a), vertical, diagonal and
even knight-jump MCUs are observed more frequently at near-
threshold voltage levels. This trend seems to be repeated for
the 90-nm SRAM as well. In the latter case, a possible outlier
may be the round performed at 2.5V, but its fluence was 2.5
times lower than that of the other rounds, in average. The
reason has been pointed out above: the high susceptibility to
micro-SELs in this memory at voltages above 1.4V, which
made very difficult to obtain "clean" results in those cases.
Besides, as a consequence of this, it was impossible to perform
a round of reading free of micro-SELs at nominal voltage with
this SRAM (hence the absence of that result in Figure 4b).

Finally, it is also remarkable the fact that the 65-nm SRAM
behaves completely differently. Not only horizontal MCUs are
very rare (indicated above), but also most of them are classified
as "others". These are 2-bit events whose affected bitcells are
separated by a Manhattan distance greater than 3. This may be
due to the high doping existing between adjacent cells, which
makes very unlikely for KJ-type events and D-type events to
appear. In this case, the shape of the 2-bit MCUs does not
seem to be highly determined by the SRAM bias voltage.
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Figure 4. Shape of the 2-bit MCUs found for a) the 130-nm, b) 90-nm and
c) 65-nm SRAMs at different bias voltage levels.

B. Large-Scale Events and Multiple Bit Upsets

As previously hinted in Figure 1, large-scale events, at-
tributed to micro-SELs, were detected for the 90-nm and 130-
nm SRAMs, but not for the 65-nm one.

Table III summarizes the number of reading rounds where
such events were found. They are highlighted in bold font
in the table for the sake of clarity. As previously discussed
(Figure 1), a micro-SEL that affected to several thousands
of addresses was observed in the 130-nm SRAM at nominal
voltage, but this phenomena did not show up at lower bias vol-
tages. However, the 90-nm SRAM turned out to be extremely
sensitive to such large-scale events, but only at bias voltages
above 1.3 V. This issue was not observed for the 65-nm one.

Single Event Functional Interrupts (SEFIs) and Multiple Bit
Upsets (MBUs) were also found (Figure 5). For the 130-nm
SRAM, below 1.8 V, strange clusters of 4-bit MBUs started to
appear. They were attributed to SEFIs occurred in the readout
system of the SRAM for three reasons: First, many common

Table III
NUMBER OF READING ROUNDS WHERE µ-SELS OCCURRED / TOTAL

NUMBER OF READING ROUNDS CARRIED OUT IN THE SPECIFIED VOLTAGE
RANGE

130 nm 90 nm 65 nm
3.15V 1/2 3/3 0/1

2.8V − 1.8V 0/3 1/2 0/2

1.7V − 1.4V 0/3 4/4 0/1

1.3V − 0.5V 0/7 0/8 0/6
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Figure 5. Number of addresses affected by MBUs and SEFIs.

addresses were affected in all the involved rounds of reading.
Second, they appeared only at bias voltages lower than 1.9
V, which is actually the threshold voltage from which the
readout system of the SRAM stops working (although it still
retains information). And last but not least, that SRAM did not
exhibit the behavior of micro-SELs, which was described in
the previous section. Such SEFIs related to the readout system
did not appear for the 90-nm and 65-nm ones.

Finally, a few isolated 2-bit MBUs were also observed,
for the three SRAMs. However, they appeared in experiments
where more than 1500 events were observed, hence they could
actually be two separated SBUs occurred in the same address.
Probabilistic models developed by the authors, not included
in this paper for simplicity, predict a number of occurrences
of these MBUs that is on the order of the number of MBUs
that were observed in the experiments. For instance, in the
experiment with the 65-nm SRAM at 2.5V, a 2-bit MBU was
observed among 1711 bitflips. In this case, the probabilistic
model predicted that 0.64 MBUs attributed to the occurrence
of two SBUs in the same word should have been observed.

C. Efficiency of the ECC Mechanism of the CY62167GE30-4

The efficiency of the ECC logic implemented in the 65-
nm SRAM has also been evaluated. For that purpose, another
scan for different bias voltages on the same CY62167GE30-
4 sample was carried out, but this time keeping the ECC
active. In this case, when a read operation is performed on
a position with data affected by a SBU, the "ECC" pin of the
memory is automatically activated and the error is fixed by the
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Table IV
ROUNDS OF IRRADIATION PERFORMED ON THE CY62167GE30-4 SRAM

(65-nm), WHILE KEEPING THE ECC MECHANISM ACTIVATED

VCC
(V )

Fluence
(n · cm2)

Correctable
errors

Uncorrectable
errors

% ECC
correction

0.80 2.73 · 109 3479 20 99.43%

0.90 2.66 · 109 2799 8 99.71%

1.00 2.73 · 109 2539 9 99.65%

1.10 2.79 · 109 2373 6 99.74%

1.30 2.66 · 109 2012 1 99.95%

1.50 2.73 · 109 2015 2 99.90%

2.00 2.79 · 109 2044 3 99.85%

2.50 2.79 · 109 2038 7 99.65%

3.15 2.73 · 109 1970 5 99.74%

3.15 a 2.73 · 109 2062 2 99.90%

aPerformed with pattern 0×00

hardware of the chip. However, it may happen that some errors
escape the ECC mechanism, such as MBUs or errors occurred
in the memory elements of the ECC logic. These errors are
all through accumulation effects. For number of accumulated
errors must be lower than 1000 for the ECC to be clean [16].
In these cases, the ECC signal is also activated, but the error
is not corrected.

Table IV shows these results performed at various bias
voltages. All the rounds were performed with pattern 0×55,
except the last one, performed with 0×00. In all the cases,
the ECC mechanism proved to be extremely effective since,
at least, 99.4% of the errors were corrected. In addition, no
micro-SELs were observed in this sample, in spite that it was
the most exposed one against radiation in the whole campaign
performed in May’2017 (6.63·1010 n·cm−2), in comparison
to the 130-nm (3.26·1010 n·cm−2) and 90-nm (2.83·1010
n·cm−2) ones. This is a clear evidence that this memory can
work reliably in a harsh environment where radiation is a
major concern.

D. SER Predictions by the MUSCA-SEP3 Tool

This subsection discusses the impact of ultra-low bias
voltage for the three studied technological nodes for an avionic
environment, addressing particularly MCU percentages and
contributions induced by neutrons, protons and muons. Indeed,
the sensitivity against SEEs of nanoscale devices is expected
to increase with the integration scale, and recent studies
have demonstrated the occurrence of SEEs due to protons
and muons [19], [20], [21]. Thus, this section presents SER
calculations based on MUSCA SEP3 [13], which have been
obtained by using the SEU models that have been validated
above (Subsection IV-A) and atmospheric radiation fields
composed by neutron, proton and muon spectra calculated
by using ATMORAD [22]. This tool is based on simulations
of extensive air showers, primary spectra model (force-field
approximation [23]) and neutron spectrometer network [24].

Figure 6 presents the calculated MCU percentage obtained
by considering each technological node and bias voltages
ranging from 0.5 to 3.3 V. The bias voltage and the integra-
tion decreases induce an increase in the MCU impact. It is
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Figure 6. Estimated MCU rate versus technological node and bias voltage,
considering the avionic altitude (i.e. 12 km).

Table V
MAIN TECHNOLOGICAL PARAMETERS

Node Scell (µm2) Qcrit (fC) V CC
(V )

65 nm 0.55 0.60 0.90

45 nm 0.40 0.40 0.85

32 nm 0.25 0.30 0.80

28 nm 0.20 0.20 0.70

22 nm 0.15 0.12 0.70

14 nm 0.10 0.08 0.50

also interesting to investigate the neutron, proton and muon
contribution to the SER as a function of the integration node
and the bias voltage. Thus, Figure 7 demonstrates that the
main contribution for the three technological nodes is due to
neutrons, but the technological integration and increasingly
low bias voltages induce a significant contribution of protons
and muons.

Previous results [20] have demonstrated that muon and
α-SER impacts are negligible for avionic altitudes, and for
integration levels down to 14nm considering bulk, FDSOI
and FinFET processes. However, only nominal bias voltages
were considered. Thus, based on the technological parameters
detailed in [20], the impact of the technology scaling on
the SER contributions due to these different particles was
also investigated by using MUSCA-SEP3 at various bias
voltages. Taking into account the integration level, interactions
of primary and/or secondary particles in active silicon layers
consider 3D morphology descriptions of deposited charges
[21]. SEU occurrence models are based on ground tests for
130, 90 and 65 nm, while extended models were considered
for lower integration technologies. As previously, atmospheric
radiation fields were calculated by using ATMORAD. Table V
describes the main technological model parameters that were
used [25], [26]; i.e., the elementary cell surface (Scell), the
critical charge to provoke a SEU (Qcrit) and the nominal
power supply (V CC).

Finally, Figure 8 presents neutrons, protons and muons
contribution to SER versus technological node considering
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Figure 7. Estimated neutron, proton and muon contribution to SER versus
technological node and bias voltage, considering the avionic altitude (i.e. 12
km).

nominal bias voltage and avionic altitudes. Depending on
the integration level, neutron and/or the proton environments
induce the main contribution to the total SER, whereas that
of muons is negligible. However, proton direct ionization is
classically not considered as a source of SEEs for avionic
applications. Complementary analyses show that the proton
environmental impact is already not negligible for the 65-nm
technology and indeed, it becomes the main contribution from
the 28/22-nm nodes and beyond. Previous results presented
by Barack et al. [27] and based on an analytical micro-
dosimetry model, show that for low-SEU sensitivity devices,
the combined contribution of secondary protons and deuterons
is the dominant one. Moreover, the contribution of muons and
pions is negligible even at sea level. Results are consistent
with [27].

Previous works [28] have emphasized that the technological
integration for over 90-nm induces a SER saturation (or even a
slight reduction) coupled with an increase of the multiple event
rates. However, accounting for the direct proton ionization
contribution leads to an expected strong increase in the SER
at 28-nm and beyond.

By considering only the neutron contribution, the SER
decreases with the downscaling despite the increase of multiple
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Figure 8. Neutron, proton and muon contribution to SER versus technological
node considering nominal bias voltage and avionic altitudes (i.e. 12 km).

effects. This trend is reversed by proton contributions.

V. CONCLUSIONS

This paper has presented a sensitivity characterization of
three successive COTS SRAMs (130-nm, 90-nm and 65-nm),
manufactured by Cypress Semiconductor, against 14.2-MeV
neutrons at ultra low bias voltage. A clear evidence of the
sensitivity increase of these devices at very low bias voltages
has been observed for single and multiple events with various
multiplicities, which have been extracted with proprietary
information from the manufacturer. These experimental data
have been validated with predictions issued from the MUSCA-
SEP3 modeling tool, and the agreement is very satisfactory.
Large-scale SEFIs, micro-SELs as well as some isolated
MBUs were also reported. SER estimations, also issued from
MUSCA-SEP3 and ATMORAD, have also been provided and
discussed.
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