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In this work we study computationally the dynamics of a liquid bridge formed
between a two-dimensional trapezoidal cavity, which represents an axisymmetric cell
or a plane groove engraved in a roll, and a moving plate. The flow is a model of the
liquid transfer process in gravure printing systems. The considered plate kinematics
represents the actual motion of a roll-to-roll system, which includes extension, shear
and rotation relative to the cavity. The fluid flow is modelled by solving the Stokes
equations, discretized with the finite element method; the evolving free surfaces are
accommodated by employing a pseudosolid mesh deforming algorithm. The results
show that as the roll radius is reduced, thus increasing the lateral and rotational
motions of the top plate relative to the cavity, a larger volume of liquid is transferred
to the plate. However, due to lateral displacement of the contact lines, special care
must be taken concerning the wettability properties of the substrate to avoid errors
in the pattern fidelity. The predictions also show a strong nonlinear behaviour of the
liquid fraction extracted from a cavity as a function of the capillary number. At high
capillary numbers the fluid dynamics is mainly controlled by the extensional motion
due to the strong contact line pinning. However, at low values of the capillary number,
the contact lines have higher mobility and the liquid fraction primarily depends on
the lateral and rotational plate velocity. These mechanisms tend to drag the fluid
outside the cavity and increase the liquid fraction transferred to the plate, as has been
observed in experiments.
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1. Introduction
In recent years, printing technology has gained much attention because of its

potential applicability in the production of flexible electronics devices. One important
example is the production of polymer solar cells, which are a promising solution
for cost reduction of photovoltaic technologies (Krebs 2009). Polymer solar cells
are suitable for manufacture by using high-scale film-forming techniques like slot
and gravure coating and also by printing technologies like screen, pad or gravure

† Email address for correspondence: msc@puc-rio.br

mailto:msc@puc-rio.br


546 D. M. Campana and M. S. Carvalho

(a) (b)

FIGURE 1. Sketches of gravure printing systems and their usual simplifications to model
the liquid transference: (a) gravure offset and (b) direct gravure printing.

printing (Santa-Nokki et al. 2006; Ding et al. 2009). The high production rate and
low manufacturing cost are crucial factors to compensate for the low-efficiency
conversion these devices have at present (Krebs 2009). Other examples of electronic
devices that can be manufactured by different printing technologies include flat-panel
displays, which are formed by thousands of light emitting diodes (Chung et al. 2010;
Lee et al. 2010b), and general purpose small-scale electronic circuits on flexible
substrates (Pudas, Hagberg & Leppävuori 2004a,b; Lee et al. 2010a).

Among the many printing technologies used, gravure is very attractive because it
allows the printing of small patterns (of the order of 10 µm) using liquids of medium
viscosities (up to 1000 cP) at fast substrate velocities (10 m s−1 and higher) when a
roll-to-roll configuration is used (Krebs 2009). The term gravure comes from the fact
that one of the rolls has a pattern engraved on its surface, which is made of small
cells or cavities. They are filled with liquid as the surface of the roll rotates inside a
bath, then a blade removes the excess liquid and finally the cavities are emptied by
direct contact, thereby transferring the engraved pattern to a second surface. As shown
in figure 1(a), this second surface can be the surface of a rubber roll from which the
pattern is later transferred to the substrate; this technique is known as offset gravure
printing. In the other alternative, the pattern is transferred directly to the substrate
by pressing the substrate between a rubber roll and the engraved cylinder itself (see
figure 1b); in this case the technique is simply called gravure printing.

The liquid transfer process from individual cells or grooves to the surface of a roll
is quite complex; it involves stretching of liquid bridges with moving contact lines.
In addition, a detailed description of the complete problem involves consideration of
the hydrodynamic effects between multiple cavities, and fluid–structure interaction
aspects when deformable rolls are used. Thus, strong simplifications are usually made
to build theoretical models and to understand the fundamental aspects of the problem.
The most common one is to analyse the dynamics of just one isolated liquid bridge.
Even the dynamics of a single liquid bridge, from its formation and evolution to
its final breakup, requires the physics of free surfaces and moving contact lines,
a deep understanding of which remains a considerable challenge in the field of
fluid mechanics, although they have been active areas of research for the last four
decades (Huh & Scriven 1971; Weinstein & Ruschak 2004; Blake 2006; Snoeijer &
Andreotti 2013).
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The simplest flow model to study liquid transfer in offset gravure printing is the
stretching of a planar or axisymmetric liquid bridge between two flat surfaces. This
problem is crucial to an understanding of printing applications and, maybe because of
its simple geometry, it has been the problem most frequently considered (Gupta et al.
2007; Huang et al. 2008; Dodds, Carvalho & Kumar 2009; Kang et al. 2009; Dodds,
Carvalho & Kumar 2011, 2012).

In order to model the liquid transfer from a cavity to a surface, the usual
simplification is to consider the stretching of planar or axisymmetric liquid filaments
between a moving surface (flat plate) and a fixed cavity. The main goal of such
analyses is usually to determine the mass fraction of liquid that is transferred from
the cavity to the moving surface (usually called the pick-out fraction and denoted
as φ) as a function of contact angles, surface velocity, geometry of the cavity and
flow parameters. One of the first numerical studies was conducted by Powell, Savage
& Guthrie (2002), who used the finite element method to study the stretching of
planar two-dimensional (2-D) liquid bridges between a trapezoidal cavity and a plate.
They included inertial and gravitational effects in their analysis, but as a further
simplification they considered that the contact lines on the plate were fixed, which
certainly is not the case in printing processes. They found that the size of the sessile
drop formed on the moving plate is slightly reduced when the stretching velocity is
increased, while a more elongated liquid filament is obtained. More recently, Hoda
& Kumar (2008) used the boundary integral method to study the removal of liquid
from 2-D planar grooves with rectangular cross-sections. By simultaneously imposing
shear (horizontal) and stretching (vertical) velocities to the upper plate, the authors
predicted the residual liquid fraction left in the cavity for different cavity aspect
ratios and stretching velocities. They also explored the effects of contact angles, but
only for non-wetting conditions because of limitations in their numerical approach.
The results show that almost all the liquid inside the cavity can be removed when
the stretching velocity is higher than a critical value, which is a function of the
cavity aspect ratio. The predictions also indicated that wider cavities are easier to
empty. Huang et al. (2008) also analysed the stretching of a liquid bridge between
plates and 2-D planar trapezoidal cavities, using the volume-of-fluid method to solve
the free boundary problem. They explored the effect of wettability conditions on
the width of the printed pattern at the plate, finding an expected strong influence of
the contact angle at the plate contact line but a weak effect of the cavity wetting
characteristics. Their results also show that the transferred liquid fraction falls slightly
as the cavity wall is made steeper (at constant cavity depth). However, a strong
decrease in pick-up fraction was observed as the depth of the cavity was augmented
at constant wall slope.

Recently, Dodds et al. (2009) studied the behaviour of axisymmetric liquid bridges
stretched between plates and cavities with trapezoidal cross-sections. They evaluated
the liquid transfer fraction φ as a function of the cavity geometry, contact angles,
initial condition and capillary number Ca = µV/σ (where µ is the liquid viscosity,
V is the reference velocity and σ is the surface tension). They used the Galerkin
finite element method to solve the Stokes equations, and an elliptic mesh generation
algorithm was used to map the physical and computational domains (Christodoulou,
Kistler & Schunk 1997). The results show that φ rises with capillary number and as
the cavity becomes wider.

Because of the inherent complexity in the visualization and measurement of such
small-scale interfacial fluid flow, few experimental results are available; those of Yin
& Kumar (2006) and Chuang, Lee & Liu (2008) are the exception. To simplify both
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the visualization process and the measurements of the transferred liquid fraction, they
upscaled engraved cavities to dimensions of the order of millimetres, much larger than
the actual cavities used in gravure printing. More specifically, Yin & Kumar (2006)
visualized the liquid transfer from a single large cell (of the order of 1 mm) to a
curved surface that travelled horizontally over it. The experiments covered a wide
range of capillary numbers, i.e. 10−4<Ca< 5× 10−2, and they found that the pick-out
liquid fraction diminishes from its maximum value close to φ= 0.5 as the velocity of
the moving surface is increased. Chuang et al. (2008) also used trapezoidal cells and
made arrays of up to four cavities to study how their interaction affects the fraction
φ. To better approximate the kinematics of a gravure printing process, they moved
a roller at different velocities and gaps and studied the shape of the printed pattern
over the roller and the remaining liquid left in the cells and the surface between
them. Although the range of the capillary number explored was small (2.5× 10−3 <

Ca < 3 × 10−2), the results also showed that the fraction φ falls as the capillary
number rises.

A process closely related to gravure printing is the one used to coat thin uniform
liquid films over moving substrates using rolls with engraved cells or grooves, called
gravure coating. A more complete body of experimental results is available for gravure
coating (see, for example, Pulkrabek & Munter 1983; Benkreira & Patel 1993; Kapur
2003). In particular, the work of Kapur (2003) indicates that the liquid extracted from
cavities rises with capillary number in the range 10−2 <Ca< 10−1. However, despite
their similarity, gravure printing and gravure coating present important differences
which have a strong effect on the dynamics of the liquid transfer from the gravure
roll cells to the smooth roll surface or substrate. In gravure coating, the liquid inside
each cell is transferred to a continuous film coated on the substrate; in gravure
printing, the fluid inside each cavity forms a liquid bridge that wets the substrate
forming contact lines. Therefore, it is not clear how the pick-out fractions in gravure
coating and gravure printing are related.

Summarizing, the available experimental results suggest that, in gravure printing, the
transferred liquid fraction decreases as the capillary number rises, at least in the range
explored. While the previous works of Hoda & Kumar (2008) and Huang et al. (2008)
analysed the effect of contact angles and cavity shapes, all their results were obtained
at a fixed capillary number, Ca= 0.01. Dodds et al. (2009) presented results for two
values of the capillary number (Ca= 0.1 and 0.01), and their predictions suggest the
opposite behaviour to that observed in the experiments: φ increases as the capillary
number rises.

In the present work, we study the liquid transfer process from a fixed 2-D
trapezoidal cavity to a moving plate. The analysis is made using a realistic kinematic
description of the top-plate motion relative to the cavity, based on the kinematics of a
roll-to-roll system (§ 2). This allows us to consider the stretching (vertical), shearing
(horizontal) and rotational velocities in a coherent manner and to relate them to the
operational parameter of the process. The relative motion between the two surfaces
has a strong effect on the evolution of the contact line position and consequently on
the liquid transfer process. We model the fluid flow by solving the Stokes equations
with appropriate boundary conditions, which are presented in § 2. We implemented a
robust numerical algorithm which is discussed in § 3. In § 4.2, we first compare the
liquid transfer processes from axisymmetric and planar 2-D cavities. Then, we discuss
the effect of the moving surface kinematics, cavity geometry and capillary number
on the liquid transfer process. Finally, in § 5, we present the main conclusions of this
work and future research directions.
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FIGURE 2. The geometric model, variables and frames used to describe the relative
motion between the cavity and points on the top roll surface.

2. The model
2.1. Kinematic description of a rotational gravure printing system

Figure 2 shows the schematic configuration of two equal counter-rotating rolls
separated by a gap H0. The positions of points on both roll surfaces are defined by
the angles θ1 and θ2 with respect to the horizontal line, as shown in the figure. The
bottom roll represents the engraved roll with the cavities; however, only one cavity
is sketched (dark grey colour) to simplify the diagram. Figure 2 shows two frames
of reference. One frame (F1) is fixed at the centre of the bottom roll and is defined
by the unit vectors (i′, j′, k′). The coordinates of any point with respect to this frame
are represented by (x′, y′, z′). The second frame of reference (F2) is attached to the
centre of the cell surface (point O) and therefore is moving with respect to the fixed
frame of reference F1. The coordinates of any point with respect to the moving frame
F2 are represented by (x, y, z). The goal is to derive an expression for the velocity
Vw of a point lying on a small plane rotating attached to the top roll (see figure 2)
relative to the moving frame of reference.

The velocities of points C and O (located on the top and bottom roll surfaces,
respectively) with respect to the fixed frame of reference F1 are easily determined as

V′C =ωR(sin(θ2)i′ − cos(θ2)j′),
V′O =ωR(sin(θ1)i′ + cos(θ1)j′),

}
(2.1)

where θ1= θ2=ωt+ θ0= θ . The angle θ0 allows one to consider an initial inclination
or twist of the plate with respect to the cavity. However, this case will not be explored
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in the present work and, for all cases analysed here, θ0 = π/2: points C and O are
initially located in the minimum gap between the rolls. Because the size of the cavities
(∼10 µm) is much smaller than the roll radius (∼10 in.), the curvatures of both roll
surfaces in the vicinity of C and O are neglected in the description presented here.
The position of any point located on the top roll surface (in the vicinity of C) with
respect to F1 can be written as x′= x′C + dx′, where dx′ is a vector tangent to the top
roll surface through the point C. Therefore, the velocity of this point with respect to
F1 is

V′ =V′C +ω′C × dx′ =V′C +ω′C × [x′ − x′C], (2.2)

where ω′C =ωrk′ is the angular velocity at which dx′ is rotating with respect to C. It
is obvious that ωr = ω, but soon it will be clear why we have introduced a different
notation for this variable. The position vector x′C is given by x′C=−R cos(θ)i′+ (2R+
H0 − R sin(θ))j′.

From basic kinematics (see, for example, Lai, Rubin & Krempl 1999), the
expression for the velocity of a point on the top roll surface (in the vicinity of C)
with respect to frame F2 is

Vw =V′ +V′O −ω′O × x, (2.3)

where V′O and ω′O are the translational and rotational velocities of frame F2 (which is
attached to the point O) with respect to F1, respectively, and x is the position vector
x′C + dx′ with respect to F2. Thus,

V′O =ωR(sin(θ)i′ + cos(θ)j′), ω′O =−ωrk′O =−ω′C, x= xi+ yj. (2.4a,b,c)

By recognizing that x′ = x′O + x, x′O =−R cos(θ)i′ + R sin(θ)j′ and introducing the
expression (2.2) for V′ in Vw it follows that

Vw =V′C −V′O + 2ω′C × x−ω′C × [x′C − x′O]. (2.5)

Because Vw represents the velocity relative to the moving frame F2, it must be
expressed in terms of its corresponding versors i and j, which are related with those of
the fixed frame F1 by i′= i sin(θ)− j cos(θ) and j′= i cos(θ)+ j sin(θ). Then, replacing
all quantities in (2.5), the final expression for the velocity of any point on the top roll
surface (near C) with respect to the frame F2 is given by

Vw(x, t)= [−2ωR cos2(θ)− 2ωry+ωryC]i+ [−2ωR cos(θ) sin(θ)+ 2ωrx−ωrxC]j,
xC = |x′C − x′O| cos(θ), yC = |x′C − x′O| sin(θ),

|x′C − x′O| = 2R+H0 − 2R sin(θ).


(2.6)

As mentioned before, all cases discussed here consider that the initial condition
is such that the cavity and substrate are in the horizontal position (θ = π/2). From
this initial condition, the top roll surface evolves according to (2.6), while the cavity
remains fixed. It is clear that the resulting kinematics given by (2.6) is a combination
of the shear (horizontal), extension (vertical) and rotational velocities of the plate. It is
important to mention that in the axisymmetric analysis, only the stretching or vertical
velocity is considered in order to satisfy the assumed axial symmetry. For these cases,
an alternative expression for the plate velocity, Vw, is used in which the shear and
rotational velocities are neglected,

Vw(x, t)=−2ωR cos(θ)j. (2.7)
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The expression (2.7) should be considered as a limiting case of (2.6) as the sizes
of the cavity and plate relative to the roll radius approach zero, making the rotational
effects negligible, i.e. ωr∼0. Because θ ∼π/2 and thus cos2(θ)� cos(θ) sin(θ), finally
(2.6) simplifies to (2.7).

Another important issue to be considered here is the selection of the velocity scale
for the problem. As was discussed by Dodds (2011), one is tempted to select the
tangential roll surface velocity Vt = ωR as the velocity scale. However, because the
cavity and plate surfaces have the same tangential velocity, Vt does not represent a
correct scale at all. A more appropriate velocity scale is the stretching vertical velocity
at which those surfaces are separating. It can be shown that this vertical velocity scale
is given by VE = Vt

√
2(Lb/R− (Lb/R)2) (Dodds 2011). In the above expression, Lb

represents the breakup length, i.e. the vertical distance between the plate and cavity
at which the liquid filament breaks. Simulations performed in both Dodds et al. (2009)
and this work show that Lb ∼ 5δ, where δ is the depth of the cavity. Typical values
of the above magnitudes in gravure printing systems are Vt = 10 m s−1, δ = 10 µm
and R= 10 in= 0.254 m. Thus, VE ∼ Vt

√
10δ/R∼ 0.2 m s−1, that is, two orders of

magnitude smaller that Vt. Then, by selecting VE, δ and δ/VE as scales of velocity,
length and time, respectively, the dimensionless expressions for the plate velocity are

Vw(x, t)=−2ωbRb cos(θ)j (2.8)

for pure stretching and

Vw(x, t)= [−2ωbRb cos2(θ)− 2ωpy+ωpyC]i+ [−2ωbRb cos(θ) sin(θ)+ 2ωpx−ωpxC] j
(2.9)

for the general case (complete kinematics).
In the above expression, Vw, x, y, xC, yC and θ = ωbt + θ0 are dimensionless

quantities; moreover, wb =ωδ/VE, ωp =ωrδ/VE and Rb = R/δ.

2.2. Flow equations and boundary conditions
The differential equations and the appropriate boundary conditions that describe
the transient free surface flow with contact lines in the liquid transfer process are
presented in this section. The flow domain and the relevant geometric parameters are
shown in figure 3. The geometry in the figure represents (i) the cross-section of an
axisymmetric cavity or (ii) the cross-section of a groove (also called a plane cavity in
this work). Both configurations are used in gravure printing. Any complex pattern can
be printed using an appropriate number and configuration of dots, placed sufficiently
close to achieve the desired merging between the individual printed dots. However,
when continuous patterns are printed, such as tracks of an electronic circuit, the
transference of liquid from a groove engraved in the gravure rolls may lead to more
uniform and continuous printing patterns (see, for example, Pudas et al. 2004a,b; Lee
et al. 2010a,b).

The flow domain consists of a liquid bridge of a Newtonian liquid with density
ρ, viscosity µ and surface tension σ , attached to the cavity and top plate. The
surrounding gas phase has negligible density and viscosity (relative to the liquid
properties) and a constant pressure p0 = 0 which is set as reference. At t = 0 we
consider the system to be in equilibrium, then the free surface is a static meniscus
between the cavity and the plate with static contact angles θc and θp, respectively.
The quantities xi

c and xi
p represent the contact line positions along the cavity and

plate respectively, with i = l denoting the left and i = r the right contact lines. For
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FIGURE 3. Sketch of the domain and geometric parameters. When the axisymmetric
model is solved, x and y represent the radial and axial coordinates, respectively. For this
particular case, the upper plate is always in the horizontal position and it moves only with
vertical velocity.

the axisymmetric case, xp and xc collapse into a single circular contact line on
each surface.

Using the dimensionless variables defined in the preceding section, we can estimate
the values of the Reynolds number (Re = ρδVE/µ) and the Stokes number (St =
ρgδ2/(VEµ)). In gravure printing applications, the cavity depth is of the order of
10 µm, the liquid viscosity is usually between 1 and 100 cP and the extensional
velocities are between 1 and 10 cm s−1; therefore, 10−3 < Re < 1 and 10−5 < St <
10−1. Thus, while the gravity forces can be safely neglected, the inertial effects could
be important in some situations. However, to maintain the present model as simple
as possible, we also neglect the inertial effects and thus the momentum and mass
conservation equations are

∇ · T = 0,
∇ · v = 0.

}
(2.10)

In (2.10), T =−pI + (∇v+∇vT) is the total stress tensor (I is the identity tensor),
made dimensionless with VEµ/δ.

We consider the liquid surface tension to be constant and, therefore, the capillary
force along the interface has only a normal component, given by

nfs · T = κ

Ca
nfs, (2.11)

where Ca= µVE/σ is the capillary number and κ is the mean curvature of the free
surface (κ = −∇s · nfs). In the above expression, ∇s = (I − nn) · ∇ is the surface
gradient operator.

The moving plate and cavity surfaces are impermeable and because the contact
lines slip along them, we must introduce some approximation to overcome the stress
singularity at the contact lines (Huh & Scriven 1971). As in Dodds et al. (2009),
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Navier’s slip boundary condition is used and a prescribed constant contact angle
between the liquid interface and solid walls is imposed,

v · nw = 0 at the cavity walls,
(v −Vw) · nw = 0 at the moving plate,

}
(2.12)

(nw · T ) · tw = 1/β(tw · (v − vsurf )), nw · nfs = cos(θi), i= c, p. (2.13a,b)

In (2.13), β is the dimensionless slip coefficient (as defined in Lamb 1975), vsurf
is the velocity of the solid surface and θi is the macroscopic dynamic contact angle,
which, for simplicity, we consider to be constant. We could have used a more
sophisticated approach to model the contact line by introducing, for example, a
dependence of the apparent dynamic contact angle on the velocity. Blake (2006)
discuss the different available models. However, we decided to use a simple approach
given by (2.13), to focus our analysis on the effects of the top-plate kinematics and
capillary number on the system.

Because the above flow equations and boundary conditions must be solved in a
domain that is moving and deforming, the domain itself is part of the solution. A
convenient way to solve free boundary problems is to map the unknown physical
domain to a reference computational domain. The mapping is constructed by
considering the domain as a fictitious elastic solid which deforms in response to
boundary loading. Following Cairncross et al. (2000), the position of the interior
nodes of the domain obeys a quasi-static equilibrium equation,

∇ · S = 0,
S = λseI + 2µsE,

}
(2.14)

where S is the Cauchy stress tensor of the pseudosolid, which is related to the
deformation field through a Hookean constitutive equation. In (2.14), λs and µs are
the Lamé constants of the pseudosolid, E is the Eulerian strain tensor and e is the
volume strain. One important aspect of the mapping introduced by Cairncross et al.
(2000) was the use of a finite Eulerian strain tensor

E = 1
2

[
∇d+∇dT −∇d · ∇dT]= 1

2

[
I −F−TF−1] , (2.15)

where d = x − X is the displacement field, x represents the current coordinates of
the nodes at time t (to be calculated), X represents the coordinates of the fixed free-
stress reference state and F = ∂x/∂X = I + ∂d/∂X is the Lagrangian deformation
gradient with respect to the undeformed reference state. Finally, the volume strain is
e= 3(det(|F|1/3)− 1), which reduces to tr(|∇d|) for small displacements.

To solve (2.14) two types of boundary conditions are used. The first is a kinematic
condition that links the velocity of the computational nodes with the velocity of the
fluid particles. This boundary condition is used along moving surfaces, such as the
interface and the moving plate, i.e.

nfs · (v − ẋ)= 0 at free surfaces,
nw · (v − ẋ)= 0 at the moving plate.

}
(2.16)

In the above expressions ẋ represents the velocity of the computational nodes and v
the fluid velocity on that boundary. The second type of boundary condition imposed
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on (2.14) is an equation that describes the mesh displacements themselves, instead of
the nodal velocities. These boundary conditions are applied on nodes located along
the symmetry axis (in the case of axisymmetric solutions) and cavity walls. Along
the symmetry axis, (x−X) · n= d · n= 0. The coordinates of the nodes on the cavity
wall must satisfy (Dodds et al. 2009)

y= f (x)=−1
2

[
1− tanh

( |x| − rc

rs

)]
along the cavity wall. (2.17)

In (2.17), rc is the width of the cavity, measured at y=−δ/2 (in dimensional units).
In addition, rs is a parameter that controls both the curvature of the corners and the
steepness of the cavity wall. Sharp corners and steep cavity walls are obtained using
small values of rs. All quantities in (2.17) are made dimensionless with the cavity
depth δ.

3. Numerical solution

The numerical technique used in this work is similar to procedures that have been
used successfully to solve other fluid flow problems involving interfacial dynamics.
The main ideas were taken from the works of Cairncross et al. (2000), Sprittles
& Shikhmurzaev (2012) and Ubal et al. (2012), in which detailed descriptions of
the numerical features were given. Different numerical approaches discussed in the
aforementioned works were combined here to construct a robust numerical procedure;
they are briefly described in this section.

The flow domain was divided into elements using an unstructured mesh of
triangles. All boundary conditions were enforced using Lagrange multipliers, as
described in Sprittles & Shikhmurzaev (2012) and Ubal et al. (2012). Biquadratic
interpolating functions were used to expand the velocity, pseudosolid displacement
(nodal coordinates) and the Lagrange multipliers associated with each boundary
condition; bilinear continuous basis functions were used to expand the pressure field
(six-node P2P1 Taylor–Hood triangular elements).

An implicit second-order time integration scheme with an adaptive time step was
used. At each time step, all variables were calculated simultaneously. This fully
coupled scheme shows better convergence and stability properties compared with
other decoupled or semi-implicit numerical procedures (Christodoulou & Scriven
1992; Campana et al. 2007). The resulting set of nonlinear equations at each time
step was solved using Newton’s method.

The model was implemented in the commercial finite element software COMSOL
Multiphysics (COMSOL Multiphysics 1998–2013) and the approximated solutions
were obtained following the steps described next. First, an initial guess for the flow
domain was built using CAD tools; we denote this initial domain (or geometry) as
G0. It approximates the shape of the cavity, the plate and the static liquid bridge
connecting them. This initial domain was meshed (M0) and the coordinates of the
nodes were taken to be the initial reference state X0 for the pseudosolid deformation
equation. The second step consisted of solving the mesh deformation equation alone
with the reference state X0. The mesh evolved through successive iterations until it
accurately described the cavity geometry (see (2.17)). The new mesh M1 generated
by the converged solution of the previous step was used to build a new geometry
G1 and to define the new reference state X1. In the third step, the true steady-state
solution, i.e. the static configuration of the liquid bridge, was obtained. The full
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set of differential equations (2.10) and (2.14) with their corresponding boundary
conditions was solved setting the plate velocity (Vw) equal to zero; in this step the
free surface evolved until it reached the static meniscus configuration. Then, the
converged solution was used to define a new flow domain G2, which was remeshed
(M2) to get high-quality elements and a new reference state X2. Finally, the mesh
M2, the reference state X2 and the converged flow field solution were used as initial
guesses for the transient calculations considering the moving plate (Vw given by (2.6)
or (2.7)). This procedure was repeated for each different cavity geometry.

The element size in different regions of the flow domain was controlled to ensure
the accuracy of the solution. Special care was taken near the contact lines and
regions of high interface curvature. Near the contact lines, the difference between
the computed θc and the imposed contact angle θ (1θ = |θ − θc|) was used as a
measure of the solution accuracy, as suggested by Sprittles & Shikhmurzaev (2012).
The element size near the contact line was adjusted during the computations, such
that 1θmax ∼ 3 %. Apart from controlling the element size near the contact line,
several mesh tests were also performed to verify that the solutions presented were
mesh-independent.

As the liquid bridge is highly deformed during the liquid transfer process, the
elements become distorted, compromising the solution accuracy. To control the whole
mesh, the aspect ratio of each element is computed during the transient calculation.
Whenever this control parameter goes below a critical value, the liquid bridge
configuration of the last converged solution is used to define a new geometry (and
reference state), which is tessellated into a new high-quality mesh of triangles. The
last converged solution is interpolated onto the new mesh and the time integration
resumes. Typically, the simulations presented here required between nine and 14
stages of remeshing before achieving the breakup time. There is an inherent error in
each geometry reconstruction and further remeshing procedure. The total volume of
the liquid bridge was used as a control variable to verify the error associated with the
remeshing and interpolation steps. The maximum total variation between the initial
and breakup times was always below to 0.1 % (in most cases it was approximately
0.01 %).

We tested several iterative solvers and preconditioners built-in in COMSOL
Multiphysics c© but the convergence was very slow or was never achieved. Thus,
we solved the linear system for each Newton’s iteration using a direct solver, i.e.
PARDISO (Schenk & Gärtner 2004), which ensured converged solutions in three or
four Newton’s iterations when using an appropriate initial guess.

4. Results
4.1. Validation and selection of a base case

We first validate the proposed model and its implementation by comparing the
predictions with the axisymmetric results presented by Dodds et al. (2009). However,
it is important to note that there are some basic differences between the two models
that may lead to small discrepancies in the results. Dodds et al. (2009) imposed slip
only on the nodes located at contact lines, while a no-slip condition was imposed on
the remaining nodes located along the solid walls. Since they used a very large value
for the slip coefficient, i.e. β = 1010, this means that perfect slip (zero shear rate)
was imposed at the contact lines. In contrast, the model used here considers Navier
slip along the entire wall, and away from the contact line (outside the slip region)
the tangential velocity approaches zero, i.e. O(10−4). Thus, the size of the region
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FIGURE 4. The tangential velocity on the cavity wall at t = 0.1 for the simulations
of figure 5.

close to the contact line at which slip is significant and the value of the contact line
velocity depend on the magnitude of the slip coefficient. Therefore, our results are
more sensitive to the prescribed value of β. The slip coefficient β can be estimated
based on the slip length l, i.e. β ∼ l/δ. Considering l∼ 1–10 nm, the slip coefficient
should be 10−4 < β < 10−3. The range explored in the analysis was expanded to
consider the limiting case of the high-slip condition (β = 100). However, values of
β > 10−2 lead to unrealistic large-slip regions. The predicted volume transfer φ from
an axisymmetric cavity to a plate moving vertically reproduced the values reported
by Dodds et al. (2009) for 10−2 <β < 10−3.

Before presenting the results of the parametric study, a base case (BC) was analysed
to discuss the important phenomena that occur during the liquid transfer process. The
BC parameters were chosen considering typical values of the operating conditions,
geometric parameters and liquid properties. By taking µ= 0.01 Pa s, σ = 0.05 N m−1,
R = 6 in = 0.1524 m, δ = 10 µm, Vw = 10 m s−1, the corresponding dimensionless
parameter values are Rb = 15240, ωb = 0.0025, Ca = 0.05. For simplicity we have
set Ca = 0.1 and have neglected inertia (Re = 0). In the BC, the cavity geometry
paremeters were chosen as rc = 0.8 and rs = 0.3 and the contact angles were set as
θc = θp = 70◦ (Dodds et al. 2009).

The initial gap H0 between the plate and the top boundary of the cavity (x= 0) is
also a parameter and it was set to H0= 0.03 for all cases. This a reasonable value to
avoid extremely thin gaps at initial times and also to avoid contact between the plate
and the cavity corner when the plate is under rotation. Because we cannot follow the
evolution up to the filament breakup itself, a termination criterion for the simulation
was defined. The runs were stopped when the minimum bridge thickness was less than
0.03 and this instant was taken to be the breakup time tb.

Figure 4 shows the tangential velocity along the cavity wall at t= 0.1 for different
values of β. The plot shows the unrealistic large-slip length for β > 10−2. The
interface configuration at breakup as a function of β is shown in figure 5. Clearly,
the dynamics of the contact line motion has a strong effect on the liquid transfer
process. Henceforth, all the predictions presented were obtained using realistic values
of the slip coefficient, β = 10−3 (l= 10 nm).

Table 1 summarizes the parameters of the BC.
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FIGURE 5. The free surface at breakup time for an axisymmetric cavity (rc=0.8, rs=0.3),
Ca= 0.1 and θc = θp = 70◦.

Ca θp = θc β rc rs Rb H0 ωb =ωp θ0

0.1 70◦ 10−3 0.8 0.3 15240 0.03 2.5× 10−3 90◦

TABLE 1. Values of the model parameters corresponding to the BC.

4.2. The case of pure stretching
First, the case in which the top plate is moving vertically above the cavity is analysed
and the plate kinematics is defined by (2.7). The main goal of this analysis is to
compare the flow during the liquid transfer process from an axisymmetric cavity (used
to print a dot) and a 2-D groove (used to print a line). While axisymmetric cavities are
difficult to find in real applications, they serve as a simplified model of more realistic
trapezoidal cavities (see, for example, Chuang et al. 2008). In contrast, planar cavities
or grooves are used to print circuit tracks (see, for example, Pudas et al. 2004a,b; Lee
et al. 2010b).

As discussed by Dodds et al. (2009), there are two inherent time scales in the
stretching of liquid bridges between plates and axisymmetric cavities. At the beginning
of the process, the time scale is controlled by the movement of the contact line on
the cavity wall which mainly depends on the cavity geometry, the contact angle and
the slip parameter (wettability conditions). At later stages, the time scale is defined
by the dynamics of the liquid bridge thinning process. The azimuthal curvature
completely dominates the force balance along the interface, producing a high-pressure
region in the neck that accelerates the breakup. In contrast, if the axisymmetric cavity
is replaced by a planar groove, the absence of the azimuthal curvature delays the
breakup. However, at the beginning of the emptying the behaviour cannot be so
directly inferred. Thus, in the following we focus the analysis on this aspect of the
problem.

Figure 6 compares the liquid transfer from an axisymmetric cavity (dashed line)
and a groove (continuous line) by showing the evolution of the interface configuration
up to the breakup time tb. Starting from nearly the same quasi-static meniscus, the
differences in the interfacial configurations are remarkable. For the axisymmetric case,
the pressure on the liquid side of the interface is negative from t = 0 up to t ∼ 3.5
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FIGURE 6. The free surface evolution during the emptying of the axisymmetric cavity
(dashed line) and the groove (continuous line), for the BC and for pure stretching:
(a) t= 0, (b) t= 3.11, (c) t= 3.59, (d) the breakup time is tb= 3.76 for the axisymmetric
cavity and tb = 5.27 for the groove.

because the azimuthal curvature is smaller than the curvature in the tangent direction.
However, for t > 3.5, the effect of the azimuthal curvature is more pronounced and
the pressure becomes positive. The neck of the bridge is the region with higher
pressure and consequently the fluid is quickly drained towards both the plate and the
cavity, producing the breakup at tb = 3.76. It should be noted that at this instant the
free surface near the cavity has a convex shape that is also observed in the results
presented by Dodds et al. (2009). In contrast, for the groove, when the filament
is elongated the curvature diminishes and, consequently, the pressure gradient that
drives the liquid drainage falls. Thus, the thinning at the neck is only promoted by
the stretching itself and the breakup is achieved later (tb = 5.27). As a consequence,
at tb the plate is at y∼ 2.8, nearly twice the height reached in the axisymmetric case.

The changes in the liquid pressure related to the interface curvature have a strong
effect on the pressure gradient at the contact lines and, consequently, on the contact
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FIGURE 7. Contact line mobility represented by (a) its tangential pressure gradient and
(b) its x-coordinate versus time. The curves with circles correspond to the contact lines
on the moving plate.

line mobility. Figure 7(a) depicts the evolution of the pressure gradient in the direction
tangent to the solid wall near the right contact lines (plate and cavity); i.e. dp/ds= tw ·

∇p for both axisymmetric and plane geometry. It is important to note that, as shown
in figure 3, the tangent vector tw points towards the contact line on the cavity and
away from the contact line on the plate. Therefore, although tw ·∇p has different signs
along the plate (line and markers) and the cavity (line), the pressure falls along both
surfaces as one moves away from the contact lines. These results should be interpreted
only as an approximation to the pressure gradient which depends, in the vicinity of
the contact lines, on the discretization used in our computations. It is well known that
by using Navier’s slip model, the pressure gradient near the contact line should scale
as dp/dr∼ 1/r, where r is the distance from the contact line. Therefore, dp/dr should
be infinite at the contact lines (see, for example, Shikhmurzaev 2006).

Figure 7(b) shows the corresponding evolution of the x-coordinate of the contact
line for both geometries. From the beginning of the liquid transfer until t ∼ 0.4,
the pressure gradient close to the contact lines quickly increases, leading to a high
contact line velocity towards the symmetry axis x= 0. Although the pressure gradient
is higher for the axisymmetric geometry, the contact line mobility is lower, as is clear
from figure 7(b). In the axisymmetric case a tangent displacement of the contact lines
produces an associated change in the azimuthal interfacial perimeter. This additional
liquid confinement results in a lower contact line mobility and, consequently, in a
stronger contact line pinning.

As mentioned before, in this work the breakup is the time when the filament
thickness reaches a threshold value. Like other authors (Powell et al. 2002; Dodds
et al. 2009) we have also supposed that after the breakup, the volume of liquid
contained between the section of minimum thickness and the plate (Φp) remains on
the plate. Thus, we define φ=Φp/Φt as the fraction of liquid transferred to the plate,
relative to the initial total volume Φt. For the axisymmetric geometry φ = 0.066 and
for the plane geometry φ= 0.12. The smaller volume transferred in the axisymmetric
geometry is a consequence of the stronger pinning effect and the shorter breakup time
observed for this configuration. From a practical point of view, these results suggest
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FIGURE 8. Free surface shapes for planar cavities, pure stretching motion and three values
of Ca. The remaining parameters are those of the BC.

that planar cavities or grooves are easier to empty than cells. However, since a 2-D
liquid filament can be significantly more elongated than an axisymmetric one, it can
break up forming one or more satellite drops (see Huang et al. 2008), introducing
inaccuracies in the printed pattern.

Dodds et al. (2009) showed that for axisymmetric cavities, the fraction φ increases
with Ca, and we observed the same behaviour for planar cavities. The increase in the
transferred volume fraction is directly associated with the contact line displacement.
Figure 8 presents the interface configuration at the instant of filament breakup for
three values of the capillary number. As explained by Dodds et al. (2009), the mobility
of the contact lines depends on the capillary pressure gradient, which is a function
of both the capillary number and the curvature gradient near the contact line (see
(2.11)). At Ca = 0.05, the free surface reaches the corner of the cavity wall with
an almost constant curvature, leading to a low-pressure gradient and consequently a
strong pinning of the contact line. In contrast, the free surfaces at the plate show a
higher curvature variation. Thus, while the cavity contact lines remain almost pinned,
the plate contact lines move toward each other quickly, reducing the size of the drop
formed on the plate. At Ca= 0.35, the mobility of the cavity contact lines is similar,
but on the plate it is notably reduced due to the smaller pressure gradient. Therefore, a
larger drop is formed on the plate following breakup, resulting in a significant increase
of φ. It is interesting to note that the breakup is reached at almost the same plate–
cavity separation for both Ca = 0.05 and Ca = 0.35. However, for Ca = 0.35 the
capillary forces are weaker and the interface appears to be strongly curved. At Ca= 1
the viscous effects are large and the pressure gradient is small, resulting in a very
strong pinning of all contact lines; consequently, the fraction φ is even higher. Because
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FIGURE 9. The cavity (groove) shapes used in this work: rc = 0.4 (continuous), rc = 0.8
(dashed) and rc = 1.6 (dash-dotted). The top moving plate is in its initial horizontal
position (y = H0 = 0.03); the initial static menisci used to start the simulation are also
shown.

of the very low interfacial rigidity, thin liquid films are formed in the vicinity of the
cavity and plate contact lines.

In summary, the above results show that for both plane and axisymmetric cavities
under pure stretching kinematics, the transferred liquid fraction increases with capillary
number. In the next section we will show that this behaviour changes dramatically
when shearing and rotation are included in the plate motion.

4.3. Effect of the cavity aspect ratio and roll radius
In this section we analyse the effect of the cavity width and roll size on the liquid
transfer process, considering the full kinematics of a roll-to-roll system (see (2.9)).
Because the plate motion now includes the combined effects of stretching, rotation and
shearing, only 2-D plane cavities (grooves) are investigated. Predictions are shown for
two values of the dimensionless roll radius, i.e. Rb = 15 240 and 2540. Considering
a cavity depth δ = 10 µm, these values correspond to the roll radius, R, equal to
6 and 1 in., respectively. The first value is a typical roll radius in gravure printing
systems, while the second is representative of microgravure printing applications (Lee
et al. 2010b). As the roll radius Rb decreases, the curvature of the roll begins to be
comparable to the cavity size and, consequently, the rotation and shear motion become
more important. To evaluate this effect, three different cases were studied: (i) pure
stretching motion with Rb = 15 240, ωb = 2.5 × 10−3 and ωp = 0, as in the previous
subsection (plate velocity given by (2.7)); (ii) full roll-to-roll kinematics (2.9) with
Rb = 15 240 and ωp = ωb = 2.5 × 10−3, and (iii) full roll-to-roll kinematics with roll
radius Rb = 2540 and ωp = ωb = 6.27× 10−3. Since ωb and ωp scale with 1/R1/2

b , the
dimensionless rotation speed changes even though the dimensional rotation is fixed.
Regarding the cavity aspect ratio, the values explored were rc=0.4, 0.8 and 1.6, while
rs was kept constant at rs= 0.3. The initial level of liquid at t= 0 was set at H0= 0.03
for all the conditions explored. This implies that the initial liquid meniscus between
the plate and the cavity will be formed at different horizontal positions (x-coordinates)
but at approximately the same position relative to the exterior corner, as illustrated in
figure 9.

Figure 10 shows φ as a function of the parameter ωp for different cavity sizes
rc. The results show that φ always increases with rc, suggesting that wider cavities
are easier to empty. The breakup of the liquid filament is controlled by two time
scales. One is related to the initial filament thickness, because thicker filaments take
more time to reach the breakup point. The other is the time required for the contact
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FIGURE 10. The liquid volume fraction transferred to the moving plate as a function of
the kinematic parameter ωp and the cavity (groove) aspect ratio.

lines to move along the cavity wall, which is related to the wettability properties,
slip coefficient, contact angle and the slope and curvature of the wall. Since these
properties and parameters were constant in our simulations, the breakup is only
controlled by the initial thickness. Thus, a thicker initial filament (wider cavity) takes
more time to thin, allowing the contact lines to move a longer distance inside the
cavity before the breakup. As a result, more liquid can be removed from the cavity.
Figure 11 depicts the free surfaces at the breakup for all cases presented in figure 10.
The experiments on gravure coating presented by Kapur (2003) give strong physical
evidence that the liquid fraction increases when wider cavities are used.

Results also show that for a fixed cavity geometry, the volume of liquid transferred
to the plate increases with ωp. Higher values of ωp are associated with higher angular
velocity and smaller roll radius. Figure 11 illustrates how the relative rotation and
lateral displacement of the plate result in a non-symmetric motion of the contact lines
when ωp 6=0: while the left contact line moves outside the cavity, the right contact line
goes deeper into it, leading to a more intense liquid displacement out of the cavity and
consequently a delayed filament breakup. With a wide cavity (rc= 1.6) the behaviour
is not monotonic. The breakup at the higher value of ωp (ωp= 6.27× 10−3) occurred
faster; consequently the plate position at the breakup is closer to the cavity. This early
breakup can be explained by examining the evolution of the filament interface during
the liquid transfer process, shown in figure 12 for the narrowest and widest cavities
and ωp = 6.27× 10−3. The effect of the plate rotation is stronger for the wide cavity
because of the lateral separation of the free surfaces. The right contact line moves
quickly inside the cavity. However, the left contact line stays more or less pinned at
the cavity corner. Clearly, the contact line does not move rapidly enough to avoid
a large deformation of the filament. However, in the small cavity (figure 12a), the
contact lines move faster and smaller deformations are expected; the same occurs for
rc = 0.8.
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FIGURE 11. The free surfaces at breakup for the three cavity (groove) sizes: (a) rc= 0.4,
(b) rc = 0.8 and (c) rc = 1.6. On each graph, the solid line corresponds to ωp = 0, the
dashed line to ωp = 2.5× 10−3 and the dash-dotted line to ωp = 6.27× 10−3.
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FIGURE 12. The free surface evolution during the emptying of a cavity (groove) with (a)
rc= 0.4, (b) rc= 1.6 for Rb= 2540 (ωr = 6.27× 10−3). The other parameters are those of
the BC.

The width of the printed pattern, i.e. the distance between the two contact lines
on the plate, in units of the cavity width, at breakup is presented in figure 13 as a
function of cavity size (rc) and angular velocity (ωp). This result does not consider the
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FIGURE 13. The width of the printed pattern on the substrate, normalized by the cavity
(groove) width, versus the kinematic parameter ωp and the cavity aspect ratio.

post-breakup flow of the liquid deposited on the substrate. The printed width increases
as the rotational and shearing effects become stronger, i.e. higher values of ωp. The
longer breakup time observed with wide cavities leads to a greater reduction of the
dimensionless printed width. For all cases analysed, the printed width varied from 0.25
to 0.45 of the cavity width.

4.4. Effect of Ca number
Gravure printing is used with liquids of very different viscosities and at different
speeds. Therefore, it is important to determine how the dynamics of the liquid
transfer process changes with the ratio of viscous to surface tension forces. The
liquid fraction is plotted in figure 14 as a function of the capillary number and for
the same parameters as reported in table 1. For comparison, the predictions for pure
stretching (ωp = 0) and the experimental results obtained by Yin & Kumar (2006)
and Chuang et al. (2008) are also included. Although these experimental results were
obtained under kinematics and geometry conditions different from the cases simulated
in this work, they are two of the few available results that discuss how the pick-out
fraction varies with the capillary number in a liquid transfer process.

The predictions for pure extensional motion, i.e. ωp = 0, reveal a monotonic
behaviour showing that φ rises with capillary number. This is the same behaviour as
that reported by Dodds et al. (2009), who also assumed pure stretching kinematics.
The predictions obtained with the complete roll-to-roll kinematics present a strong
nonlinear behaviour, showing a local maximum and minimum. This complex
behaviour of φ can be understood by analysing the evolution of the interfaces up to
breakup for each particular case, as shown in figure 15. The sequence of interfacial
configurations for each case does not correspond to the same instant of time; the
particular sequence for each case was selected to better describe the evolution of the
interface deformation and contact line motion.
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FIGURE 14. The mass fraction transferred to the substrate versus the capillary number
Ca. The other parameters correspond to the BC (table 1). Y & K: experiments by Yin &
Kumar (2006). C et al.: experiments by Chuang et al. (2008).

The interface evolution for Ca= 0.01 is presented in figure 15(a). Because of the
plate rotation, the radius of curvature of the left meniscus is smaller than the radius of
curvature of the right interface. The curvature difference sets a strong pressure gradient
that drives liquid towards the left; this lateral capillary pumping action quickly drives
liquid out of the cavity. Thus, most of the filament stretching motion occurs when both
contact lines are outside the cavity and the dynamics is roughly the same as that of
a filament stretching between flat plates, as studied by Dodds et al. (2009). Despite
the fact that the plate is under rotation relative to the cavity, the liquid fraction is
φ = 0.5. Three-dimensional calculations by Dodds et al. (2012) of filament stretching
between plates with a rotating upper surface have shown that high angular velocities
are necessary to break the symmetry of the liquid transfer.

To the best of our knowledge, this is the first time that such behaviour has been
captured with numerical simulations. This was only possible because the present
model considers the complete kinematics that fully describes the relative motion
between the substrate and the cavity, which includes extension, shearing and rotation.
This, in addition to the low capillary number, allows the development of a lateral
capillary pumping that is strong enough to pull all the liquid out of the cavity. This
lateral capillary pumping was observed experimentally by Yin & Kumar (2006) for
different conditions and kinematics. In their experiments, a curved top surface slid
horizontally over a cavity filled with liquid. In some conditions, the asymmetry
between the front and rear menisci created a high enough curvature difference
between the two sides of the cavity to give rise to the phenomenon already described
in our results, with the difference that here the curvature gradient is created by the
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FIGURE 15. The free surface evolution accompanying the emptying of the cavity (groove)
for (a) Ca = 0.01, (b) Ca = 0.025, (c) Ca = 0.05, (d) Ca = 0.15, (e) Ca = 0.5 and (f )
Ca= 1.0.

imposed plate kinematics. Another piece of experimental evidence that shows that,
in certain conditions, the filament breakup occurs with the contact lines outside the
cavity is presented by Chuang et al. (2008). They show images of the surface of the
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gravure roll after the liquid has been transferred to the substrate. In other cases, the
remaining liquid drop is located outside the cavity, which is shown as completely
empty. This is exactly what is predicted in our analysis.

As shown in figure 14, the liquid fraction increases slightly with the capillary
number, reaching φ ' 0.6 for Ca= 0.025. The evolution of the interface is shown in
figure 15(b). The dynamics is very similar to the previous case, but with one important
difference. Because the capillary forces are weaker (higher Ca), the pressure gradient
that drives liquid out the cavity is smaller and this reduces the contact line velocities.
As a result, when the filament begins to thin, the left contact line is outside the
cavity, but the right contact line is still inside and becomes pinned at the corner of
the groove during most of the filament extension. This asymmetry moves the breakup
plane closer to the cavity, leading to a larger liquid volume being transferred to the
top plate.

From Ca = 0.025 to Ca = 0.15, the liquid fraction φ decreases as the capillary
number increases. Figure 15(c) shows the interface evolution for Ca = 0.05. The
process is again similar to that when Ca = 0.025, but now the contact line speeds
are lower because of the weaker capillary forces. When the liquid bridge begins to
thin, the left contact line is near the corner of the groove and the right contact line
is still near the bottom surface of the cavity. The restricted movement of the left
contact line causes the pinch-off to occur closer to the top plate, leading to a smaller
φ. The minimum value of φ occurs when Ca= 0.15, with the corresponding interface
evolution shown in figure 15(d). For this case the capillary force is not strong enough
to pump liquid out of the groove. Then, both contact lines remain inside the cavity
during the entire process until breakup.

At even higher capillary number, e.g. Ca= 0.5 in figure 15(e), the contact lines at
the top and bottom surfaces have very low mobility during the entire process. Thus,
the wetted area on the top plate is considerably larger when compared with previous
cases and, consequently, so is the volume of liquid attached to the top plate. As
result, φ shows a local maximum. Finally, for Ca= 1 in figure 15(f ), the contact lines
are virtually immobile and their displacement is negligible during the entire process.
Although this produces an even larger wetted surface on the upper plate, less liquid
is removed from the cavity and the fraction φ presents a small decrease.

As mentioned before, reports of experiments on liquid transfer from single grooves
are scarce. We have included data from Yin & Kumar (2006) and Chuang et al.
(2008) for comparison purposes, even though their experiments do not correspond
directly to the problem analysed in this section. Yin & Kumar (2006) used an upscaled
trapezoidal cavity with an aspect ratio of rc= 1.2. They studied the liquid transfer not
to a rotating cylinder, but to a curved plate that slid over the top of the cavity. They
found that the liquid fraction φ was virtually constant at φ = 0.5 at low capillary
numbers (Ca< 5× 10−3) and decreased monotonically for 5× 10−3 < Ca< 5× 10−2.
Figure 14 only presents the data in the range we have explored with our model.
Chuang et al. (2008) worked with trapezoidal cells with an aspect ratio of rc = 0.83
and used a rotating roll over the cavity to remove the liquid from the cell, i.e. the
same kinematics as we have used in our analysis. They also used upscaled cavities,
where inertial and gravitational effects may be important; moreover, the parameter
Rb ∼ 170 was much smaller than those used in our analysis. However, in agreement
with the results of Yin & Kumar (2006), they found that φ decreases as the capillary
number increases over the range explored. Despite the differences in the imposed
kinematics and geometrical parameters, the predictions and the experimental data
show the same general trend in the corresponding Ca range. It is important to note



568 D. M. Campana and M. S. Carvalho

that the predicted increase of φ for 10−2 < Ca < 2 × 10−2 is small and it would be
very difficult to capture experimentally. Unfortunately, we do not know of experiments
on gravure printing for Ca> 0.1 and thus we cannot validate the predicted change of
behaviour of φ as a function of Ca.

Kapur (2003) presented experimental results on gravure coating in the range
10−2 <Ca< 10−1. He used trapezoidal cavities of the order of 100 µm with different
aspect ratios. His results indicate that φ increases almost linearly with Ca, showing
a completely different trend from the experiments shown in figure 14. However, in
gravure coating techniques, a continuous liquid film is deposited on the substrate;
thus, the transferred liquid fraction must be calculated on average by comparing the
final film thickness with the cavity volume per unit area of the substrate. In addition,
because of the continuous film formed on the substrate, the liquid transfer process
may be very different from the one that occurs in single cells, for which the dynamics
of the contact lines has a strong effect on the volume of liquid transfer. Therefore,
it is not clear how gravure coating results might be used as a basis for comparison
with our predictions.

5. Final remarks

The fundamental aspects of gravure printing can be better understood by analysing
the liquid transfer from a cell or groove to a rotating roll. In this work we have
analysed two important aspects of this problem. First, we compared the liquid transfer
dynamics from an axisymmetric cell, which is used to print dots, and a groove, which
is used to print lines. In order to keep the flow 2-D for both cases, the comparison
was made considering that the plate moves only vertically over the cell; the liquid
bridge is simply stretched. This simpler kinematics is usually used as a simplified
model to describe the complex relative motion between a substrate and a gravure cell.
The results show that the azimuthal curvature of the interface, which occurs in the
case of a cell, induces a lower mobility of the contact line and a stronger pinning at
the corner of the cell. This contact line restriction reduces the amount of liquid that is
transferred to the plate. Therefore, the predictions suggest that it is easier to remove
liquid from grooves than from cells. This should be taken into consideration when
designing gravure rolls to print a complex pattern of lines, as in the case of flexible
circuits.

In order to verify the effect of the kinematics on the dynamics of the process, we
have used a complete description of the relative motion between a substrate and a
groove, by considering extension, shearing and rotation. The results show that the
kinematics has a tremendous effect on the interface deformation and contact line
displacements and, consequently, on the amount of liquid that is transferred to the
substrate.

From an application point of view, the aforementioned results show that the amount
of liquid transferred to the substrate depends strongly on the capillary number of the
flow, which is a function of the liquid viscosity, substrate speed and roll radius. The
relative lateral and rotational motions between the groove and roll surface lead to an
interface that presents different curvatures on each side of the liquid filament. At low
capillary number, the strong capillary pressure gradient and the mobile contact lines
promote a lateral pumping that helps to remove liquid from the cavity. Approximately
50 % of the liquid is transferred to the substrate and, because of the lateral pumping,
all liquid is removed from the cavity. The liquid not transferred to the substrate
remains on the lands between cavities. As an unwanted effect, the printed pattern



Liquid transfer from single cavities to rotating rolls 569

may be distorted and loss of registration may also occur because of the high contact
line mobility. The lateral displacement of the printed pattern could be controlled by
special substrate treatments to promote contact line pinning even at low capillary
number, as suggested by Darhuber, Troian & Wagner (2001).

In contrast, printing at high capillary number has the advantages of a smaller contact
line mobility, which produces less distortion in the transferred image and better
registration. This conclusion agrees with the experimental observation of Darhuber
et al. (2001), which shows that higher ink viscosity and extensional velocity between
the surfaces avoid unwanted lateral ink redistribution during printing. The smaller
transferred liquid fraction observed at high capillary number could be controlled
by reducing the diameter of the rolls, which promotes better liquid removal from
cavities.

The results show that the use of an accurate kinematic description between the
cavity and the substrate is only necessary for low capillary numbers, for which the
lateral displacement of the contact lines is important. For high capillary numbers, the
transferred liquid fraction is mainly controlled by stretching and a simpler extensional
motion is apparently sufficient to get reliable predictions. Since the liquid transfer is
strongly affected by the contact line motion, a more accurate model of the flow near
the contact lines should improve the accuracy of the predictions. It could include, for
example, the dependence of the contact line velocity on the dynamic contact angle
and hysteresis.
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